2022 SEMI-ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

ALABAMA POWER COMPANY PLANT BARRY ASH POND

July 31, 2022

Prepared for

Alabama Power Company Birmingham, Alabama

By

Southern Company Services
Earth Science and Environmental Engineering

CERTIFICATION STATEMENT

This 2022 Semi-Annual Groundwater Monitoring and Corrective Action Report, Alabama Power Company - Plant Barry Ash Pond has been prepared in accordance with the United States Environmental Protection Agency's coal combustion residual rule (40 CFR Part 257, Subpart D), ADEM Admin. Code Ch. 335-13-15, and Part E of ADEM Administrative Order No. 18-094-GW, under the supervision of a licensed professional engineer in the State of Alabama. As such, I certify that the information contained herein is true and accurate to the best of my knowledge.

Luyon Budd	
50	7/31/2022
Gregory F. Budd, PG AL Registered Professional Geologist No. 1455	Date

Sug Metstone PE

7/31/2022

Gregory Whetstone, PE

AL Registered Professional Engineer No. 27885

Date

EXECUTIVE SUMMARY

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (40 CFR Part 257, Subpart D), the State of Alabama Department of Environmental Management (ADEM) Admin. Code Ch. 335-13-15, and ADEM Administrative Order (AO) No. 18-094-GW, this 2022 Semi-Annual Groundwater Monitoring and Corrective Action Report has been prepared to document the first 2022 semi-annual assessment groundwater monitoring activities at the Alabama Power Company (APC) James M. Barry Electric Generating Plant (Plant Barry) Ash Pond and to satisfy the requirements of § 257.90(e), ADEM Admin. Code r. 335-13-15-.06(1)(f), and Part E of AO 18-094-GW. Semi-annual assessment monitoring and associated reporting for Plant Barry Ash Pond is performed in accordance with the monitoring requirements § 257.90 through § 257.95 and ADEM Admin. Code r. 335-13-15-.06(1) through r. 335-13-15-.06(6).

The CCR unit began the monitoring period in assessment monitoring pursuant to § 257.95 and ADEM Admin. Code r. 335-13-15-.06(6). Statistically significant increases (SSIs) of Appendix III constituents over background were identified in the results of the first detection monitoring event and assessment monitoring was initiated in January 2018. Statistically significant levels (SSLs) of Appendix IV parameters above groundwater protection standards were identified while in assessment monitoring. Consequently, an assessment of corrective measures (ACM) was initiated on January 13, 2019, and completed on June 12, 2019, according to the requirements of § 257.96, ADEM Admin. Code r. 335-13-15-.06(7), and ADEM Administrative Order No. 18-094-GW. A public meeting to discuss the ACM was held on June 30, 2020.

Since the submittal of the ACM extensive Site investigations have been performed to select effective corrective measures to address SSLs above GWPS. A Groundwater Remedy Selection Report was prepared to meet the requirements of § 257.97, ADEM Admin. Code r. 335-13-15-.06(8), and Part C of AO No.18-094-GW and submitted to ADEM on October 29, 2021. Subsequently, within 90 days of remedy selection, a Corrective Action Groundwater Monitoring Program was developed and submitted to ADEM on January 27, 2022, for review.

The Corrective Action Groundwater Monitoring Program was prepared to meet § 257.98 and ADEM Admin. Code r. 335-13-15-.06(9) to detect potential downgradient changes in groundwater quality and assess the efficacy of the selected groundwater corrective action remedies. The Monitoring Program has been developed to meet the requirements of CFR § 257.98(a)(1) and ADEM Admin. Code r. 335-13-15-.06(9)(a)(1) and will supplement the ongoing CCR compliance groundwater monitoring currently being performed at the Site.

SSLs of Appendix IV parameters arsenic and cobalt were detected above GWPS during the first 2022 semiannual monitoring event. The following summarizes results and activities during the first semi-annual monitoring period of 2022:

- Submitted the 2021 Annual Groundwater Monitoring and Corrective Action Report on January 31, 2022
- Collected soil and groundwater samples for treatability studies using Site aquifer media and impacted groundwater prior to field implementation of an injection treatment pilot study between March 1, 2022 and June 3, 2022. The treatability studies will evaluate the effectiveness of various treatment solutions and doses in removing constituents of interest (COIs) from impacted groundwater.
- Completed the first semi-annual assessment groundwater sampling event between May 23, 2022 and May 31, 2022. Additional groundwater samples were collected during the first semi-annual monitoring event for the proposed injection treatability studies.
- Collected additional MNA parameters along with May 2022 sampling event to help establish baseline conditions and to provide input into geochemical modeling and future MNA monitoring/evaluation.
- Pursuant to 40 CFR 257.90(e)(6), a Monitoring Period Summary table has been prepared to describe the status of groundwater monitoring and corrective action during the monitoring period for this report.

The CCR unit concluded the monitoring period in corrective action and APC will continue implementation of the selected groundwater remedies identified in the Groundwater Remedy Selection Report and the Corrective Action Groundwater Monitoring Program submitted to ADEM. The following monitoring-related activities are planned for the CCR unit:

- Conduct batch testing to evaluate removal of COIs, and selection of the optimum reagents and doses for column tests.
- Conduct column testing to evaluate removal of COIs by mixing treatment reagents with site-specific impacted groundwater and applying to site-specific soils (aquifer solids) in columns;
 Appendix III and IV constituents will be measured in the column effluents to determine the reduction of COIs in groundwater, and to evaluate any unintended consequences of treatment (e.g., release of constituents from soils).
- Conduct selective sequential extraction of post-column (treated) soils to help determine the sequestration mechanisms and stability of the COIs and their host solids.

- After treatment, the post-column (treated) soils will be leached with upgradient (background) groundwater from the respective plant in additional column studies, to help assess long-term stability of the COIs and their host solids.
- Prepare Class V UIC permit.
- Conduct the second semi-annual assessment monitoring event in the fall of 2022 and submit the annual groundwater monitoring and corrective action report summarizing the findings to ADEM by January 31, 2023.

Executive Summary Table. Monitoring Period Summary Plant Barry - Ash Pond

Assessment Monitorin	g Inintiated: January 15, 2018
Monitoring Period:	January 1 - July 31, 2022

Beginning Status: Corrective Action Ending Status: Corrective Action

Statistical	Analysis	Results *
-------------	-----------------	-----------

Appendix III SSIs		
Parameter	Wells	
Boron	BY-AP-MW-1, BY-AP-MW-8, BY-AP-MW-9, BY-AP-MW-10, BY-AP-MW-16	
Calcium	BY-AP-MW-1, BY-AP-MW-2, BY-AP-MW-5, BY-AP-MW-7, BY-AP-MW-8, BY-AP-MW-9, BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-12, BY-AP-MW-13, BY-AP-MW-14, BY-AP-MW-15, BY-AP-MW-16	
Chloride	BY-AP-MW-1, BY-AP-MW-3, BY-AP-MW-4, BY-AP-MW-5, BY-AP-MW-7, BY-AP-MW-8, BY-AP-MW-9, BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-12, BY-AP-MW-13, BY-AP-MW-14, BY-AP-MW-15, BY-AP-MW-16	
Fluoride	BY-AP-MW-15	
рН	BY-UP-MW-1, BY-UP-MW-2, BY-UP-MW-3, BY-UP-MW-4, BY-AP-MW-1, BY-AP-MW-2, BY-AP-MW-6, BY-AP-MW-8, BY-AP-MW-10, BY-AP-MW-13	
Sulfate	BY-AP-MW-1, BY-AP-MW-7, BY-AP-MW-8, BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-12, BY-AP-MW-13, BY-AP-MW-14	
TDS	BY-AP-MW-1, BY-AP-MW-5, BY-AP-MW-7, BY-AP-MW-8, BY-AP-MW-9, BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-12, BY-AP-MW-13, BY-AP-MW-14, BY-AP-MW-15, BY-AP-MW-16	

Appendix IV SSLs		
Parameter	Wells	
Arsenic	BY-AP-MW-1, BY-AP-MW-5, BY-AP-MW-7, BY-AP-MW-8, BY-AP-MW-9, BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-12, BY-AP-MW-13, BY-AP-MW-14, BY-AP-MW-15, BY-AP-MW-16	
Cobalt	BY-AP-MW-7, BY-AP-MW-15	

^{*} See the attached report for further details regarding statistical exceedances and alternate source demonstrations.

Assessment of Corrective Measures & Groundwater Remedy		
Assessment of Corrective Measures		
Date Initiated:	January 13, 2019	
Date Complete:	June 12, 2019	
Public Meeting Date:	June 30, 2020	
Groundwater Remedy		
Selected During Period: Yes		
Selection Date: 10/29/2021		
Initiated During Period: Yes		
Ongoing During Period: Yes		

TABLE OF CONTENTS

EXEC	UTIVE	SUMMARY	i
1.0	Introd	luction	1
2.0	Moni	toring Program Status	2
3.0	Site L	ocation and Description	3
3.1	Phy	sical Setting	3
3.2	Site	Geology and Hydrogeology	3
3	.2.1	Uppermost Aquifer	5
3	.2.2	Flow Interpretation	5
3.3	Gro	undwater Monitoring System	5
3	.3.1	Monitoring Wells	6
	3.3.1.	1 Upgradient Wells	6
	3.3.1.	2 Downgradient Wells	7
	3.3.1.	3 Delineation Wells	7
	3.3.1.	4 Piezometers	8
	3.3.1.	5 Monitoring Well Replacement and Abandonment	8
3.4	Gro	undwater Monitoring History	9
3	.4.1	Available Monitoring Data	9
3	.4.2	Historical Groundwater Flow.	9
3	.4.3	Monitoring Variances	10
3.5	Gro	undwater Sampling and Analysis	10
3	.5.1	Groundwater Sample Collection	11
3	.5.2	Sample Preservation and Handling	11
3	.5.3	Chain of Custody	12
3	.5.4	Laboratory Analysis	12
3	.5.5	Monitor Period Sampling Events Summary	12

4.0	Grou	ndwater Elevations	14
4.1	Gro	oundwater Flow Velocity Calculations	14
5.0	Evalu	nation of Groundwater Quality Data	16
5.1	Dat	a Validation – Quality Assurance/Quality Control	16
5.2	Stat	tistical Methodology and Tests	17
5	5.2.1	Appendix III Evaluation	17
5	5.2.2	Appendix IV Evaluation	18
5.3	Stat	tistical Exceedances	19
5	5.3.1	Appendix III Constituents	19
5	5.3.2	Appendix IV Constituents	19
	5.3.2.	1 Delineation Wells	20
6.0	Grou	ndwater Assessement	22
6.1	Chr	ronology of Delineation Activities	22
ϵ	5.1.1	Delineation Wells	22
6.2	Nat	ure and Estimated Quantity of Release	24
6.3	Dis	cussion of Delineation Results	25
ϵ	5.3.1	Arsenic Delineation	27
ϵ	5.3.2	Cobalt Delineation	29
6.4	Stat	tus of Delineation	30
6.5	Gro	oundwater Remedy and Corrective Action	30
ϵ	5.5.1	Groundwater Remedy Selection	31
ϵ	5.5.2	Corrective Action – Groundwater Monitoring Program	32
ϵ	5.5.3	Groundwater Quality Changes and Trends	35
7.0	Sumr	nary and Conclusions	37
8 N	Refer	rences	38

FIGURES

Figure 1	Site Location Map
Figure 2	Site Topographic Map
Figure 3	Site Geologic Map
Figure 4A	Geologic Cross-Section A-A'
Figure 4B	Geologic Cross-Section B-B'
Figure 4C	Geologic Cross-Section C-C'
Figure 5	Monitoring Well Location Map
Figure 6	Potentiometric Surface Contour Map (May 23, 2022)
Figure 7A	Arsenic Isoconcentration Map
Figure 7B	Cobalt Isoconcentration Map
Figure 8A	Arsenic Concentrations Along Geologic Cross-Section A-A'
Figure 8B	Arsenic Concentrations Along Geologic Cross-Section B-B'
Figure 9A	Cobalt Concentrations Along Geologic Cross-Section A-A'
Figure 9B	Cobalt Concentrations Along Geologic Cross-Section B-B'
TABLES	
Table 1a	Compliance Monitoring Well Network Details
Table 1b	Delineation Well Network Details
Table 1c	Piezometer Well Network Details
Table 2	Monitoring Parameters and Reporting Limits
Table 3	Recent Groundwater Elevations Summary
Table 4a	Relative Percent Difference (RPD) Calculations
Table 4b	Field QC: Blank Detections
Table 4c	Field QC: Data Validation Results (Blanks)
Table 5	Summary of Background Levels and Groundwater Protection Standards
Table 6	First Semi-Annual Monitoring Event Analytical Summary
APPENDICE	ES
Appendix A	Groundwater Analytical Data
Appendix B	Historical Groundwater Elevations Summary

A

Appendix A	Groundwater Anarytical Data
Appendix B	Historical Groundwater Elevations Summary
Appendix C	Laboratory and Field Records
Appendix D	Horizontal Groundwater Flow Velocity Calculations
Appendix E	Statistical Analysis
Appendix F	Laboratory Treatability Study Work Plan

ABBREVATIONS

ACM Assessment of Corrective Measures

ADEM Alabama Department of Environmental Management

AL Alabama

APC Alabama Power Company
APCEL APC Environmental Laboratory
ASD Alternate Source Demonstration

ASTM Alabama Power Company Environmental Laboratory

BGS below ground surface
CCR Coal Combustion Residual
CEC cation exchange capacity
CFR Code of Federal Regulations

COC chain of custody

COI constituents of interest
CSM conceptual site model
DO dissolved oxygen

EPA United States Environmental Protection Agency

ft feet

GW groundwater

GWPS Groundwater Protection Standard(s)

LCL Lower Confidence Limit(s)

m meter

mg/L milligram per liter

MNA monitored natural attenuation

MSL mean sea level

MW- denotes "Monitoring Well" NCDS National Coal Data System

NELAP National Environmental Laboratory Accreditation Program

NTU nephelometric turbidity unit
ORP oxidation reduction potential

pCi/L picocuries per liter
PE Professional Engineer
PG Professional Geologist

PL prediction limits

PQL practical quantitation limit
PVC polymerizing vinyl chloride
QA/QC quality assurance/quality control

RL reporting limit

RPD relative percent difference SEM scanning electron microscopy

SM Standard Method(s)

SSE selective sequential extraction SSI statistically significant increase

2022 Semi-Annual Groundwater Monitoring and Corrective Action Report

SSL	statistically significant level
	statistically significant to voi

TAL Test America, Inc.
TOC top of casing

TDS total dissolved solids

USGS Unites States Geological Survey

UTLs Upper Tolerance Limits

XRD X-ray diffraction XRF X-ray fluorescence

1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (40 CFR Part 257, Subpart D), the State of Alabama Department of Environmental Management (ADEM) Admin. Code Ch. 335-13-15, and ADEM Administrative Order (AO) No. 18-094-GW, this 2022 Semi-Annual Groundwater Monitoring and Corrective Action Report has been prepared to document 2022 semi-annual assessment groundwater monitoring activities at the Plant Barry Ash Pond and to satisfy the requirements of § 257.90(e), ADEM Admin. Code r. 335-13-15-.06(1)(f), and Part E of AO No. 18-094-GW. Semi-annual assessment monitoring and associated reporting for Plant Barry Ash Pond is performed in accordance with the monitoring requirements § 257.90 through § 257.95 and ADEM Admin. Code r. 335-13-15-.06(1) through r. 335-13-15-.06(6).

Semi-Annual Groundwater Monitoring and Corrective Action Reports include an update on groundwater delineation activities completed since the submittal of the Facility Plan for Groundwater Investigation (November 13, 2018) and corrective action activities completed since the submittal of the Corrective Action Groundwater Monitoring Program (January 27, 2022).

2.0 MONITORING PROGRAM STATUS

The site is currently in corrective action and APC will continue implementation of the selected groundwater remedies identified in the Groundwater Remedy Selection Report and the Corrective Action Groundwater Monitoring Program. In accordance with § 257.94(e) and ADEM Admin. Code r. 335-13-15-.06(5)(e), APC implemented assessment monitoring in January 2018. SSIs of Appendix III and SSLs of Appendix IV parameters were identified at the Plant Barry Ash Pond during sampling events conducted in 2018. Alternate Source Demonstrations (ASD) were not completed for all Appendix IV constituents exceeding the GWPS; therefore, pursuant to § 257.95(g)(3)(i) and ADEM Admin. Code r. 335-13-15-.06(6)(g)4.(i), APC completed an assessment of corrective measures (ACM) in accordance with § 257.96, ADEM Admin. Code r. 335-13-15-.06(7), and ADEM AO No. 18-094-GW. The ACM was completed June 12, 2019, and a public meeting was held to discuss the ACM on June 30, 2020.

A Groundwater Remedy Selection Report was prepared to meet the requirements of § 257.97, ADEM Admin. Code r. 335-13-15-.06(8), and Part C of AO No.18-094-GW and submitted to ADEM on October 29, 2021. Subsequently, within 90 days of remedy selection, a Corrective Action Groundwater Monitoring Program was developed and submitted to ADEM on January 27, 2022, for review.

The Corrective Action Groundwater Monitoring Program was prepared to meet § 257.98 and ADEM Admin. Code r. 335-13-15-.06(9) to detect potential downgradient changes in groundwater quality and assess the efficacy of the selected groundwater corrective action remedies. The Monitoring Program has been developed to meet the requirements of CFR § 257.98(a)(1) and ADEM Admin. Code r. 335-13-15-.06(9)(a)(1) and will supplement the ongoing CCR compliance groundwater monitoring currently being performed at the Site.

In accordance with § 257.95 and ADEM Admin. Code r. 335-13-15-.06(6), APC will continue semi-annual assessment monitoring, including all monitoring wells in the certified groundwater monitoring system and any well installed to characterize the horizontal and vertical extent of SSLs. APC will continue implementation of the selected groundwater remedies identified in the Groundwater Remedy Selection Report and the Corrective Action Groundwater Monitoring Program submitted to ADEM.

3.0 SITE LOCATION AND DESCRIPTION

The Alabama Power Company (APC) James M. Barry Electric Generating Plant (Plant Barry) is in northeastern Mobile County, Alabama, approximately 23 miles north of Mobile, AL and 1 mile east of the city of Bucks, AL. The physical address is 15300 U.S. Highway 43 North, Bucks, Alabama 36512. Plant Barry lies in Section 36 of Township 1 North, Range 1 West, Sections 31 and 32 of Township 1 North, Range 1 East, Section 1 of Township 1 South, Range 1 West, and Sections 5 and 6 of Township 1 South, Range 1 East. Section/Township/Range data are based on visual inspection of USGS topographic quadrangle maps and GIS maps (USGS, 1980, 1982a, 1982b, 1983). The Ash Pond is located east-southeast of the main plant, between the Mobile River and Plant Barry barge canal. **Figure 1, Site Location Map,** depicts the location of the Plant and Ash Pond with respect to the surrounding area.

3.1 PHYSICAL SETTING

Plant Barry is located within the Southern Pine Hills and the Alluvial-deltaic Plain districts of the East Gulf Coastal Plain physiographic section. The Alluvial-deltaic Plain district is composed of alluvium and terrace deposits of the Mobile River delta and is characterized by very little topographical relief (Gillet et al., 2000). The Southern Pine Hills district is a southward sloping plain developed on Miocene Series clay, sand, and gravel deposits. The Southern Pine Hills district is dissected by surface water features, and near Plant Barry, displays gentle topographic relief (Davis, 1987). Local site elevations near the Ash Pond range from approximately 0 to 50 feet above mean seal level (MSL). The embankment elevations that form the perimeter of the Ash Pond reside between 26 and 20 feet MSL. **Figure 2**, **Site Topographic Map**, provides the topography of the Site.

3.2 SITE GEOLOGY AND HYDROGEOLOGY

The Pliocene age Citronelle formation, while present regionally, was not encountered at the site. Sedimentary alluvial and terrace deposits of the Quaternary Period overlie largely unconsolidated Tertiary deposits in and adjacent to the flood plains of the Mobile River. At the site, Holocene age alluvial and low terrace deposits overlie undifferentiated Miocene Series sediments. Miocene Series sediments were primarily deposited in a regressive marine depositional environment. The Miocene Series is composed of fine to very coarse-grained sand with interbedded sandy clays, silts, and shell fragments (Walter and Kidd,

1979). Siliciclastic sediments of the Miocene Series are often micaceous and pyritic, and contain wood fragments, shell debris, and heavy minerals (Chandler et al., 1985). Alluvial, low terrace, and coastal deposits reflect estuarine, deltaic, lagoonal, and shoreface deposition in lowland areas from late Pleistocene to Holocene time. These deposits consist of fine to coarse sand, which can be rich in heavy detrital minerals (Hsu, 1960), silt, sandy clay, clay, and shell fragments (Chandler et al., 1985). Figure 3, Site Geologic Map, illustrates the surface geology at the site and neighboring areas. Figure 4A, Geologic Cross-Section A-A', Figure 4B, Geologic Cross-Section B-B, and Figure 4C, Geologic Cross-Section C-C', provides an illustration of well screen intervals with respect to stratigraphy and elevation at the Site.

Around the site, the uppermost stratigraphic layer varies from approximately 5 to 20 feet and is defined as fill material composed of sandy and silty lean clays that were placed during the construction of the Ash Pond. Beneath the fill material, generalized near-surface stratigraphy of the site, in descending order, consists of (Unit 1) an organic-rich fat clay to lean clay, (Unit 2) a sandy lean clay to clayey sand with interbedded silty sand, and (Unit 3) a poorly graded sand with lenses of sandy lean clay and gravel. The stratigraphy of the site displays vertical and horizontal heterogeneity common with alluvial, low terrace, and coastal deposits.

- Unit 1 is described as a mottled gray to dark gray and red fat clay with some interlayered sandy lean clays. Unit 1 extends from the base of fill materials to elevations of approximately -10 to -25 feet mean sea level (MSL).
- Unit 2 consists of mottled light gray, brownish yellow, and red sandy lean clay with medium plasticity and trace amounts of interlayered sand. Lenses of clayey sands and silty sands are also present within this unit. Unit 2 extends from the base of the organic clay layer to elevations of approximately -30 to -40 feet MSL grading into sand of Unit 3.
- Unit 3 comprises the uppermost aquifer for groundwater monitoring purposes at the site and is
 described as a pale brown or light gray poorly graded sand with silt content. Fine gravel appears
 in the lower portion of Unit 3. Lenses of sandy clay and clayey sand are present in the upper
 portions of Unit 3 but are not prevalent.
- Unit 4 likely corresponds to the transition to Miocene Series sediments and is described as a pale greenish gray or blue, interbedded fat clay, lean clay, and silty sand. The top of Unit 4 generally appears between 90 and 120 feet below ground surface at the Site (-65 to -100 ft MSL) and select

borings (BY-AP-MW-8V, BY-AP-MW-12V, BY-AP-MW-12VM, BY-AP-MW-15VM) indicate a thickness of 10 to 20 feet. Unit 4 clays display a very low average hydraulic conductivity of 3.0 x 10⁻⁷ cm/s.

3.2.1 Uppermost Aquifer

The uppermost aquifer beneath the site generally corresponds to Unit 3 sands, which are part of the Watercourse Aquifer system. At the site, Watercourse Aquifer generally consists of fine to medium grained sands with discrete gravelly, coarse sand and gravel. Clay nodules, lenses, and stringers are present within Unit 3, but are not prevalent. Depth to the top of the Watercourse Aquifer generally ranges between 45 and 70 feet below ground surface (BGS). Groundwater recharge to the Watercourse Aquifer is largely accomplished by infiltration of precipitation and subsequent percolation down to the water table. Regionally, the Watercourse and Miocene-Pliocene Aquifers are considered to be hydraulically connected due to the discontinuous nature of clay aquitards. However, locally semi-confined to confined conditions may be present when a sufficient aquitard separates the aquifers or sand units.

3.2.2 Flow Interpretation

Groundwater flow at the site is a subdued replica of the natural topography where gravity is the dominant force driving flow. Groundwater flows from higher topographic elevations west of the Ash Pond to lower topographic elevations to the east. Groundwater elevations, potentiometric surfaces, and geologic cross-section indicate that the Watercourse Aquifer beneath the Site is not in communication with the discharge canal. Groundwater flow is accomplished by porous or Darcian flow mechanics through sands of the Watercourse Aquifer. Groundwater elevations fluctuate in response to rainfall and Mobile River stage. Seasonal variations of 5 to 7 feet are typical at the Site. These fluctuations are consistent in monitoring wells across the Site, indicating a relatively uniform response to rainfall events and fluctuations of the Mobile River. Potentiometric surface maps are presented in **Section 4.1**.

3.3 GROUNDWATER MONITORING SYSTEM

Pursuant to § 257.91 and ADEM Admin. Code r. 335-13-15-.06(2), Plant Barry has installed a groundwater monitoring well network to monitor groundwater quality within the uppermost aquifer. The certified groundwater monitoring system for the Plant Barry Ash Pond is designed to monitor groundwater passing the waste boundary of the CCR unit. Wells were located to serve as upgradient or downgradient monitoring

locations based on groundwater flow direction as determined by the potentiometric surface elevation contour maps.

Monitoring wells were screened in the Watercourse Aquifer. The Watercourse Aquifer is composed of Quaternary alluvial and low terrace deposits consisting of interbedded sand, gravel, and clay. The monitoring systems are designed to monitor water quality as groundwater flows laterally from south to north across the site. All groundwater monitoring wells were designed and constructed using "Design and Installation of Groundwater Monitoring Wells in Aquifers," ASTM Subcommittee D18.21, as a guideline.

3.3.1 Monitoring Wells

Well locations at the site are designated as upgradient, downgradient, piezometer (water-level only), vertical delineation, and horizontal delineation. The following subsections provide a summary of well designations and if applicable, changes or modifications to the well network or designations. As described in the site Groundwater Monitoring Plan, modifications to the well network or designation must first be approved by ADEM. Monitoring well locations are presented on **Figure 5**, **Monitoring Well Location Map** and **Table 1a**. **Compliance Monitoring Well Network Details**, **Table 1b**. **Delineation Monitoring Well Network Details**, and **Table 1c**. **Piezometer Well Network Details** summarize the monitoring well construction details and design purpose for the Plant Barry Ash Pond.

3.3.1.1 Upgradient Wells

Data used to establish background water quality or selection of upgradient wells include: (1) review of groundwater elevation data and potentiometric surface contour maps to determine groundwater flow direction and (2) a screening of Appendix III CCR indicator parameters (chiefly calcium, sulfate, and boron) for apparently elevated concentrations.

Historically, monitoring wells BY-AP-MW-2 through BY-AP-MW-4 have served as upgradient monitoring wells. These wells were selected as upgradient based on low concentrations of CCR indicator parameters and groundwater flow direction. Following discussions with ADEM, these wells were redesignated as compliance monitoring wells and not used for "background" purposes.

To establish a clear and distinct background, monitoring well locations BY-GSA-MW-1 through BY-GSA-MW-4 now serve as upgradient locations for the Ash Pond. Groundwater generally flows semi-radially

across the Ash Pond from the southwest to northeast with a northerly and southerly flow component. Upgradient wells are located south of the Gypsum Pond as determined by water level monitoring and potentiometric surface maps constructed for the Site. This re-designation of well locations was detailed in the revised groundwater monitoring plan submitted to ADEM on April 15, 2020 and resubmitted on August 24, 2020. Upgradient wells BY-GSA-MW-1 through BY-GSA-MW-4 are now being labeled as BY-UP-MW-1 through BY-UP-MW-4 by field and lab personnel to distinguish as upgradient locations for both the Barry Gypsum Pond and Barry Ash Pond. **Table 1a**, summarizes the monitoring well construction details and design purpose.

3.3.1.2 Downgradient Wells

Monitoring well locations BY-AP-MW-1 through BY-AP-MW-16 are used as downgradient compliance monitoring locations for the Ash Pond. Downgradient monitoring well details are included in **Table 1a**.

3.3.1.3 Delineation Wells

Pursuant to § 257.95(g)(1), ADEM Admin. Code r. 335-13-15-.06(6)(g)2., and AO 18-094-GW, additional delineation wells were installed to characterize the horizontal and vertical extent of GWPS exceedances identified during assessment monitoring. Two phases of field investigation since late 2018 explored potential impacts to groundwater. Phase I was conducted between December 2018 and December 2019. Seven vertical delineation wells (BY-AP-MW-1V, BY-AP-MW-5V, BY-AP-MW-7V, BY-AP-MW-8V, BY-AP-MW-10V, BY-AP-MW-12V and BY-AP-MW-15V) and seven horizontal delineation wells (BY-AP-MW-17H, BY-AP-MW-18H, BY-AP-MW-19H, BY-AP-MW-20H, BY-AP-MW-22H, BY-AP-MW-23H, and BY-AP-MW-24H), were installed and sampled to assess the lateral extent of groundwater impact in the directions of groundwater flow away from the facility.

A Groundwater Investigation Report was submitted on December 15, 2019, summarizing Phase I groundwater investigation findings, and including a work plan for a Phase II investigation. Field work for Phase II was conducted between February 2020 and June 2020. Eight deep vertical delineation wells (BY-AP-MW-13V, BY-AP-MW-14V, BY-AP-MW-16V, BY-AP-MW-17V, BY-AP-MW-20V, BY-AP-MW-23V and BY-AP-MW-25V) and one horizontal delineation well (BY-AP-MW-25H) were installed to complete delineation activities at the Site.

Additionally, two Type III (double-cased) deep vertical delineation well borings (BY-AP-MW-12VM, and BY-AP-MW-15VM,) were advanced to vertically delineate the low-permeability Unit 4 interbedded fat clay, lean clay, and silty sand. Boring logs indicate thicknesses of greater than 25 feet (BY-AP-MW-12VM) and 20 feet (BY-AP-MW-15VM) of Unit 4 clays and a very low average hydraulic conductivity of 3.0 x 10^{-7} cm/s. Subsequently, soil boring BY-AP-MW-12VM was abandoned prior to well installation and BY-AP-MW-15VM was installed as a water level-only piezometer.

All delineation wells are sampled semi-annually as part of the semi-annual assessment groundwater monitoring program. A semi-annual progress and groundwater delineation report summarizing findings was submitted to ADEM on September 30, 2020.

Unlike compliance wells, which are installed on top of the Ash Pond dike, many delineation wells are installed at the base of the dike and surrounding lower-lying areas. During the wet season or after rainy periods, some delineation wells can be either temporarily inaccessible for sampling or unsafe to sample. In that case, another sampling event will be attempted after a drying period or during the next semi-annual sampling event. Delineation wells are identified on **Figure 5** and detailed on **Table 1b**. All delineation wells are sampled semi-annually as part of the semi-annual assessment groundwater monitoring program.

3.3.1.4 Piezometers

Phase II delineation location BY-AP-MW-15VM is used as a water level-only piezometer. This location is separated from the Watercourse Aquifer (Unit 2/3 sands) by a lower confining layer (Unit 4) of sufficient thickness to justify water level-only monitoring at this location. BY-AP-MW-15VM encountered greater than 20 feet of clay and demonstrated a groundwater separation of 1.38 feet and 0.78 feet from paired Watercourse Aquifer well BY-AP-MW-15 during the first Phase II delineation sampling event conducted on June 15, 2020, and second semi-annual sampling event conducted on August 31, 2020, respectively. The groundwater elevations observed in well BY-AP-MW-15VM also indicate an upward vertical gradient (i.e., groundwater flowing upwards), providing further support for a piezometer designation. **Table 1c** summarizes the water-level only piezometer construction details.

3.3.1.5 Monitoring Well Replacement and Abandonment

No monitoring well replacements and/or abandonments were conducted during the reporting period.

3.4 GROUNDWATER MONITORING HISTORY

In accordance with § 257.94(b), eight independent samples were collected from each background and downgradient well and analyzed for the constituents listed in Appendix III and IV prior to October 17, 2017. Background sampling was performed over the period of March 2016 to June 2017. Groundwater sampling for the first detection monitoring event after the background period was performed in September 2017.

Based on results of the 2017 Annual Groundwater and Corrective Action Monitoring Report, Alabama Power initiated an assessment monitoring program on January 15, 2018. Pursuant to 40 CFR §257.95(a) and ADEM Admin. Code r. 335-13-15-.06(6)(a), monitoring wells were sampled for all Appendix IV parameters in January 2018, within 90 days of initiating the assessment monitoring program.

Statistical evaluations of 2018 assessment monitoring data identified SSLs of Appendix IV constituents above the GWPS, and the Site entered Assessment of Corrective Measures. Pursuant to 40 CFR §257.95(g)(1), ADEM Admin. Code r. 335-13-15-.06(6)(g)2., and AO 18-094-GW, additional monitoring wells (**Table 1b, Figure 5**) were installed to characterize the horizontal and vertical extent of GWPS exceedances identified during assessment monitoring in two phases of groundwater investigations between December 2018 and June 2020. These wells, along with the compliance monitoring well network, are sampled semi-annually. Delineation wells installed at the Site have been sampled concurrently with the compliance monitoring well network beginning with the second semi-annual sampling event in September 2020. However, occasionally, additional data collection has occurred independent of routine compliance sampling events to support continuing assessment activities at the site.

3.4.1 Available Monitoring Data

Laboratory analytical data is available for the groundwater monitoring history outlined in **Section 3.4**. Tabulated results for Appendix III and Appendix IV constituents by monitoring well are included in **Appendix A, Groundwater Analytical Data**.

3.4.2 Historical Groundwater Flow

Historical groundwater elevations and potentiometric surface maps show that groundwater flow patterns are consistent across monitoring events and as described in **Section 3.2.2**. As Ash Pond closure activities

progress over the years and upon completion of closure, groundwater elevations will likely display variability representative of changing site hydrodynamics and eventually, a new set of equilibrium conditions. As this timeline progresses, groundwater elevations and trends will be qualitatively reviewed against this historical data set. Tables summarizing groundwater elevations from all groundwater monitoring events are included in **Appendix B, Historical Groundwater Elevations Summary**.

3.4.3 Monitoring Variances

The groundwater monitoring program at the Site is operating under a Variance granted by the Department on April 15, 2019, to conform State monitoring requirements under the CCR rule to Federal requirements. The variance:

- Retains boron as an Appendix III detection monitoring parameter and excludes it as an Appendix IV assessment monitoring parameter.
- Authorizes the use of Federally-published GWPS of 0.006 milligrams per liter (mg/L) for cobalt;
 0.015 mg/L for lead; 0.040 mg/L for lithium; and 0.100 mg/L for molybdenum in lieu of background where those levels are greater than background levels.

3.5 GROUNDWATER SAMPLING AND ANALYSIS

Site compliance wells are sampled semi-annually between: (1) late winter – mid spring and (2) early to late fall. The temporal spacing between sampling events is sufficient to ensure that sampling events yield independent groundwater samples and generally, represent different climatic or meteorological seasons which often foster a degree of natural variability in groundwater quality.

During routine semi-annual monitoring events, all compliance and delineation network wells are sampled and analyzed for Appendix III and Appendix IV constituents. Additional general chemistry constituents (major ions and anions) are now being collected routinely as well. These non-compliance parameters will be periodically analyzed to explore seasonal or closure-related changes to geochemical facies to site groundwater.

The following subsections summarize the sequential steps and process for the sampling, handling/transport, and analysis of compliance-related groundwater samples at the site.

3.5.1 Groundwater Sample Collection

Prior to recording water levels and collecting samples, each well was opened and allowed to equilibrate to atmospheric pressure. Within a 24-hour period, depths to groundwater were measured to the nearest 0.01 foot with an electronic water level indicator, with depth referenced from the top of the inner PVC well casing. Groundwater elevations were calculated by subtracting the depth to groundwater from surveyed top-of-casing (TOC) elevations.

Groundwater samples were collected from monitoring wells using low-flow sampling procedures in accordance with §257.93(a) and ADEM Admin. Code r. 335-13-15-.06(4)(a). All monitoring wells at Plant Barry are equipped with a dedicated pump. Monitoring wells were purged and sampled using low-flow sampling procedures. In this procedure, field water quality parameters (pH, turbidity, conductivity, and dissolved oxygen) are measured to determine stabilization and groundwater samples are collected when the following stabilization criteria are met:

- 0.2 standard units for pH.
- 5% for specific conductance.
- 0.2 mg/L or 10% for DO > 0.5 mg/l (whichever is greater).
- Turbidity measurements less than 10 NTU.
- Temperature and ORP record only, no stabilization criteria.

During purging and sampling, an In-Situ Aqua Troll instrument was used to monitor and record field parameters. Once stabilization was achieved, samples were collected and submitted to the laboratory following standard chain-of-custody (COC) protocol. Field data recorded in support of groundwater sampling activities are included in **Appendix C**, **Laboratory and Field Records**.

3.5.2 Sample Preservation and Handling

Groundwater samples were collected with the designated size and type of laboratory-supplied containers required for specific parameters. Sample bottles were pre-preserved by the laboratory.

Where temperature control was required, samples were placed in an ice-packed cooler and cooled to less than 6 °C immediately after collection. Blue ice or other cooling packs were not used for cooling samples. An ice-packed cooler was on hand when samples were collected.

3.5.3 Chain of Custody

A COC record was used to track sample possession from the time of collection to the time of receipt at the laboratory. All samples were handled under strict COC procedures beginning in the field. COC records are included with the analytical laboratory reports included in **Appendix C**.

3.5.4 Laboratory Analysis

Laboratory analyses were performed by the APC Environmental Laboratory (APCEL) in Calera, Alabama and Pace Analytical Services, LLC (Pace). Both APCEL and Pace are accredited by National Environmental Laboratory Accreditation Program (NELAP) and maintain a NELAP certification for all parameters analyzed. **Table 2, Monitoring Parameters and Reporting Limits**, lists assessment monitoring constituents analyzed from site groundwater samples. Lab reports and COC records for the monitoring period are presented in **Appendix C**.

3.5.5 Monitoring Period Sampling Events Summary

As required by § 257.90(e) and ADEM Admin. Code r. 335-13-15-.06(1)(f), the following describes monitoring-related activities performed during the monitoring period. The first semi-annual assessment monitoring event took place between May 23, 2022, and May 31, 2022.

Groundwater samples were analyzed for the full list of Appendix III and Appendix IV parameters during the Assessment Monitoring event. During the most recent sampling event, additional general chemistry and monitored natural attenuation monitoring parameters were sampled and analyzed. These analytes have been incorporated for continued evaluations of geochemical facies and their evolution over time. These analytes will also support geochemical modeling and evaluations associated with monitored natural attenuation. These parameters include:

- Calcium (filtered)
- Iron (total and dissolved)
- Silicon (total and dissolved)
- Silica (total and dissolved)

- Sodium (total and dissolved)
- Sulfide
- Potassium
- Aluminum (total and dissolved)
- Manganese
- Magnesium (total and filtered)
- Nitrate-Nitrite
- Total Alkalinity, Carbonate Alkalinity, Bicarbonate Alkalinity
- Total Organic Carbon.

All groundwater sampling activities were conducted by APC Field and Water Services. Pace Analytical Services performed the laboratory analyses of Radium-226 and Radium-228 (reported combined). APCEL performed the remaining Appendix III and Appendix IV analyses. Analytical data from the groundwater monitoring event is included as **Appendix C** in accordance with the requirements of § 257.90(e)(3) and ADEM Admin. Code r. 335-13-15-.06(1)(f)3.

4.0 GROUNDWATER ELEVATIONS

During the May 2022 sampling event, depths to water ranged from 4.48 to 26.11 feet below top of casing (BTOC) and groundwater elevations ranged from 6.75 to 1.71 feet above mean sea level (ft MSL) from west (near Gypsum Pond) to east (Ash Pond). Many vertical delineations wells (denoted with a "V") installed deeper within Unit 3 sands display groundwater elevations higher than the more shallow, paired location. This indicates some level of confining conditions between the two zones in some locales and indicates an upward vertical gradient in which deeper groundwater is flowing upwards towards more shallow intervals. **Figure 6, Potentiometric Surface Contour Map (May 23, 2022),** depict groundwater elevations and inferred groundwater flow direction during the first 2022 semi-annual sampling event.

As shown on **Figure 6**, groundwater flows from south to north across the Site, consistent with previous events. Tidal influences in river stage likely influence groundwater elevations – especially in closer proximity to the river. River stage varied from approximately 1.7 ft to 2.6 ft elevation during the May 23rd gauging event and are reflected in groundwater elevations presented north and east of the Ash Pond. A convergence of flow from the north and south appear in the vicinity of well BY-AP-MW-14 is apparent as presented on **Figure 6**.

Groundwater elevations from well BY-AP-MW-1 are not factored into potentiometric surfaces as this well is installed in a perched or laterally discontinuous sand layer beneath the Unit 1 clay and data shows vertical confinement between this layer and Unit 3. Recent groundwater elevation data has been tabulated and included in **Table 3**, **Recent Groundwater Elevations Summary**. All available historical groundwater elevation data recorded since 2016 has been tabulated and included in **Appendix B**.

4.1 GROUNDWATER FLOW VELOCITY CALCULATIONS

Groundwater flow rates at the site were calculated based on hydraulic gradients, hydraulic conductivity from aquifer pump test results, and an estimated effective porosity of the screened horizon. Slug testing provided horizontal hydraulic conductivities for the Watercourse Aquifer (Unit 3) between 2.1×10^{-2} cm/sec and 6.75×10^{-3} cm/sec with an average of 1.0×10^{-2} cm/sec at the Ash Pond. Long duration pump testing of the Watercourse Aquifer revealed an average hydraulic conductivity of 3.3×10^{-3} cm/sec. The pumping test hydraulic conductivity value of 3.3×10^{-3} cm/sec or 9.4 ft/day was used because the larger volume of aquifer allows averaging of small-scale heterogeneities, while slug tests are smaller in scale and could allow some results to skew an average. An effective porosity of 25% was used based on the default values for effective porosity recommended by EPA for a silty sand-type soil (U.S. USEPA, 1996). The

hydraulic gradient was calculated between well pairs shown in **Appendix D**, **Horizontal Groundwater Flow Velocity Calculation**.

Horizontal flow velocity was calculated using the commonly used derivative of Darcy's Law:

$$V = \frac{K * i}{n_e}$$

Where:

V =Groundwater flow velocity $\left(\frac{feet}{day}\right)$

K =Average permeability of the aquifer $\left(\frac{feet}{day}\right)$

i = Horizontal hydraulic gradient

 n_e = Effective porosity

Appendix D presents the estimated horizontal flow velocity calculated using groundwater elevation data from the first semi-annual sampling event in 2022.

5.0 EVALUATION OF GROUNDWATER QUALITY DATA

During each sampling event, quality assurance/quality control samples (QA/QC) were collected at a rate of one sample per every group of 10 well samples. These QA/QC samples include well duplicates, equipment blanks, and field blanks. Routine analyses of field QA/QC samples are a method for evaluating whether artificial bias could have been introduced into lab results by ways of sampling activities or equipment.

5.1 DATA VALIDATION – QUALITY ASSURANCE/QUALITY CONTROL

Analytical precision is measured through the calculation of the relative percent difference (RPD) of two data sets generated from a similar source. Here, a comparison of results between samples and field duplicate samples is used as measure of laboratory precision. Where field duplicates are collected, the RPD between the sample and duplicate sample is calculated as:

$$RPD = \frac{Conc1 - Conc2}{(Conc1 + Conc2)/2}$$

Where:

RPD = Relative Percent Difference (%)

Conc1 = Higher concentration of the sample or field duplicate

Conc2 = Lower concentration of the sample or field duplicate

Where RPD is below 20%, the difference is considered acceptable, and no further action is needed. Where an RPD is greater than 20%, further evaluation is required to attempt to determine the cause of the difference and potentially result in qualified data. **Table 4a, Relative Percent Difference (RPD) Calculations,** provides the relative percent differences for sample and sample duplicates during the first semi-annual monitoring event of 2022. Fluoride and Sulfate were detected at low level concentrations of duplicate groundwater samples collected from well locations BY-GSA-MW-15 and BY-UP-MW-13, respectively. Though RPD values exceeded 20%, both sample and duplicate concentrations were less than five times the MDL/RL. Consequently, validation flags to indicate RPD criteria failure were not required.

Analytical data reviewed provided low-level or trace detections in field and or equipment blanks during the monitoring period sampling event. **Table 4b**, **Field QC: Blank Detections** provides a summary of low-

level detections observed during the first 2022 semi-annual monitoring event. Each of these detections were estimated concentrations, above the MDL but below the RL, and qualified in the laboratory analytical reports with "J flags." However, if concentrations are detected above the MDL in field QC samples, original results on the (1) date of a blank detection and (2) with a value less than 5 times the field QC detection are flagged with a (+) U* and MDL/RL values modified based upon the blank concentration.

Table 4C, Field QC: Validation Results (Blanks) provides a summarized list of data validation flags that could be applied to site data during the first 2022 semi-annual monitoring period. Validated flags do not have an impact on possible statistical analyses due to: (1) low-level concentrations flagged during validation and or (2) constituents flagged are not Site COI. The extent of trace chromium detections in blanks can be explained by a low MDL value of 0.000203 mg/L.

5.2 STATISTICAL METHODOLOGY AND TESTS

Sanitas software is used to perform statistical analyses of Site data. Sanitas is a decision support software package that incorporates the statistical tests required of Subtitle C and D facilities by EPA regulations. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the USEPA Unified Guidance (2009).

5.2.1 Appendix III Evaluation

Intrawell prediction limits, combined with a 1-of-2 verification strategy, are used for pH and sulfate to determine whether there has been a statistically significant increase (SSI) over background groundwater quality. Interwell prediction limits, combined with a 1-of-2 verification strategy, are used to evaluate boron, calcium, chloride, fluoride, and TDS. Intrawell prediction limits use screened historical data within a given well to establish limits for parameters at that well. The most recent sample from the same well is compared to its respective background to identify SSIs over background. Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. The most recent sample from each downgradient well is compared to the background limit to identify SSIs.

Groundwater Stats Consulting demonstrated that these test methods were appropriate in the October 2017 Statistical Analysis Plan, which was updated in the September 2019 data screening evaluation and also, included in the revised Statistical Analysis Plan (August 2020). Time series plots were used to screen proposed background data for suspected outliers, or extreme values that would result in limits that are not

conservative from a regulatory perspective. Suspected outliers at all wells for Appendix III parameters are formally tested using Tukey's box plot method and, when identified, flagged in the computer database.

According to the Unified Guidance, the following adjustments are considered part of the statistical analysis program:

- No statistical analyses are required on wells and analytes containing 100% non-detects (EPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in the background, simple substitution of one-half the reporting limit is used in the statistical analysis. The reporting limit used for non-detects is the practical quantitation limit (PQL) as reported by the laboratory.
- When data contain between 15% and 50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data
- Non-parametric prediction limits are used on data containing greater than 50% non-detects.

5.2.2 Appendix IV Evaluation

When in assessment monitoring, Appendix IV constituents are sampled semi-annually, and concentrations are statistically compared to GWPS. Following the Unified Guidance, spatial variation for Appendix III parameters is tested using the ANOVA; this test is not prescribed for Appendix IV constituents. Unlike the statistical evaluation of Appendix III constituents (where single-sample results are compared to the statistical limit), Appendix IV analysis uses the pooled results from each downgradient well to develop a well-specific Confidence Interval that is compared to the statistical limit. The statistical limit is either the Interwell Tolerance Limit (i.e., background) calculated using the pool of all available upgradient well data (see Chapter 7 of the Unified Guidance), or an applicable groundwater protection standard such as the MCL. Appendix IV background data are screened for outliers and extreme trending patterns that would lead to artificially elevated statistical limits.

Parametric tolerance limits (i.e. UTLs) were calculated using pooled upgradient well data for Appendix IV parameters with a target of 95% confidence and 95% coverage. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. The UTLs were then used as the GWPS.

As described in 40 CFR § 257.95(h)(1)-(3) and the ADEM Variance the GWPS is:

- (1) The maximum contaminant level (MCL) established under 40 CFR §141.62 and 141.66.
- (2) Where an MCL has not been established:
 - (i) Cobalt 0.006 mg/L.
 - (ii) Lead 0.015 mg/L.
 - (iii) Lithium 0.040 mg/L.
 - (iv) Molybdenum 0.100 mg/L.
- (3) Background levels for constituents where the background level is higher than the MCL or rule-specified GWPS.

In assessment monitoring, when the Lower Confidence Limit (LCL), or the entire confidence interval, exceeds the GWPS as discussed in the USEPA Unified Guidance (2009), the result is recorded as an SSL. Data from upgradient wells collected in between updates may still be used to support ASDs if merited.

5.3 STATISTICAL EXCEEDANCES

Analytical data from the first semi-annual monitoring event in May 2022 were statistically analyzed in accordance with the professional engineer (PE)-certified Statistical Analysis Plan (October 2017 and revised in August 2020) by Groundwater Stats Consulting. Appendix III statistical analysis was performed to determine if constituents have returned to background levels. Appendix IV assessment monitoring parameters were evaluated to determine if concentrations statistically exceeded the established groundwater protection standard.

5.3.1 Appendix III Constituents

Based on review of the Appendix III statistical analysis presented in **Appendix E, Statistical Analysis** Appendix III constituents have not returned to background levels.

5.3.2 Appendix IV Constituents

Table 5, Summary of Background Levels and Groundwater Protection Standards, summarizes the background limit established at each monitoring well and the GWPS. A summary table of the statistical limits accompanies the prediction limits in **Appendix E.**

The following subsections describe statistical exceedances during the first 2022 semi-annual monitoring event.

Statistical analysis of Appendix IV data identified the following statistically significant levels (SSLs) over GWPS at the listed wells during the first 2022 semi-annual monitoring event:

- BY-AP-MW-1: Arsenic.
- BY-AP-MW-5: Arsenic
- BY-AP-MW-7: Arsenic, Cobalt.
- BY-AP-MW-8: Arsenic.
- BY-AP-MW-9: Arsenic.
- BY-AP-MW-10: Arsenic.
- BY-AP-MW-11: Arsenic.
- BY-AP-MW-12: Arsenic.
- BY-AP-MW-13: Arsenic.
- BY-AP-MW-14: Arsenic.
- BY-AP-MW-15: Arsenic, Cobalt.
- BY-AP-MW-16: Arsenic.

Table 6, First Semi-Annual Monitoring Event Analytical Summary, provides a summary of all detected constituents for the first 2022 semi-annual sampling event.

5.3.2.1 Delineation Wells

For delineation wells, groundwater quality data is compared to the GWPS in lieu of a statistical comparison using confidence intervals. A review of analytical data derived from delineation wells identified the following GWPS exceedances during the first 2022 semi-annual sampling event:

- BY-AP-MW-12V: Arsenic.
- BY-AP-MW-13V: Arsenic.
- BY-AP-MW-15V: Arsenic, Cobalt.
- BY-AP-MW-17H: Arsenic.
- BY-AP-MW-17V: Cobalt.
- BY-AP-MW-18H: Arsenic.
- BY-AP-MW-20H: Arsenic.
- BY-AP-MW-20V: Arsenic, Cobalt.
- BY-AP-MW-22H: Arsenic.

• BY-AP-MW-24H: Arsenic.

Details regarding the installation and sampling of these wells, and future proposed actions as a result of these exceedances, were submitted to ADEM in a Groundwater Investigation Report on May 13, 2019, and subsequent progress updates submitted in September 2019, March 2020, and on September 30, 2020.

To address SSLs at the site, an ACM was prepared to evaluate potential groundwater corrective measures for the occurrence of arsenic and cobalt in groundwater at the site in accordance with § 257.96, ADEM Admin. Code r. 335-13-15-.06(7), and ADEM AO 18-094-GW. The ACM was submitted to ADEM and placed in the operating record on June 12, 2019. A Groundwater Remedy Selection Report was prepared and submitted to ADEM on October 29, 2021. Subsequently, within 90 days of remedy selection, a Corrective Action Groundwater Monitoring Program was developed and submitted to ADEM on January 27, 2022, for review.

6.0 GROUNDWATER ASSESSEMENT

As required by Part E of the Order (AO 18-094-GW) and correspondence from ADEM (March 2021), this report provides an update on groundwater delineation activities completed since the submittal of the Facility Plan for Groundwater Investigation (November 13, 2018). The primary purpose of this plan and subsequent phases of work were to identify the horizontal and vertical extent of groundwater impacts defined by EPA Appendix IV groundwater protection standards.

A comprehensive groundwater delineation report summarizing findings was submitted to ADEM in September 2020. The conclusions and results presented indicate that groundwater delineation have been completed to a sufficient degree to define spatial extent of groundwater impacts and to inform a groundwater remedy selection plan.

6.1 CHRONOLOGY OF DELINEATION ACTIVITIES

Beginning in 2019, Semi-Annual Progress Reports have routinely been provided to ADEM in March and September, annually. Alabama Power Company (APC) requested approval to combine information typically provided in the Semi-Annual Progress Reports with Semi-Annual Groundwater Monitoring and Corrective Action Reports on March 15, 2021. ADEM approved this approach and revised timeline for submittals on March 16, 2021. APC will now provide the Department with a discussion of delineation results and corrective action activities in each semi-annual groundwater monitoring and corrective action report (July; January) until released in writing.

6.1.1 Delineation Wells

Part B of the Order required the installation of additional wells as necessary to define the extent of groundwater impacts where Appendix IV constituents are identified at SSLs above the GWPS. Using the conceptual site model (CSM) and analytical results as a guide, horizontal delineation wells were installed to assess lateral extent of groundwater impact in the direction(s) of groundwater flow away from the facility in the upper and middle portions of the Unit 3 sands. Vertical delineation wells were also installed at the base of the Watercourse Aquifer (Unit 3 sands), just above the Unit 4 clay, to assess vertical extent of groundwater impacts to the Watercourse Aquifer. The follow sections describe monitoring wells installed to delineate impacts to groundwater:

Phase I – Groundwater Investigation (December 2018 to December 2019)

Phase I was conducted between the dates of December 2018 to December 2019. **Table 1b** and **Figure 5** present details and locations of on-site delineation wells. The following summarizes all activities that were completed during Phase I of groundwater delineation at the Site:

- Installed six vertical delineation wells (BY-AP-MW-1V, BY-AP-MW-5V, BY-AP-MW-7V, BY-AP-MW-8V, BY-AP-MW-10V, and BY-AP-MW-12V), three horizontal delineation wells (BY-AP-MW-17H, BY-AP-MW-18H, and BY-AP-MW-24H), and three ash pore-water piezometers (BY-AP-PW-24, BY-AP-PW-25, and BY-AP-PW-26) between December 11, 2018 and January 4, 2019. The remaining scope of delineation well installations described in the Facility Plan could not be achieved at the time due to flooded or wet conditions and were installed in July 2019.
- Collected nine ash samples for waste characterization analyses.
- Developed the six vertical delineation wells and three horizontal delineation wells between December 20, 2018, and January 8, 2019. Horizontal delineation well BY-AP-MW-18H could not be developed until March 20, 2019, due to persistent flood conditions over low-lying areas.
- Collected samples from each delineation and characterization well except BY-AP-MW-17H between January 7, 2019, and March 21, 2019. BY-AP-MW-17H was sampled July 31, 2019.
- Submitted a preliminary Groundwater Investigation Technical Memo to the Department on May 13, 2019. Submitted an Assessment of Corrective Measures for the Ash Pond to the Department on July 11, 2019, as required by Part C of the Order.
- Installed the four remaining horizontal delineation wells (BY-AP-MW-19H, BY-AP-MW-20H, BY-AP-MW-22H, AND BY-AP-MW-23H) and one vertical delineation well (BY-AP-MW-15V) in July 2019. Previously proposed horizontal delineation well BY-AP-MW-21H located south of the Ash Pond and monitor well BY-AP-MW-14 has not been installed due to pervasive wet and unsafe conditions for drilling and therefore, could not be safely accessed to install as planned.
- Developed and sampled the four horizontal delineation wells and one vertical delineation well between July 28, 2019, and August 2nd, 2019.
- Submitted Groundwater Investigation Report on December 15, 2019, to the Department summarizing Phase I groundwater investigation findings and included a work plan for a Phase II investigation.

- Provided the Department with a response on December 30, 2019, for comments received from the Department on November 14, 2019, regarding previously submitted CCR documents.
- Submitted the 2019 Annual Groundwater Monitoring and Corrective Action Report on January 31, 2020.

Phase II – Groundwater Investigation (February 2020 to June 2020)

Following a review of data gathered from the Phase I Investigation, additional groundwater investigation was proposed to the ADEM in the Groundwater Investigation Report submitted December 15, 2019. The review of delineation results discussed in preceding sections indicated that an additional phase of investigation was warranted to complete delineation in certain areas of the Site. Phase II was conducted between the dates of February 2020 to June 2020. The following summarizes all activities that were completed during Phase II of groundwater delineation at the Site:

- Completed the semi-annual assessment groundwater sampling event between March 30, 2020, and April 1, 2020.
- Installed seven deep vertical delineation wells (BY-AP-MW-13V, BY-AP-MW-14V, BY-AP-MW-16V, BY-AP-MW-17V, BY-AP-MW-20V, BY-AP-MW-23V, and BY-AP-MW-25V) and one horizontal delineation well (BY-AP-MW-25H) between March 25, 2020, and April 13, 2020.
- Advanced two Type III (double-cased) deep vertical delineation well borings (BY-AP-MW-12VM, and BY-AP-MW-15VM,) between March 28, 2020, and April 23, 2020. BY-AP-MW-12VM was abandoned and BY-AP-MW-15VM was installed as a water level only piezometer.
- Developed eight delineation wells and one piezometer between May 4, 2020, and May 19, 2020.
 Partial development via airlifting was also employed while the drilling team was on-site in March 2020.
- Sampled the eight delineation wells between June 15, 2020, and June 17, 2020.

6.2 NATURE AND ESTIMATED QUANTITY OF RELEASE

Part B of the Order requires collecting data on the nature and estimated quantity of material released. To collect data regarding the nature of the source and estimated quantity of material released leachability testing of 9 ash samples and sampling of ash pore-water at 3 locations was conducted. Leachability testing was conducted for EPA Resource and Recovery Act (RCRA) heavy metals, while ash pore-water was

sampled for all EPA Appendix III and IV constituents. Groundwater quality data is compared to source water and leachate composition to provide a basis for evaluating the degree to which the source area has contributed constituents to groundwater.

6.3 DISCUSSION OF DELINEATION RESULTS

Two phases of delineation investigation have been completed at the site and the horizontal and vertical delineation of Appendix IV SSLs arsenic and cobalt, is largely complete. Additional delineation to define the horizontal extent of arsenic occurrences to the south of the Ash Pond is not practical, as the extent is constrained by surface waters. Sufficient data has been collected for the assessment of corrective measures and to develop a groundwater corrective action plan. Cross-sections and isoconcentration maps have been included to convey horizontal and vertical spatial distribution of arsenic and cobalt concentrations.

Lithium was identified at vertical delineation well BY-AP-MW-7V on January 9, 2019, during delineation efforts for arsenic and cobalt. However, during the seven subsequent sampling events lithium in well BY-AP-MW-7V was not detected indicating that the initial occurrence of lithium was likely the result of sampling or analytical error. An additional re-sample was collected and the result for lithium was non-detect. Additional delineation is not required in the area of this delineation well at this time. Lithium was detected above GWPS in well BY-AP-MW-7 (0.0882 mg/L) for the first time during the first 2021 semi-annual groundwater sampling event but was below GWPS (0.04 mg/L) during the second 2021 and first 2022 semi-annual groundwater sampling events. Additionally, a lithium concentration of 0.0484 mg/l was detected at vertical delineation well BY-AP-MW-13V slightly above the GWPS for the first time during the second 2021 semi-annual groundwater sampling event. The lithium concentration in delineation well BY-AP-MW-13V was below GWPS during the May 2022 sampling event. Historically, lithium has been detected above GWPS one time in three Site wells (BY-AP-MW-7V, BY-AP-MW-7, and BY-AP-MW-13V).

Analytical results from horizontal and vertical delineation wells identified concentrations above GWPS of EPA Appendix IV constituents: arsenic and cobalt during the first semi-annual monitoring period of 2022.

Arsenic concentrations above GWPS were detected in five horizontal delineation wells and four vertical delineation wells. Figure 7A, Arsenic Isoconcentration Map illustrates the horizontal extent of arsenic impacts to groundwater. Figure 8A, Arsenic Concentrations Along Geologic Cross Section A-A' and Figure 8B, Arsenic Concentrations Along Geologic Cross Section B-B' illustrate the vertical extent of arsenic impacts to groundwater.

Cobalt concentrations above GWPS were detected in three vertical delineation wells. Figure 7B, Cobalt Isoconcentration Map illustrates the horizontal extent of cobalt. Figure 9A, Cobalt Concentrations Along Geologic Cross Section A-A' and Figure 9B, Cobalt Concentrations Along Geologic Cross Section B-B' illustrate the vertical extent of cobalt impacts to groundwater.

Isoconcentration lines shown on **Figures 7A** and **7B** are data-driven contours derived from the spatial distribution of constituent concentrations in the well network. When spatially distributed objects are correlated (i.e., objects close together with similar characteristics are compared), mathematical interpolation can be used to predict quantities between the objects. In this case, the Geostatistical Analyst tool within ArcGIS was utilized to interpolate constituent concentrations between well locations within the area where concentrations were above laboratory method detection limits.

In cases where concentrations decrease below the GWPS in between well pairs, the extent of groundwater impacts are interpreted from the interpolated (predicted) data set. This takes into account the spatial pattern of decreasing concentrations observed in nearby wells.

The location and spacing of delineation wells are largely based upon the following goals and site factors:

- 1. Determine if impacts to groundwater could extend off-site in the direction of groundwater flow away from the facility.
- 2. Evaluate potential for vertical migration adjacent to compliance wells with SSLs and within the context of site hydrogeology.
- 3. Address key data gaps between phases working in from property line or off-site depending on gaps.
- 4. Ability to safely access locations with drill rig and supporting equipment.
- 5. Occurrence of groundwater and sufficient groundwater yield/recharge at locations.
- 6. Delineate extent of impacts and capture additional hydrogeologic data necessary to evaluate the feasibility of groundwater remediation technologies.

As shown on **Table 1b**, 22 delineation wells and one piezometer have been installed at the site to assess horizontal and vertical potential impacts.

Compliance (assessment) monitoring and delineation sampling events have shown elevated arsenic and cobalt in the Watercourse Aquifer beneath the Site. Arsenic is the most widely distributed of these constituents and this spatial distribution generally mimics the groundwater flow direction across the Site as

shown on **Figure 6.** Groundwater flow can generally be described as from west to east across the Site with bends to the north and southeast conforming to the shape of the Mobile River. A truly radial flow pattern is not evident at the Site because the Ash Pond is directly underlain by a low permeability, organic clay of sufficient thickness to form an aquitard between the Ash Pond and underlying Watercourse Aquifer (Unit 1). While piezometric data (groundwater elevations) presented on potentiometric surfaces are generally above the base of ash this does not mean that ash is in direct communication with the Watercourse Aquifer because piezometric elevations (groundwater elevations) are representative of the potential head in wells tapping the aquifer not the vertical elevation in which groundwater occurs. Beneath the Ash Pond, the Unit 1 clay physically and hydraulically separates ash pore water and Watercourse Aquifer groundwater and therefore, constituent migration occurs slowly across the Unit 1 clay and is driven by higher hydraulic heads (vertical gradient) in the Ash Pond relative to the underlying Watercourse Aquifer.

Horizontal delineation efforts at the Site are restricted to a high degree by physical site conditions. Year-round wet conditions exist a short distance away from the base of the Ash Pond dike in many areas around the Ash Pond. Except for areas to the far north of the pond, all other areas are inaccessible during the wet season and during the timeframe it takes to dry out post-wet season. Vertical delineation efforts largely focused near the base of the Unit 3 sand and above the Unit 4 clays.

6.3.1 Arsenic Delineation

Sampling results from the 22 Phase I and Phase II delineation wells show that arsenic concentrations above the GWPS (0.01 mg/L) extend proximal to the river and include two horizontal delineation wells to the north (BY-AP-MW-17H and BY-AP-MW-18H), one horizontal delineation well (BY-AP-MW-20H) and three vertical delineation wells (BY-AP-MW-12V, BY-AP-MW-13V, and BY-AP-MW-20V) to the southeast, and two horizontal delineation wells (BY-AP-MW-22H and BY-AP-MW-24H) and one vertical delineation well (BY-AP-MW-15V) to the southwest of the Ash Pond in the direction of groundwater flow. In general, groundwater impacted by arsenic is distributed spatially into two lobes – (1) a smaller lobe that underlies the very northwestern corner of the Ash Pond and extends in the direction of groundwater flow north-northwest to the plant proper and (2) an eastern lobe that extends east of the Ash Pond.

These two lobes are separated by a north to north-northeast trending wedge of un-impacted groundwater water between the western boundary (between wells MW-1 and MW-5) and the northern boundary (between well pair MW-17H/17V and well MW-18H) as shown on **Figure 7A**. It is not understood exactly why this wedge exists, but wells within this area also display different geochemical facies than surrounding

downgradient wells (calcium-chloride to sodium-chloride water vs calcium-magnesium bicarbonate to calcium-sodium bicarbonate water).

Arsenic concentrations over the GWPS did not extend to any of the vertical delineation wells (BY-AP-MW-5V, BY-AP-MW-7V, BY-AP-MW-8V, BY-AP-MW-17V, BY-AP-MW-23V, and BY-AP-MW-25V) and horizontal delineation well BY-AP-MW-23H, located to the north, northwest, or northeast of the Ash Pond. Horizontal delineation well BY-AP-MW-25H and vertical delineation well BY-AP-MW-25V were installed to define the extent of arsenic impacts to the west of BY-AP-MW-17H/V and northwest of BY-AP-MW-5 and have historically been non-detect (**Appendix A** and **Figure 7A**). Arsenic concentrations over the GWPS did not extend to delineation wells BY-AP-MW-10V and BY-AP-MW-19H to the northeast, BY-AP-MW-14V to the southeast, or BY-AP-MW-16V, BY-AP-MW-1V, and BY-AP-MW-5V to the west. (**Figures 8A and 8B**).

Arsenic concentrations exceed the GWPS in horizontal delineation wells BY-AP-MW-17H and BY-AP-MW-18H located at the property boundary (Mobile River) northwest and northeast of the Ash Pond. Arsenic concentrations exceed the GWPS in horizontal delineation wells BY-AP-MW-20H, BY-AP-MW-22H and BY-AP-MW-24 located southeast and southwest of the Ash Pond. To the southeast, south, and southwest of the Site, horizontal delineation wells could not be installed proximal to the property boundary due to wet or unsafe access conditions.

Vertically, arsenic concentrations are delineated within the Unit 3 sands. Arsenic concentrations were detected above the GWPS in one well, BY-AP-MW-15V, southwest of the Ash Pond and three wells, BY-AP-MW-12V, BY-AP-MW-13V, and BY-AP-MW-20V, located along the southeast side of the Ash Pond, respectively.

Figure 8A, depicts the spatial extent of arsenic SSLs along the "western dike". The general spatial pattern matches the interpretation of groundwater flow at the Site. SSLs are observed to the northwest along section A-A' and near the middle of the Ash Pond dike extending southwest. These impacts are observed where groundwater elevation contours bend semi-radially to the northwest and southeast to conform to the geometry of the Mobile River and obliquely cross the western dike.

To the northwest, arsenic impacts to groundwater historically begin near well BY-AP-MW-5 and extend to delineation well BY-AP-MW-17H. Arsenic concentrations over the GWPS previously observed in the vicinity of BY-AP-MW-5 extend down to approximately -50 ft MSL and are delineated vertically downward to base of Unit 3 as observed in BY-AP-MW-5V and BY-AP-MW-17V. To the southwest,

arsenic impacts initially are confined to sands of Unit 2 near BY-AP-MW-1 but slope down to the base of Unit 3 near well BY-AP-MW-15V and are delineated vertically with the installation of BY-AP-MW-15VM.

Phase II delineation location BY-AP-MW-15VM was designated as a water-level only piezometer. This location appears separated from the Watercourse Aquifer (Unit 2/3 sands) by a lower confining layer (Unit 4) of sufficient thickness to justify water level-only monitoring. BY-AP-MW-15VM encountered greater than 20 feet of the Unit 4 clays and demonstrates a groundwater elevation difference of 1.79 feet from paired Watercourse Aquifer well BY-AP-MW-15. The groundwater elevation observed in well BY-AP-MW-15VM also indicates an upward vertical gradient (i.e., groundwater flowing upwards), providing further support for a piezometer designation.

Figure 8B, depicts arsenic concentrations proximal to the eastern margin of the site following the same geometry as the Mobile River. In general, **Figure 8B** shows that arsenic SSLs in groundwater are generally contained within the Unit 3 sands with maybe some limited impacts to the very base of Unit 2. Arsenic impacts do not extend to the base of Unit 3 near BY-AP-MW-8V, BY-AP-MW-10V, or BY-AP-MW-14V.

Arsenic concentrations that do extend down to the base of Unit 3 as shown on **Figures 8A** and **8B** are confined by Unit 4 which displays sufficient clay thickness and low hydraulic conductivity (ranging from 1.15 x 10⁻⁷ cm/sec to 3.76 x 10⁻⁸ cm/sec) to serve as a lower confining unit. A piezometer (BY-AP-MW-15VM) installed in Unit 5 sands (Miocene) also displays an upward hydraulic gradient which prohibits downward vertical migration.

6.3.2 Cobalt Delineation

Delineation results show that cobalt concentrations above the GWPS are limited to small, localized areas northwest (BY-AP-MW-17V) southwest (BY-AP-MW-15V) and southeast (BY-AP-MW-20V) of the Ash Pond. Compliance wells BY-AP-MW-7 and BY-AP-MW-15 located along the southwest side of the Ash Pond exhibited cobalt above the GWPS. However, paired vertical delineation well BY-AP-MW-7V does not exhibit a cobalt concentration above GWPS (**Figure 7B**).

Cobalt concentrations over the GWPS do not extend to BY-AP-MW-8/8V, BY-AP-MW-23H/V, and BY-AP-MW-25H/V to the north, BY-AP-MW-1/1Vand BY-AP-MW-5/5V to the west, BY-AP-MW-16/16V to the southwest, BY-AP-MW-10/10V and BY-AP-MW-12/12V to the east, BY-AP-MW-13/13V and BY-AP-MW-14/14V to the southeast, or BY-AP-MW-22H to the south of BY-AP-MW-15.

Vertically, cobalt concentrations above the GWPS are delineated within the Unit 3 sands and extend to the base of Unit 3 sands at vertical delineation wells BY-AP-MW-17V to the north of the ash pond, BY-AP-MW-15V along the southwest side of the Ash Pond, and BY-AP-MW-20V along the southeast side of the Ash Pond. The cobalt concentration in vertical delineation well BY-AP-MW-16V was below GWPS during the first 2022 semi-annual sampling event and has exceeded GWPS two times both during the fall sampling events.

No other vertical wells at the Site returned cobalt concentrations above the GWPS. Vertically, cobalt concentrations are delineated as defined by the previously discussed; thickness of the Unit 4 clay provides sufficient vertical separation between the Unit 3 aquifer and deeper Miocene sand units, permeameter testing values ranging from 1.15×10^{-7} cm/sec to 3.76×10^{-8} cm/sec, and calculated groundwater elevations indicating an upward vertical gradient.

Cobalt has effectively been delineated at the Site and was not detected in ash pore-water samples. This, combined with the isolated occurrences of cobalt over GWPS, indicates potential for a natural source either driven by minor changes in lithology or changes in geochemistry. As shown on **Figure 7B** and **Figures 9A** and **9B**, cobalt exceedances typically occur at greater depths within Unit 3 where the lithology can change (more gravel) and geochemistry changes to a more favorable environment for cobalt mobilization. Cobalt occurrences over the GWPS will be thoroughly evaluated for an alternate source.

6.4 STATUS OF DELINEATION

A plan was executed to investigate potential impacts to groundwater at the Plant Barry ash pond. Two phases of delineation investigation have been completed at the site and the horizontal and vertical delineation of Appendix IV SSLs arsenic and cobalt, is largely complete. Additional delineation to define the horizontal extent of arsenic occurrences to the south of the Ash Pond is not practical, as the extent is constrained by surface waters. Additional vertical delineation of Unit 4 clays confirmed thicknesses of greater than 20 feet and vertical hydraulic conductivity (K_z) values ranging from 5.91 x 10⁻⁷ cm/sec to 2.16 x 10⁻⁸ cm/sec (1.7 x 10⁻³ ft/d to 6.1 x 10⁻⁵ ft/d), demonstrated that Unit 4 clays do display sufficiently low permeability to be considered confining.

6.5 GROUNDWATER REMEDY AND CORRECTIVE ACTION

An Assessment of Corrective Measures (ACM) for groundwater impacts was conducted and formally submitted to ADEM in June 2019. Additional data analyses and investigations conducted since the ACM

culminated with a more detailed Groundwater Remedy Selection Report, submitted in October 2021, and a Corrective Action Groundwater Monitoring Program document submitted in January 2022.

Submittal	Submittal Date	Purpose
Assessment of Corrective Measures	06/2019	Initial evaluation of the feasibility, performance, and implementation of known and emerging groundwater remediation technologies against site conditions and factors.
Groundwater Remedy Selection Report	10/2021	Formal selection and detailed description of groundwater remedies selected for implementation at the site.
Corrective Action Groundwater Monitoring Program	01/2022	Plan document to describe process and program for implementation and monitoring of groundwater remedies selected at the site.

6.5.1 Groundwater Remedy Selection

The Groundwater Remedy Selection Report described the selected remedies for groundwater corrective actions at the site:

- Source control to include dewatering, consolidation, and capping of the Site.
- Geochemical manipulation via injections in areas of relatively high concentrations of COI to remove them from groundwater and immobilize them in situ.
- Monitored natural attenuation (MNA) over the entire Site.

Closure of the CCR Unit — including dewatering, consolidation, and capping will greatly reduce source contributions to groundwater. Geochemical manipulation was selected because of its effectiveness, ease of implementation, versatility (ability to treat more than one COI with the same treatment solution), ability to implement in areas with limited working space, and no byproducts that would require further treatment or disposal. MNA was selected because substantial evidence indicates that it is currently occurring at the Site.

6.5.2 Corrective Action – Groundwater Monitoring Program

The Corrective Action Groundwater Monitoring Program describes early plans for implementation and monitoring of groundwater remedies described above. The Corrective Action Groundwater Monitoring Program will be performed at the Site in two stages.

- Stage 1 will include ongoing compliance monitoring, remedial effectiveness monitoring for geochemical manipulation (injection treatment) pilot studies, MNA performance monitoring, sentinel/clean-line monitoring (including surface water monitoring), and demonstration that Site conditions remain protective of potential human and ecological receptors. Prompt action will be taken should data or data trends indicate such actions are warranted.
- Stage 2 monitoring will be implemented upon Site closure, with the first 2 years of Stage 2 monitoring consisting of background data collection to serve as a baseline. Stage 2 monitoring will be composed of ongoing compliance monitoring, additional wells or sampling locations as needed to evaluate remedy effectiveness, additional MNA parameters as needed, mass and mass flux calculations, additional monitoring associated with permeation grouting (if implemented), reevaluation of natural attenuation processes and efficacy every 10 years, and demonstration that Site conditions remain protective of potential human and ecological receptors.

Stage 1

The initial phase of Stage 1 has implementation tasks associated with each selected groundwater remedy that serve as a foundation for the remainder of Stage 1 and Stage 2:

Selected Remedy	Implementation Task(s)
	1. Implementation of expanded MNA
	sampling parameters.
Monitored Natural Attenuation	
	2. Further assessment of MNA monitoring
	network.
	1. Complete laboratory treatability studies
	to evaluate reagent composition, dosing,
	effectiveness, and sequencing for in situ
	groundwater treatment of constituents of
	interest (COIs) via injection. Results from
	the treatability studies would be
Geochemical Injection	incorporated into an Underground Injection
Geoenemical injection	Control (UIC) permit application for the
	Site.
	2. Implementation of geochemical injection
	pilot tests using data collected from the
	laboratory treatability studies and issuance
	of an UIC permit.
	1. Evaluation of geochemical changes in
	groundwater with respect to transient
	closure activities (excavation, de-watering,
	etc.).
Source Control/Closure Activities	2. Implementation of field data collection
	instruments/telemetry within key
	monitoring wells to further understand the
	nature of geochemical changes over time
	and with respect to closure activities and
	MNA/geochemical modelling.

Implementation of Monitored Natural Attenuation

MNA sampling parameters were added to the sampling plans and analyzed in the laboratory during the May 2022 sampling event (Table 6). These parameters in addition to field parameters, Appendix III, and Appendix IV parameters are utilized to study the processes that govern or facilitate MNA as well as changes in geochemical conditions. Parameters will be included into the site geochemical model.

Geochemical Injection Pilot Testing Program

Laboratory treatability studies using Site aquifer media and impacted groundwater to evaluate reagent composition, dosing, effectiveness, and sequencing (if applicable) for in situ groundwater treatment of COIs via injection is currently being conducted. The Laboratory Treatability Study Work Plan is presented in **Appendix F**. Treatability tests include the following tasks and procedures prior to field implementation of an injection treatment pilot study.

- Selection and formulation of reagent solutions based on previous similar studies.
- Batch testing using multiple treatment solutions to determine the most effective formulations to carry forward to column testing.
- Column testing to better simulate field conditions, determine effectiveness, and evaluate potential release of COIs due to treatment (unintended consequences).
- Post-column testing, using selective sequential extraction, on treated soils to determine the longterm stability of the accumulated COIs.
- Results from the treatability studies would be incorporated into an Underground Injection Control
 permit application to be submitted to ADEM for approval prior to field implementation of an
 injection treatment pilot study.

The tentative schedule for this initial foundation phase is outlined as:

- Aquifer solids (soils) and groundwater sample collection from the selected pilot test areas First and Second quarters of 2022 (complete).
- Laboratory batch and column testing, and selective sequential extraction of treated soil Third and Fourth quarters of 2022 (in progress).
- Underground Injection Permit application Fourth quarter 2022 to Second quarter 2023.
- Geochemical Injection Pilot Program TBD, pending requisite documents and approvals supporting the injection program.

To facilitate further understanding of trends and correlating relationships, AquaTROLL instrumentation is being utilized at select key Site observation and monitoring well locations for the near continuous monitoring of field parameters. This additional data will allow for a better understanding of the degree of changes driven by dewatering and construction closure activities, the response of site flow systems, and possible correlations/changes noted in semi-annual monitoring data.

AquaTROLL instrumentation was installed during the 1st quarter of 2022 in previous dewatering pilot testing observation wells at the following locations along the northeast and northwest sides of the ash pond in the areas of closure construction are occurring:

- PRW-E1
- APT-OB-ED1S
- APT-OB-ED2D
- BY-AP-PZ-8
- APT-OB-WD1S
- APT-OB-WD1D
- APT-OB-WD3S
- APT-OB-WD3D

6.5.3 Groundwater Quality Changes and Trends

Important groundwater quality changes or trends have been noted in **Section 6.3**. The key findings include:

- Arsenic concentrations in horizontal delineation well BY-AP-MW-23H were below GWPS during the second 2021 and first 2022 sampling events and have continued to decrease since the September 2020 sampling event.
- Vertical delineation well BY-AP-MW-13V exhibited an arsenic concentration (0.0102 mg/L) slightly above GWPS for the second time during the first 2022 sampling event.
- Arsenic was not detected above GWPS in any vertical delineation wells located north, northeast, northwest, or west of the ash pond.

- Cobalt concentrations in vertical delineation well BY-AP-MW-16V decreased to below GWPS
 during the first 2022 sampling event and have exhibited a seasonal trend of fluctuating
 concentrations above GWPS to below GWPS over the last five sampling events.
- Cobalt concentrations in compliance well BY-AP-MW-4 were below GWPS during the second 2021 and first 2022 sampling events. BY-AP-MW-4 has exhibited a cobalt concentration above GWPS in only two of eighteen sampling events.
- Cobalt concentrations were detected above GWPS in only two compliance wells and three vertical delineation wells during the first 2022 semi-annual sampling event.
- Lithium concentrations were not detected in any monitoring wells above GWPS during the first 2022 sampling event.
- Historically, lithium has been detected above GWPS one time in three Site wells BY-AP-MW-7V (January 2019), BY-AP-MW-7 (May 2021), and BY-AP-MW-13V (October 2021).

Groundwater quality changes and/or trends are related to closure construction activities and will continue to be observed throughout the closure process. Many of the trends appear to be associated with the ash pond closure activities - namely the halt to sluicing and ash dewatering. Trends and groundwater quality changes will continue to be monitored throughout closure to evaluate assessment needs and to better inform groundwater remedy plans.

7.0 SUMMARY AND CONCLUSIONS

The first semi-annual assessment monitoring event was conducted in May 2022. Statistical evaluations of the assessment monitoring data identified SSLs of Appendix IV constituents above the GWPS. To address previously identified SSLs, a Groundwater Remedy Selection Report was prepared and submitted to ADEM on October 29, 2021. Subsequently, within 90 days of remedy selection, a Corrective Action Groundwater Monitoring Program was developed and submitted to ADEM on January 27, 2022 for review.

The Corrective Action Groundwater Monitoring Program was prepared to detect potential downgradient changes in groundwater quality and assess the efficacy of the selected groundwater corrective action remedies. The Monitoring Program will supplement the ongoing CCR compliance groundwater monitoring currently being performed at the Site.

The following future actions will be taken or are recommended for the site:

- Conduct batch testing to evaluate removal of COIs, and selection of the optimum reagents and doses for column tests.
- Conduct column testing to evaluate removal of COIs by mixing treatment reagents with site-specific impacted groundwater and applying to site-specific soils (aquifer solids) in columns;
 Appendix III and IV constituents will be measured in the column effluents to determine the reduction of COIs in groundwater, and to evaluate any unintended consequences of treatment (e.g., release of constituents from soils).
- Conduct selective sequential extraction of post-column (treated) soils to help determine the sequestration mechanisms and stability of the COIs and their host solids.
- After treatment, the post-column (treated) soils will be leached with upgradient (background)
 groundwater from the respective plant in additional column studies, to help assess long-term
 stability of the COIs and their host solids.
- Prepare Class V UIC permit.
- Conduct the second semi-annual assessment monitoring event in the fall of 2022 and submit the annual groundwater monitoring and corrective action report summarizing the findings to ADEM by January 31, 2023.

8.0 REFERENCES

- Alabama Department of Environmental Management (ADEM), 2018, Solid Waste Program, Division 13, ADEM Admin. Code r. 335-13-15.
- Anchor QEA, June 2021, Semi-Annual Remedy Selection and Design Progress Report Plant Greene County Ash Pond.
- ASTM Standard D5092, 2004(2010)e1, Standard Practice for Design and Installation of Groundwater Monitoring Wells, ASTM International, West Conshohocken, PA, DOI 10.1520/D5092-04R10E01, www.astm.org.
- Chandler, R.V., Moore, J.D., and Gillet, B., 1985, Ground-water chemistry and salt-water encroachment, southern Baldwin County, Alabama: Alabama Geological Survey Bulletin 126, p. 166.
- Davis, M.E., 1987, Stratigraphic and Hydrogeologic Framework of the Alabama Coastal Plain, U.S. Geological survey, Water-Resources Investigations Report 87-4112.
- Gillet, B., Raymond, D.E., Moore, J.D., and Tew, B.H., 2000, Hydrogeology and Vulnerability to Contamination of Major Aquifers in Alabama: Area 13, Geological Survey of Alabama.
- Hsu, K.J., 1960, Texture and mineralogy of the recent sands of the Gulf Coast, Journal of Sedimentary Petrology, vol. 30, p 380-403.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance.
- USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER]. RIN-2050-AE81. April.
- United States Geological Survey (USGS), 1980 (Photorevised 1985), The Basin Alabama Quadrangle, 7.5 Minute Series Topographic Map.
- United States Geological Survey (USGS), 1982a (Photorevised 1985), Creola Alabama Quadrangle, 7.5 Minute Series Topographic Map.
- United States Geological Survey (USGS), 1982b, Mount Vernon Alabama Quadrangle, 7.5 Minute Series Topographic Map.
- United States Geological Survey (USGS), 1983, Stiggins Lake Alabama Quadrangle, 7.5 Minute Series Topographic Map.
- Walter, G.R., and Kidd, R.E., 1979, Ground-water management techniques for the control of salt-water encroachment in Gulf Coast aquifer, a summary report: Geological Survey of Alabama open-file report, p. 84.

Figures

Tables

Table 1a. - Compliance Monitoring Well Network Details Plant Barry Ash Pond

Well ID	Hydraulic Location	Geologic Unit	Latitude	Longitude	Ground Surface Elevation (ft NAVD)	Top Of Casing Elevation (ft NAVD)	Well Depth (ft BTOC)	Top Of Screen Elevation (ft NAVD)	Bottom Of Screen Elevation (ft NAVD)	Screen Length (ft)	Date Of Installation
WELL NETWORK											
BY-UP-MW-1	Upgradient	Unit 3: Middle Sands (Watercourse Aq)	30.99445	-88.01134	17.49	20.66	44.4	-13.23	-23.23	10	10/7/2015
BY-UP-MW-2	Upgradient	Unit 3: Middle Sands (Watercourse Aq)	30.99425	-88.01331	17.00	19.95	47.6	-17.23	-27.23	10	10/7/2015
BY-UP-MW-3	Upgradient	Unit 3: Middle Sands (Watercourse Aq)	30.9933	-88.01424	20.15	23.24	48.5	-14.89	-24.89	10	10/7/2015
BY-UP-MW-4	Upgradient	Unit 3: Middle Sands (Watercourse Aq)	30.99413	-88.01566	26.16	29.12	64.1	-24.54	-34.54	10	10/13/2015
BY-AP-MW-1	Downgradient	Unit 1-Unit 2 Transition	30.99687	-88.00104	22.91	25.80	46.1	-9.90	-19.90	10	10/7/2015
BY-AP-MW-2	Downgradient	Unit 3: Upper Sands (Watercourse Aq)	30.99815	-88.00234	21.10	23.89	65.4	-31.11	-41.11	10	10/7/2015
BY-AP-MW-3	Downgradient	Unit 3: Middle Sands (Watercourse Aq)	30.99989	-88.00388	23.60	26.61	83.2	-46.18	-56.18	10	10/7/2015
BY-AP-MW-4	Downgradient	Unit 3: Middle Sands (Watercourse Aq)	31.00156	-88.00548	24.05	26.97	84.9	-47.54	-57.54	10	10/7/2015
BY-AP-MW-5	Downgradient	Unit 3: Upper Sands (Watercourse Aq)	31.00405	-88.00772	25.97	28.93	69.0	-29.62	-39.62	10	10/7/2015
BY-AP-MW-6	Downgradient	Unit 3: Middle Sands (Watercourse Aq)	31.0051	-88.00414	23.78	26.69	88.5	-51.42	-61.42	10	10/7/2015
BY-AP-MW-7	Downgradient	Unit 3: Middle Sands (Watercourse Aq)	31.00734	-88.00035	25.78	25.47	89.5	-53.58	-63.58	10	10/7/2015
BY-AP-MW-8	Downgradient	Unit 3: Upper Sands (Watercourse Aq)	31.00832	-87.9958	25.44	25.11	64.8	-29.29	-39.29	10	10/7/2015
BY-AP-MW-9	Downgradient	Unit 3: Upper Sands (Watercourse Aq)	31.00647	-87.9921	21.91	24.39	62.7	-27.92	-37.92	10	10/7/2015

Notes:

⁽¹⁾ Coordinates have been transformed into WGS 84 from NAD 27/83, State Plane, Alabama, feet.

⁽²⁾ Vertical elevations are in feet relative to the North American Vertical Datum (NAVD)1988.

⁽³⁾ Total well depth accounts for sump if data provided on well construction logs.

Table 1a. - Compliance Monitoring Well Network Details Plant Barry Ash Pond

Well ID	Hydraulic Location	Geologic Unit	Latitude	Longitude	Ground Surface Elevation (ft NAVD)	Top Of Casing Elevation (ft NAVD)	Well Depth (ft BTOC)	Top Of Screen Elevation (ft NAVD)	Bottom Of Screen Elevation (ft NAVD)	Screen Length (ft)	Date Of Installation
WELL NETWORK											
BY-AP-MW-10	Downgradient	Unit 3: Upper Sands (Watercourse Aq)	31.00349	-87.98866	24.21	24.07	68.7	-34.18	-44.18	10	10/7/2015
BY-AP-MW-11	Downgradient	Unit 3: Upper Sands (Watercourse Aq)	31.00014	-87.98764	23.13	23.11	71.1	-37.60	-47.60	10	10/7/2015
BY-AP-MW-12	Downgradient	Unit 3: Middle Sands (Watercourse Aq)	30.99636	-87.98774	21.24	23.88	82.9	-48.65	-58.65	10	10/7/2015
BY-AP-MW-13	Downgradient	Unit 3: Upper Sands (Watercourse Aq)	30.99237	-87.98788	21.29	24.22	73.5	-38.89	-48.89	10	10/7/2015
BY-AP-MW-14	Downgradient	Unit 3: Upper Sands (Watercourse Aq)	30.99035	-87.99085	9.27	11.74	58.0	-35.88	-45.88	10	10/1/2013
BY-AP-MW-15	Downgradient	Unit 3: Middle Sands (Watercourse Aq)	30.99054	-87.99429	21.23	23.89	82.7	-48.39	-58.39	10	10/7/2015
BY-AP-MW-16	Downgradient	Unit 3: Middle Sands (Watercourse Aq)	30.99332	-87.99764	22.05	25.01	67.7	-32.31	-42.31	10	10/7/2015

Notes:

⁽¹⁾ Coordinates have been transformed into WGS 84 from NAD 27/83, State Plane, Alabama, feet.

⁽²⁾ Vertical elevations are in feet relative to the North American Vertical Datum (NAVD)1988.

⁽³⁾ Total well depth accounts for sump if data provided on well construction logs.

Table 1b. - Delineation Well Network Details Plant Barry Ash Pond

Well ID	Hydraulic Location	Geologic Unit	Latitude	Longitude	Ground Surface Elevation (ft NAVD)	Top Of Casing Elevation (ft NAVD)	Well Depth (ft BTOC)	Top Of Screen Elevation (ft NAVD)	Bottom Of Screen Elevation (ft NAVD)	Screen Length (ft)	Date Of Installation
WELL NETWORK											
BY-AP-MW-1V	Vertical Delineation	Unit 3: Lower Sands & Gravel (Watercourse Aq)	30.99688	-88.00105	23.13	26.23	126.5	-89.87	-99.87	10	12/18/2018
BY-AP-MW-5V	Vertical Delineation	Unit 3: Lower Sands & Gravel (Watercourse Aq)	31.00403	-88.00771	25.98	28.94	103.4	-64.02	-74.02	10	12/20/2018
BY-AP-MW-7V	Vertical Delineation	Unit 3: Lower Sands & Gravel (Watercourse Aq)	31.00731	-88.0004	25.62	25.06	106.7	-71.27	-81.27	10	12/12/2018
BY-AP-MW-8V	Vertical Delineation	Unit 3: Lower Sands & Gravel (Watercourse Aq)	31.0083	-87.99577	25.54	25.18	103.0	-67.41	-77.41	10	12/14/2018
BY-AP-MW-10V	Vertical Delineation	Unit 3: Lower Sands & Gravel (Watercourse Aq)	31.00355	-87.98861	22.76	25.39	89.0	-53.24	-63.24	10	12/16/2018
BY-AP-MW-12V	Vertical Delineation	Unit 3: Lower Sands & Gravel (Watercourse Aq)	30.99641	-87.98773	21.05	25.51	94.9	-58.95	-68.95	10	12/17/2018
BY-AP-MW-13V	Vertical Delineation	Unit 3: Lower Sands & Gravel (Watercourse Aq)	30.99228	-87.98791	21.89	24.65	100.8	-65.75	-75.75	10	4/9/2020
BY-AP-MW-14V	Vertical Delineation	Unit 3: Lower Sands & Gravel (Watercourse Aq)	30.9905	-87.99065	21.68	24.72	113.4	-78.18	-88.18	10	4/10/2020
BY-AP-MW-15V	Vertical Delineation	Unit 3: Lower Sands & Gravel (Watercourse Aq)	30.9908	-87.9955	4.05	7.03	86.3	-68.85	-78.85	10	7/23/2019

Notes:

- (1) Coordinates have been transformed into WGS 84 from NAD 27/83, State Plane, Alabama, feet.
- (2) Vertical elevations are in feet relative to the North American Vertical Datum (NAVD)1988.
- (3) Total well depth accounts for sump if data provided on well construction logs.

Table 1b. - Delineation Well Network Details Plant Barry Ash Pond

Well ID	Hydraulic Location	Geologic Unit	Latitude	Longitude	Ground Surface Elevation (ft NAVD)	Top Of Casing Elevation (ft NAVD)	Well Depth (ft BTOC)	Top Of Screen Elevation (ft NAVD)	Bottom Of Screen Elevation (ft NAVD)	Screen Length (ft)	Date Of Installation
WELL NETWORK											
BY-AP-MW-16V	Vertical Delineation	Unit 3: Middle Sands (Watercourse Aq)	30.99302	-87.99739	23.61	23.65	95.2	-61.09	-71.09	10	4/11/2020
BY-AP-MW-17V	Vertical Delineation	Unit 3: Lower Sands & Gravel (Watercourse Aq)	31.00879	-88.00838	17.41	20.40	100.2	-69.25	-79.25	10	4/11/2020
BY-AP-MW-20V	Vertical Delineation	Unit 3: Lower Sands & Gravel (Watercourse Aq)	30.99579	-87.98777	21.94	24.91	105.7	-70.33	-80.33	10	4/10/2020
BY-AP-MW-23V	Vertical Delineation	Unit 3: Lower Sands & Gravel (Watercourse Aq)	31.00934	-88.00166	12.04	15.33	103.0	-77.14	-87.14	10	3/25/2020
BY-AP-MW-25V	Vertical Delineation	Unit 3: Lower Sands & Gravel (Watercourse Aq)	31.00473	-88.01308	20.90	23.81	112.9	-78.54	-88.54	10	4/14/2020
BY-AP-MW-17H	Horizontal Delineation	Unit 3: Upper Sands (Watercourse Aq)	31.00883	-88.00832	16.88	19.83	63.4	-33.12	-43.12	10	12/21/2018
BY-AP-MW-18H	Horizontal Delineation	Unit 3: Upper Sands (Watercourse Aq)	31.00856	-87.99552	7.08	10.30	52.6	-31.92	-41.92	10	7/18/2019
BY-AP-MW-19H	Horizontal Delineation	Unit 2: Mixed Sand and Clay	31.00332	-87.98806	6.39	9.40	38.4	-18.61	-28.61	10	7/18/2019
BY-AP-MW-20H	Horizontal Delineation	Unit 2: Mixed Sand and Clay	30.99577	-87.98749	6.51	9.40	47.4	-27.59	-37.59	10	7/18/2019
BY-AP-MW-22H	Horizontal Delineation	Unit 2: Mixed Sand and Clay	30.99014	-87.99409	4.73	7.85	43.1	-27.87	-37.87	10	7/24/2019
BY-AP-MW-23H	Horizontal Delineation	Unit 3: Upper Sands (Watercourse Aq)	31.00953	-88.00147	7.92	10.63	45.1	-24.08	-34.08	10	7/18/2019

Notes:

- (1) Coordinates have been transformed into WGS 84 from NAD 27/83, State Plane, Alabama, feet.
- (2) Vertical elevations are in feet relative to the North American Vertical Datum (NAVD)1988.
- (3) Total well depth accounts for sump if data provided on well construction logs.

Table 1b. - Delineation Well Network Details Plant Barry Ash Pond

Well ID	Hydraulic Location	Geologic Unit	Latitude	Longitude	Ground Surface Elevation (ft NAVD)	Top Of Casing Elevation (ft NAVD)	Well Depth (ft BTOC)	Top Of Screen Elevation (ft NAVD)	Bottom Of Screen Elevation (ft NAVD)	Screen Length (ft)	Date Of Installation
WELL NETWORK											
BY-AP-MW-24H	Horizontal Delineation	Unit 2: Mixed Sand and Clay	30.99147	-87.99567	23.51	26.28	63.2	-26.49	-36.49	10	12/19/2018
BY-AP-MW-25H	Horizontal Delineation	Unit 3: Middle Sands (Watercourse Aq)	31.00474	-88.01299	20.89	23.82	80.4	-46.09	-56.09	10	4/13/2020

Notes:

- (1) Coordinates have been transformed into WGS 84 from NAD 27/83, State Plane, Alabama, feet.
- (2) Vertical elevations are in feet relative to the North American Vertical Datum (NAVD)1988.
- (3) Total well depth accounts for sump if data provided on well construction logs.

Table 1c. - Piezometer Well Network Details Plant Barry Ash Pond

Well ID	Hydraulic Location	Geologic Unit	Latitude	Longitude	Ground Surface Elevation (ft NAVD)	Top Of Casing Elevation (ft NAVD)	Well Depth (ft BTOC)	Top Of Screen Elevation (ft NAVD)	Bottom Of Screen Elevation (ft NAVD)	Screen Length (ft)	Date Of Installation
WELL NETWORK											
BY-AP-MW-15VM	Piezometer	Unit 5: Sands (Interpreted Miocene)	30.99054	-87.99416	23.79	23.51	133.5	-99.52	-109.52	10	4/23/2020

Notes:

- (1) Coordinates have been transformed into WGS 84 from NAD 27/83, State Plane, Alabama, feet.
- (2) Vertical elevations are in feet relative to the North American Vertical Datum (NAVD)1988.
- (3) Total well depth accounts for sump if data provided on well construction logs.

Table 2. Parameters And Reporting Limits

Plant Barry Ash Pond 05/23/2022 - 05/31/2022

	Appendix III Parameters		
Parameters	Analytical Methods	Reporting Limits	Units of Measure
Boron	EPA 200.7	0.1015	mg/L
Calcium	EPA 200.7	0.406-20.3	mg/L
Chloride	SM4500Cl E	1-40	mg/L
Fluoride	SM4500F G 2017	0.125	mg/L
pH_Field	Field Sampling	NA	SU
Sulfate	SM4500SO4 E 2011	2-16	mg/L
TDS	NA	NA	mg/L
A	Appendix IV Parameters		
Parameters	Analytical Methods	Reporting Limits	Units of Measure
Antimony	EPA 200.8	0.001015	mg/L
Arsenic	EPA 200.8	0.000203	mg/L
Barium	EPA 200.8	0.001015	mg/L
Beryllium	EPA 200.8	0.001015	mg/L
Cadmium	EPA 200.8	0.000203	mg/L
Chromium	EPA 200.8	0.001015	mg/L
Cobalt	EPA 200.8	0.000203	mg/L
Lead	EPA 200.8	0.000203	mg/L
Lithium	EPA 200.7	0.02	mg/L
Mercury	EPA 245.1	0.0005	mg/L
Molybdenum	EPA 200.8	0.000203	mg/L
Selenium	EPA 200.8	0.001015	mg/L
Thallium	EPA 200.8	0.000203	mg/L
Combined Radium 226 + 228	Total Radium Calculation	0.768-1.84	pCi/L

Notes:

- 1. Reporting Limit values can display range depending upon matrix interferences and dilution factors
- 2. pH is a field acquired parameter and does not have a laboratory method or reporting limit
- 3. Combined Radium 226 + 228 product of radium-226 + radium-228; reporting limits presented are sum of radium 226, radium 228 reporting limits

Table 3.
Recent Groundwater Elevations Summary

Well Name	Top of Casing									
vven runne	Elevation	5/28/2019	9/30/2019	3/30/2020	5/12/2020	6/15/2020	8/31/2020	5/24/2021	10/18/2021	5/23/2022
BY-AP-MW-1	25.80	4.33	3.4	6.97	4.38	5.02	5.02	5.28	5.06	4.57
BY-AP-MW-2	23.89	3.55	2.74	6.53	3.55	3.81	3.84	3.96	3.63	3.57
BY-AP-MW-3	26.61	3.41	2.6	6.46	3.39	3.70	3.84	3.84	3.47	3.59
BY-AP-MW-4	26.97	3.14	2.33	6.21	3.06	3.39	3.60	3.57	3.15	3.31
BY-AP-MW-5	28.93	2.89	2.08	5.9	2.66	3.00	3.29		2.81	2.84
BY-AP-MW-6	26.69	2.66	1.91	6.1	2.51	2.85	3.30	3.04	2.64	2.60
BY-AP-MW-7	25.94	2.47	1.69	6.25	2.31	2.90	3.35	2.53	2.21	2.35
BY-AP-MW-8	28.45	2.17	1.32	5.89	1.53	2.41	3.21	2.35	4.96	2.16
BY-AP-MW-9	24.39	1.96	1.26	5.83	1.47	2.36	2.97	2.36	2.05	2.24
BY-AP-MW-10	26.89	2.12	1.34	4.96	1.58	2.46	3.11	2.17	1.89	1.95
BY-AP-MW-11	26.08	2.32	1.54	5.94	1.64	2.50	3.16	2.41	2.06	2.69
BY-AP-MW-12	23.88	1.97	1.26	6.02	1.52	2.31	2.95	2.48	2.13	2.63
BY-AP-MW-13	24.22	2.11	1.42	5.83	1.68	2.43	3.11	2.64	2.29	2.84
BY-AP-MW-14	11.74	1.6	0.89	5.04	0.97	1.77	1.96	1.89	1.56	1.71
BY-AP-MW-15	23.89	2.23	1.58	5.77	1.93	2.57	3.12	2.74	2.45	2.57
BY-AP-MW-16	25.01	2.82	2.2	6.08	2.35	3.83	3.45	3.22	2.92	3.06
BY-AP-MW-1V	26.23		2.65	7.34	3.69	3.61	3.72	3.72	3.43	3.40
BY-AP-MW-5V	28.94		2.1	5.88	2.63	3.00	3.32		2.79	2.83
BY-AP-MW-7V	25.54		1.66	6.03	2.15	2.68	3.13	2.51	2.21	2.34
BY-AP-MW-8V	28.25		1.23	5.74	1.44	2.23	2.82	2.41	2.07	2.38
BY-AP-MW-10V	25.39		1.21	5.65	1.23	2.17	2.78	2.21	1.93	2.20
BY-AP-MW-12V	25.51		3.46	7.83	3.53	4.33	5.00	4.53	4.19	4.63
BY-AP-MW-13V	24.65				1.48	2.23	2.93	2.47	2.57	2.62
BY-AP-MW-14V	24.72				2.13	2.26	2.88	2.41	2.09	2.22
BY-AP-MW-15V	7.03		1.97		2.17	2.71	3.23	2.83	2.52	2.55
BY-AP-MW-15VM	23.51				4.15	3.95	3.90	3.98	3.45	4.36
BY-AP-MW-16V	23.65				2.97	3.15	3.47	3.26	2.94	2.94
BY-AP-MW-17H	19.83		1.51	5.88	1.47	2.36	2.93	2.37	2.14	2.02
BY-AP-MW-17V	20.40				1.51	2.11	3.01	2.44	2.20	2.09
BY-AP-MW-18H	10.30		1.34	5.88	1.87	2.03	3.00	2.40	2.05	2.61
BY-AP-MW-19H	9.40		1.42	5.85	2.02	2.07	3.04	2.45	2.14	2.50
BY-AP-MW-20H	9.40		1.55	5.79	1.55	2.31	2.97	2.51	2.13	2.57
BY-AP-MW-20V	24.91				1.4	2.19	2.87	2.39	2.04	2.56
BY-AP-MW-22H	7.85		1.85		2.17	2.75	3.09	2.80	2.46	2.40
BY-AP-MW-23H	10.63		1.67	5.98	1.55	2.48	3.07	2.44	2.14	2.75
BY-AP-MW-23V	15.33				1.5	2.09	2.98	2.34	2.15	2.65
BY-AP-MW-24H	26.28		1.86	5.82	1.4	2.74	3.16	2.92	2.60	2.60
BY-AP-MW-25H	23.82				3.49	3.53	3.37	3.63	3.29	2.31
BY-AP-MW-25V	23.81				3.22	3.42	3.38	3.58	3.19	3.22

Well Name	Top of Casing							
	Elevation	5/28/2019	10/2/2019	3/30/2020	9/8/2020	5/24/2021	10/18/2021	5/23/2022
BY-GSA-MW-1 ³	20.66	6.60	4.78	8.38	5.31	7.13	6.64	6.17
BY-GSA-MW-2 ³	19.95	6.32	4.71	8.05	5.16	6.80	6.4	6.03
BY-GSA-MW-3 ³	23.24	7.02	5.37	8.54	5.83	7.49	7.19	6.75
BY-GSA-MW-4 ³	29.12	6.57	5.16	8.20	5.53	6.99	6.68	6.37

Notes:

1. ft. AMSL - feet above mean sea level

2. -- Not Measured

3. BY-GSA-MW-1 - BY-GSA-MW-4 designated as upgradient Ash Pond well locations.

Table 4a. Relative Percent Difference (RPD) Calculations

Plant Barry Ash Pond 05/24/2022 - 05/31/2022

		BY-UP-MW-3		
	:	Sample Date = 5/31/20)22	
Analyte	Units	Original Result	Duplicate Result	RPD (%)
Calcium	mg/L	1.95	1.97	1.02%
Chloride	mg/L	3.39	3.41	0.59%
Sulfate	mg/L	7.02	7.18	2.25%
Barium	mg/L	0.0992	0.101	1.80%
Chromium	mg/L	0.00139	0.00134	3.66%
Cobalt	mg/L	0.00149	0.00152	1.99%
		BY-AP-MW-15		
	,	Sample Date = 5/25/20)22	
Analyte	Units	Original Result	Duplicate Result	RPD (%)
Calcium	mg/L	6.41	6.35	0.94%
Chloride	mg/L	80.7	79.7	1.25%
Fluoride	mg/L	0.214	0.168	24.08%
Arsenic	mg/L	0.0176	0.0163	7.67%
Barium	mg/L	0.0846	0.0806	4.84%
Cobalt	mg/L	0.0364	0.0358	1.66%
Molybdenum	mg/L	0.0018	0.00157	13.65%
		BY-AP-MW-13		
	,	Sample Date = 5/24/20)22	
Analyte	Units	Original Result	Duplicate Result	RPD (%)
Calcium	mg/L	19.2	19	1.05%
Chloride	mg/L	43.5	38.2	12.97%
Sulfate	mg/L	38.3	51	28.44%
Arsenic	mg/L	0.0128	0.0131	2.32%
Barium	mg/L	0.0723	0.0721	0.28%
Chromium	mg/L	0.00685	0.00665	2.96%
Cobalt	mg/L	0.00189	0.00187	1.06%
Molybdenum	mg/L	0.00356	0.00369	3.59%
		BY-AP-MW-20V		
	,	Sample Date = 5/24/20)22	
Analyte	Units	Original Result	Duplicate Result	RPD (%)
Calcium	mg/L	14.4	14.4	0.00%
Chloride	mg/L	35.4	37.5	5.76%
Sulfate	mg/L	3.79	3.66	3.49%
Arsenic	mg/L	0.0188	0.0186	1.07%

Table 4a. Relative Percent Difference (RPD) Calculations

Plant Barry Ash Pond 05/24/2022 - 05/31/2022

o i i pai i y											
		BY-AP-MW-20V									
Sample Date = 5/24/2022											
Analyte	Units	Original Result	Duplicate Result	RPD (%)							
Barium	mg/L	0.0906	0.0907	0.11%							
Cobalt	mg/L	0.0264	0.0268	1.50%							
Molybdenum	mg/L	0.00164	0.00161	1.85%							
	BY-AP-MW-7										
	:	Sample Date = 5/24/20)22								
Analyte	Units	Original Result	Duplicate Result	RPD (%)							
Calcium	mg/L	10.5	10.7	1.89%							
Chloride	mg/L	13.2	12.9	2.30%							
Sulfate	mg/L	7.14	7.53	5.32%							
Arsenic	mg/L	0.0197	0.0192	2.57%							
Barium	mg/L	0.0717	0.0715	0.28%							
Cobalt	mg/L	0.023	0.0234	1.72%							

- 1. The RPD calculations presented are for analyte pairs where original and duplicate results are valid, unqualified detections.
- 2. RPD calculation results less than or equal to 20% are considered acceptable.
- 3. Results greater than 20% are given data validation flags to indicate RPD criteria failure. Communication to sampling team and lab may be necessary to explore nature of RPD failure(s).

Table 4b. - Field QC: Blank Detections

Plant Barry Ash Pond 05/24/2022 - 05/31/2022

Parameters Detected Above MDL										
Sample Date	QC Location	Blank Concentration	Units	MDL						
05/31/2022	EB-1	Chromium	0.00027 J	mg/L	0.0002					
05/31/2022	FB-1	Chromium	0.00027 J	mg/L	0.0002					

- 1. Lab qualifiers have been appended to result when applicable
- 2. MDL = Method Detection Limit
 3. Only Appendix 4 Constituents were compared and validated. Radium data was not validated.
 4. mg/L = milligrams per liter

Table 5. Summary of Background Levels and Groundwater Protection Standards Plant Barry Ash Pond

	Appendix IV Analytes										
Analyte	Units	Background	GWPS								
Fluoride	mg/L	0.1	4								
Antimony	mg/L	0.00102	0.006								
Arsenic	mg/L	0.0017	0.01								
Barium	mg/L	0.183	2								
Beryllium	mg/L	0.00102	0.004								
Cadmium	mg/L	0.0002	0.005								
Chromium	mg/L	0.01	0.1								
Cobalt	mg/L	0.0157	0.0157								
Lead	mg/L	0.00126	0.015								
Lithium	mg/L	0.02	0.04								
Mercury	mg/L	0.0005	0.002								
Molybdenum	mg/L	0.0002	0.1								
Selenium	mg/L	0.00102	0.05								
Thallium	mg/L	0.0002	0.002								
Combined Radium 226 + 228	pCi/L	3	5								

- 1. mg/L Milligrams per liter
- 2. pCi/L Picocuries per liter

^{3.} Background concentrations/limits are used when determining the groundwater protection standard (GWPS) under 40 CFR §257.95(h) and ADEM Rule 335-13-15-.06(h).

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

Field Parameters								
Hydraulic Location	Well	Sample Date	DO mg/L	ORP mv	Turbidity NTU	Field Temperature C	pH_Field SU	Conductivity uS/cm
Upgradient	BY-UP-MW-1	05/31/2022	0.34	193.96	2	20.77	3.89	57.06
Upgradient	BY-UP-MW-2	05/31/2022	6.27	226.41	4.82	20	3.31	50.04
Upgradient	BY-UP-MW-3	05/31/2022	5.82	223.76	3.1	20.09	3.54	49.57
Upgradient	BY-UP-MW-4	05/31/2022	6.48	223.18	8.23	22.67	3.97	52.45
Downgradient	BY-AP-MW-1	05/24/2022	0.12	-8.45	2.83	21.65	5.44	758.26
Downgradient	BY-AP-MW-10	05/24/2022	0.32	-17.07	0.2	21.37	5.81	680.19
Downgradient	BY-AP-MW-11	05/23/2022	0.27	-96.88	3.74	21.18	6.32	555.51
Downgradient	BY-AP-MW-12	05/23/2022	0.12	-72.55	2.67	20.85	6.12	578.36
Downgradient	BY-AP-MW-13	05/24/2022	0.23	36.78	4.94	20.79	5.5	445.45
Downgradient	BY-AP-MW-14	05/25/2022	0.33	-33.94	3.06	20.59	6.14	512.57
Downgradient	BY-AP-MW-15	05/25/2022	0.09	-119.75	3.64	21.92	6.68	564.84
Downgradient	BY-AP-MW-16	05/25/2022	0.09	-3.49	1.8	22.27	5.74	474.44
Downgradient	BY-AP-MW-2	05/24/2022	0.26	168.85	0.78	22.12	4.78	53.16
Downgradient	BY-AP-MW-3	05/25/2022	1.61	129.55	0.66	21.52	4.64	65.47
Downgradient	BY-AP-MW-4	05/25/2022	1.3	226.63	1.54	22.57	4.6	72.52
Downgradient	BY-AP-MW-5	05/25/2022	0.13	-73.02	1.77	22.21	5.99	426.36
Downgradient	BY-AP-MW-6	05/25/2022	0.49	268.89	0.87	21.47	4.57	52.89
Downgradient	BY-AP-MW-7	05/24/2022	0.3	-25	3.47	21.47	6.32	243.46
Downgradient	BY-AP-MW-8	05/24/2022	0.19	-16.23	3.51	21.81	5.6	508.1
Downgradient	BY-AP-MW-9	05/24/2022	0.25	-73.75	1.63	22.35	6.03	543.47
Vert. Delineation	BY-AP-MW-10V	05/24/2022	0.19	-41.2	1.76	21.44	5.77	726.04

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

Field Parameters								
Hydraulic Location	Well	Sample Date	DO mg/L	ORP mv	Turbidity NTU	Field Temperature C	pH_Field SU	Conductivity uS/cm
Vert. Delineation	BY-AP-MW-12V	05/23/2022	0.11	-67.29	1.04	20.7	6.22	616.65
Vert. Delineation	BY-AP-MW-13V	05/25/2022	0.17	-52.01	2.04	20.8	6.3	561.68
Vert. Delineation	BY-AP-MW-14V	05/24/2022	0.42	-104.33	1.07	21.42	6.71	969.26
Vert. Delineation	BY-AP-MW-15V	05/24/2022	0.26	44.5	6.89	21.14	5.7	594.35
Vert. Delineation	BY-AP-MW-16V	05/25/2022	0.39	117.25	1.38	22.23	5.26	318.16
Vert. Delineation	BY-AP-MW-17V	05/25/2022	0.39	116.46	1.38	21.85	6.34	2332.61
Vert. Delineation	BY-AP-MW-1V	05/24/2022	0.14	133.41	0.51	22.07	4.9	375.09
Vert. Delineation	BY-AP-MW-20V	05/24/2022	0.25	-77.95	1.01	20.55	6.28	549.97
Vert. Delineation	BY-AP-MW-23V	05/25/2022	0.44	-36.42	2.11	20.55	7.44	636.87
Vert. Delineation	BY-AP-MW-25V	05/25/2022	3.54	261.01	1.53	22.35	5.45	29.82
Vert. Delineation	BY-AP-MW-5V	05/25/2022	1.23	99.33	1.64	22.54	5.88	114.39
Vert. Delineation	BY-AP-MW-7V	05/24/2022	0.37	-124.32	1.73	22.25	6.92	424.17
Vert. Delineation	BY-AP-MW-8V	05/23/2022	0.24	-24.72	1.61	20.86	6.08	557.51
Horiz. Delineation	BY-AP-MW-17H	05/25/2022	0.29	-16.59	2.84	21.46	6.21	388.95
Horiz. Delineation	BY-AP-MW-18H	05/23/2022	0.2	-70.12	1.58	20.29	6.24	495.93
Horiz. Delineation	BY-AP-MW-19H	05/24/2022	0.21	-59.87	1.65	20.19	5.8	206.31
Horiz. Delineation	BY-AP-MW-20H	05/23/2022	0.12	-56.87	1.75	19.98	6.15	784.43
Horiz. Delineation	BY-AP-MW-22H	05/24/2022	0.17	-70.67	2.32	20.28	6.57	669.92
Horiz. Delineation	BY-AP-MW-23H	05/25/2022	0.22	-1.91	1.45	20.16	5.92	411.87
Horiz. Delineation	BY-AP-MW-24H	05/24/2022	0.1	-80.03	2.5	21.7	6.22	792.5
Horiz. Delineation	BY-AP-MW-25H	05/25/2022	0.84	285.43	0.93	22.54	5.23	43

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

PA Appendix III Set								
Hydraulic Location	Well	Sample Date	Boron mg/L	Calcium mg/L	Chloride mg/L	Fluoride mg/L	pH_Field SU	Sulfate mg/L
Upgradient	BY-UP-MW-1	05/31/2022	0.0567 J	1.14	1.93	<0.06	3.89	12.8
Upgradient	BY-UP-MW-2	05/31/2022	<0.03	1.24	2.17	<0.06	3.31	8.09
Upgradient	BY-UP-MW-3	05/31/2022	<0.03	1.95	3.39	<0.06	3.54	7.02
Upgradient	BY-UP-MW-4	05/31/2022	<0.03	2.02	3.31	<0.06	3.97	7.94
Downgradient	BY-AP-MW-1	05/24/2022	2.08	43.9	27.6	0.0801 J	5.44	21
Downgradient	BY-AP-MW-10	05/24/2022	2.34	63.9	27.7	<0.06	5.81	14.7
Downgradient	BY-AP-MW-11	05/23/2022	0.0558 J	26	25.1	0.0709 J	6.32	29.3
Downgradient	BY-AP-MW-12	05/23/2022	0.0626 J	20.6	26.2	0.0873 J	6.12	13
Downgradient	BY-AP-MW-13	05/24/2022	0.0457 J	19.2	43.5	0.0769 J	5.5	38.3
Downgradient	BY-AP-MW-14	05/25/2022	0.0618 J	11.4	45.3	0.0733 J	6.14	105
Downgradient	BY-AP-MW-15	05/25/2022	0.0826 J	6.41	80.7	0.214	6.68	1.8 J
Downgradient	BY-AP-MW-16	05/25/2022	1.98	13.9	20	<0.06	5.74	6.29
Downgradient	BY-AP-MW-2	05/24/2022	<0.03	2.45	9.21	<0.06	4.78	0.615 J
Downgradient	BY-AP-MW-3	05/25/2022	<0.03	1.29	15.2	<0.06	4.64	1.41 J
Downgradient	BY-AP-MW-4	05/25/2022	<0.03	1.69	16.1	<0.06	4.6	1.97 J
Downgradient	BY-AP-MW-5	05/25/2022	0.063 J	14.6	20	<0.06	5.99	5.53
Downgradient	BY-AP-MW-6	05/25/2022	<0.03	1.62	6.63	<0.06	4.57	1.27 J
Downgradient	BY-AP-MW-7	05/24/2022	0.0369 J	10.5	13.2	0.0724 J	6.32	7.14
Downgradient	BY-AP-MW-8	05/24/2022	1.12	31.5	27.2	0.0713 J	5.6	9.75
Downgradient	BY-AP-MW-9	05/24/2022	2.01	38.3	17.3	<0.06	6.03	5.76
Vert. Delineation	BY-AP-MW-10V	05/24/2022	0.938	65	19.4	<0.06	5.77	5.73

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

EPA Appendix III Set	PA Appendix III Set											
Hydraulic Location	Well	Sample Date	Boron mg/L	Calcium mg/L	Chloride mg/L	Fluoride mg/L	pH_Field SU	Sulfate mg/L				
Vert. Delineation	BY-AP-MW-12V	05/23/2022	0.0765 J	20.6	25.6	<0.06	6.22	6.64				
Vert. Delineation	BY-AP-MW-13V	05/25/2022	0.0852 J	12	59.3	<0.06	6.3	122				
Vert. Delineation	BY-AP-MW-14V	05/24/2022	0.376	7.03	184	0.291	6.71	13.6				
Vert. Delineation	BY-AP-MW-15V	05/24/2022	0.0376 J	8.1	191	<0.06	5.7	1.77 J				
Vert. Delineation	BY-AP-MW-16V	05/25/2022	<0.03	1.8	56.6	<0.06	5.26	35.1				
Vert. Delineation	BY-AP-MW-17V	05/25/2022	0.177	49.6	649	0.0799 J	6.34	49.1				
Vert. Delineation	BY-AP-MW-1V	05/24/2022	0.0333 J	3.55	95.1	<0.06	4.9	21.1				
Vert. Delineation	BY-AP-MW-20V	05/24/2022	0.0977 J	14.4	35.4	0.0811 J	6.28	3.79				
Vert. Delineation	BY-AP-MW-23V	05/25/2022	0.307	0.899	106	0.385	7.44	4.25				
Vert. Delineation	BY-AP-MW-25V	05/25/2022	<0.03	0.573	3.22	<0.06	5.45	2.13				
Vert. Delineation	BY-AP-MW-5V	05/25/2022	<0.03	2.62	22.6	<0.06	5.88	2.91				
Vert. Delineation	BY-AP-MW-7V	05/24/2022	0.165	8.84	40.4	0.0869 J	6.92	6.06				
Vert. Delineation	BY-AP-MW-8V	05/23/2022	0.259	24.4	22.1	0.108 J	6.08	8.35				
Horiz. Delineation	BY-AP-MW-17H	05/25/2022	0.0597 J	11.6	16	0.138	6.21	3.58				
Horiz. Delineation	BY-AP-MW-18H	05/23/2022	0.91	25.5	18.9	0.0857 J	6.24	9.46				
Horiz. Delineation	BY-AP-MW-19H	05/24/2022	0.159	18.6	10.4	<0.06	5.8	34.7				
Horiz. Delineation	BY-AP-MW-20H	05/23/2022	0.0653 J	28.6	44.1	0.124 J	6.15	95.1				
Horiz. Delineation	BY-AP-MW-22H	05/24/2022	0.0562 J	14.4	57.1	0.318	6.57	103				
Horiz. Delineation	BY-AP-MW-23H	05/25/2022	0.0526 J	24.5	6.63	<0.06	5.92	4.01				
Horiz. Delineation	BY-AP-MW-24H	05/24/2022	0.351	17.9	45.7	0.149	6.22	92.3				
Horiz. Delineation	BY-AP-MW-25H	05/25/2022	<0.03	0.949	5.32	<0.06	5.23	4.24				

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

EPA Appendix IV Set	PA Appendix IV Set											
Hydraulic Location	Well	Sample Date	Antimony mg/L	Arsenic mg/L	Barium mg/L	Beryllium mg/L	Cadmium mg/L	Chromium mg/L	Cobalt mg/L	Fluoride mg/L		
Upgradient	BY-UP-MW-1	05/31/2022	<0.000508	0.000237	0.1	<0.000406	<6.8e-005	0.000334 J	0.00487	<0.06		
Upgradient	BY-UP-MW-2	05/31/2022	<0.000508	8.79e-005 J	0.153	0.000413 J	<6.8e-005	0.0012	0.00194	<0.06		
Upgradient	BY-UP-MW-3	05/31/2022	<0.000508	<8.1e-005	0.0992	<0.000406	<6.8e-005	0.00139	0.00149	<0.06		
Upgradient	BY-UP-MW-4	05/31/2022	<0.000508	0.000203	0.129	<0.000406	<6.8e-005	0.00156	0.0015	<0.06		
Downgradient	BY-AP-MW-1	05/24/2022	<0.000508	0.0767	0.343	<0.000406	<6.8e-005	0.00238	0.000914	<0.06		
Downgradient	BY-AP-MW-10	05/24/2022	<0.000508	0.0775	0.0618	<0.000406	<6.8e-005	0.000522 J	0.000543	<0.06		
Downgradient	BY-AP-MW-11	05/23/2022	<0.000508	0.0142	0.0691	<0.000406	<6.8e-005	0.00474	0.00118	0.0709 J		
Downgradient	BY-AP-MW-12	05/23/2022	<0.000508	0.0245	0.0802	<0.000406	<6.8e-005	0.00374	0.00428	0.0873 J		
Downgradient	BY-AP-MW-13	05/24/2022	<0.000508	0.0128	0.0723	<0.000406	<6.8e-005	0.00685	0.00189	0.0769 J		
Downgradient	BY-AP-MW-14	05/25/2022	<0.000508	0.0183	0.0693	<0.000406	<6.8e-005	0.00345	0.00125	0.0733 J		
Downgradient	BY-AP-MW-15	05/25/2022	<0.000508	0.0176	0.0846	<0.000406	<6.8e-005	0.000489 J	0.0364	0.214		
Downgradient	BY-AP-MW-16	05/25/2022	<0.000508	0.0134	0.0977	<0.000406	<6.8e-005	0.00135	0.0155	<0.06		
Downgradient	BY-AP-MW-2	05/24/2022	<0.000508	0.00115	0.0248	<0.000406	<6.8e-005	<0.000203	0.00582	<0.06		
Downgradient	BY-AP-MW-3	05/25/2022	<0.000508	<8.1e-005	0.0494	<0.000406	<6.8e-005	0.00104	0.000279	<0.06		
Downgradient	BY-AP-MW-4	05/25/2022	<0.000508	<8.1e-005	0.0399	0.000649 J	<6.8e-005	0.000257 J	0.00455	<0.06		
Downgradient	BY-AP-MW-5	05/25/2022	<0.000508	0.0316	0.155	<0.000406	<6.8e-005	0.00103	0.00184	<0.06		
Downgradient	BY-AP-MW-6	05/25/2022	<0.000508	<8.1e-005	0.0268	<0.000406	0.000306	0.000286 J	0.000977	<0.06		
Downgradient	BY-AP-MW-7	05/24/2022	<0.000508	0.0197	0.0717	<0.000406	<6.8e-005	0.000584 J	0.023	0.0724 J		
Downgradient	BY-AP-MW-8	05/24/2022	<0.000508	0.0583	0.142	<0.000406	<6.8e-005	0.00128	0.000666	0.0713 J		
Downgradient	BY-AP-MW-9	05/24/2022	<0.000508	0.0404	0.117	<0.000406	<6.8e-005	0.000701 J	0.000695	<0.06		

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

EPA Appendix IV Set									
Hydraulic Location	Well	Sample Date	Lead mg/L	Lithium mg/L	Mercury mg/L	Molybdenum mg/L	Selenium mg/L	Thallium mg/L	Combined Radium 226 + 228 pCi/L
Upgradient	BY-UP-MW-1	05/31/2022	8.38e-005 J	<0.007105	<0.0003	<0.000102	<0.000508	<6.8e-005	1.34
Upgradient	BY-UP-MW-2	05/31/2022	7.81e-005 J	<0.007105	<0.0003	<0.000102	0.000633 J	<6.8e-005	1.38
Upgradient	BY-UP-MW-3	05/31/2022	<6.8e-005	<0.007105	<0.0003	<0.000102	<0.000508	<6.8e-005	1.67
Upgradient	BY-UP-MW-4	05/31/2022	0.000173 J	<0.007105	<0.0003	<0.000102	<0.000508	<6.8e-005	1.47
Downgradient	BY-AP-MW-1	05/24/2022	<6.8e-005	<0.007105	<0.0003	<0.000102	<0.000508	<6.8e-005	2.12
Downgradient	BY-AP-MW-10	05/24/2022	<6.8e-005	<0.007105	<0.0003	<0.000102	<0.000508	<6.8e-005	1.36 U
Downgradient	BY-AP-MW-11	05/23/2022	9.32e-005 J	0.0269	<0.0003	0.00141	<0.000508	<6.8e-005	0.452 U
Downgradient	BY-AP-MW-12	05/23/2022	0.000179 J	<0.007105	<0.0003	0.00109	<0.000508	<6.8e-005	1.4
Downgradient	BY-AP-MW-13	05/24/2022	0.000146 J	<0.007105	<0.0003	0.00356	0.000558 J	<6.8e-005	0.915 U
Downgradient	BY-AP-MW-14	05/25/2022	0.000102 J	<0.007105	<0.0003	0.000518	<0.000508	<6.8e-005	1.25
Downgradient	BY-AP-MW-15	05/25/2022	<6.8e-005	0.0118 J	<0.0003	0.0018	<0.000508	<6.8e-005	1.3
Downgradient	BY-AP-MW-16	05/25/2022	<6.8e-005	<0.007105	<0.0003	<0.000102	<0.000508	<6.8e-005	0.927 U
Downgradient	BY-AP-MW-2	05/24/2022	<6.8e-005	<0.007105	<0.0003	<0.000102	<0.000508	<6.8e-005	0.732 U
Downgradient	BY-AP-MW-3	05/25/2022	<6.8e-005	<0.007105	<0.0003	<0.000102	<0.000508	<6.8e-005	1.72
Downgradient	BY-AP-MW-4	05/25/2022	0.000176 J	<0.007105	<0.0003	<0.000102	<0.000508	<6.8e-005	0.821 U
Downgradient	BY-AP-MW-5	05/25/2022	<6.8e-005	<0.007105	<0.0003	0.000114 J	<0.000508	<6.8e-005	1.71
Downgradient	BY-AP-MW-6	05/25/2022	0.0112	<0.007105	<0.0003	0.000325	<0.000508	<6.8e-005	1.06 U
Downgradient	BY-AP-MW-7	05/24/2022	<6.8e-005	<0.007105	<0.0003	0.000178 J	<0.000508	<6.8e-005	1.05 U
Downgradient	BY-AP-MW-8	05/24/2022	<6.8e-005	<0.007105	<0.0003	0.000234	<0.000508	<6.8e-005	0.733 U
Downgradient	BY-AP-MW-9	05/24/2022	<6.8e-005	<0.007105	<0.0003	0.00024	<0.000508	<6.8e-005	2.11

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

EPA Appendix IV Set										
Hydraulic Location	Well	Sample Date	Antimony mg/L	Arsenic mg/L	Barium mg/L	Beryllium mg/L	Cadmium mg/L	Chromium mg/L	Cobalt mg/L	Fluoride mg/L
Vert. Delineation	BY-AP-MW-10V	05/24/2022	<0.000508	0.000362	0.188	<0.000406	<6.8e-005	0.000493 J	0.000618	<0.06
Vert. Delineation	BY-AP-MW-12V	05/23/2022	<0.000508	0.0257	0.103	<0.000406	<6.8e-005	0.000813 J	0.00255	<0.06
Vert. Delineation	BY-AP-MW-13V	05/25/2022	<0.000508	0.0102	0.0888	<0.000406	<6.8e-005	0.00488	0.00119	<0.06
Vert. Delineation	BY-AP-MW-14V	05/24/2022	<0.000508	0.00572	0.067	<0.000406	<6.8e-005	0.000602 J	0.00327	0.291
Vert. Delineation	BY-AP-MW-15V	05/24/2022	<0.000508	0.0333	0.156	<0.000406	0.00018 J	0.000234 J	0.0764	<0.06
Vert. Delineation	BY-AP-MW-16V	05/25/2022	<0.000508	0.00112	0.0569	<0.000406	<6.8e-005	<0.000203	0.0139	<0.06
Vert. Delineation	BY-AP-MW-17V	05/25/2022	<0.000508	0.00192	0.698	<0.000406	<6.8e-005	0.000477 J	0.0685	0.0799 J
Vert. Delineation	BY-AP-MW-1V	05/24/2022	<0.000508	0.000793	0.0863	<0.000406	<6.8e-005	0.000381 J	0.00765	<0.06
Vert. Delineation	BY-AP-MW-20V	05/24/2022	<0.000508	0.0188	0.0906	<0.000406	<6.8e-005	0.000464 J	0.0264	0.0811 J
Vert. Delineation	BY-AP-MW-23V	05/25/2022	<0.000508	0.00149	0.00735	<0.000406	<6.8e-005	0.000455 J	<6.8e-005	0.385
Vert. Delineation	BY-AP-MW-25V	05/25/2022	<0.000508	<8.1e-005	0.00993	<0.000406	<6.8e-005	0.00126	0.000277	<0.06
Vert. Delineation	BY-AP-MW-5V	05/25/2022	<0.000508	0.000171 J	0.0574	<0.000406	<6.8e-005	0.000476 J	0.00106	<0.06
Vert. Delineation	BY-AP-MW-7V	05/24/2022	<0.000508	0.00218	0.0803	<0.000406	<6.8e-005	0.000226 J	0.00011 J	0.0869 J
Vert. Delineation	BY-AP-MW-8V	05/23/2022	<0.000508	0.00386	0.277	<0.000406	<6.8e-005	0.00124	0.000921	0.108 J
Horiz. Delineation	BY-AP-MW-17H	05/25/2022	<0.000508	0.03	0.126	<0.000406	<6.8e-005	0.000334 J	0.0013	0.138
Horiz. Delineation	BY-AP-MW-18H	05/23/2022	<0.000508	0.0143	0.127	<0.000406	<6.8e-005	0.00133	0.00108	0.0857 J
Horiz. Delineation	BY-AP-MW-19H	05/24/2022	<0.000508	0.000993	0.0796	<0.000406	<6.8e-005	0.000423 J	0.00513	<0.06
Horiz. Delineation	BY-AP-MW-20H	05/23/2022	<0.000508	0.0136	0.0963	<0.000406	<6.8e-005	0.00233	0.00423	0.124 J
Horiz. Delineation	BY-AP-MW-22H	05/24/2022	<0.000508	0.0197	0.215	<0.000406	<6.8e-005	0.000566 J	0.0027	0.318
Horiz. Delineation	BY-AP-MW-23H	05/25/2022	<0.000508	0.00518	0.174	<0.000406	<6.8e-005	0.000514 J	0.002	<0.06

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

EPA Appendix IV Set									
Hydraulic Location	Well	Sample Date	Lead mg/L	Lithium mg/L	Mercury mg/L	Molybdenum mg/L	Selenium mg/L	Thallium mg/L	Combined Radium 226 + 228 pCi/L
Vert. Delineation	BY-AP-MW-10V	05/24/2022	<6.8e-005	<0.007105	<0.0003	0.000111 J	<0.000508	<6.8e-005	1.2
Vert. Delineation	BY-AP-MW-12V	05/23/2022	<6.8e-005	<0.007105	<0.0003	0.00123	<0.000508	<6.8e-005	0.962 U
Vert. Delineation	BY-AP-MW-13V	05/25/2022	<6.8e-005	0.0318	<0.0003	0.000796	<0.000508	<6.8e-005	0.951 U
Vert. Delineation	BY-AP-MW-14V	05/24/2022	<6.8e-005	<0.007105	<0.0003	0.0031	<0.000508	<6.8e-005	1.26
Vert. Delineation	BY-AP-MW-15V	05/24/2022	0.000111 J	<0.007105	<0.0003	<0.000102	<0.000508	0.00014 J	1.85
Vert. Delineation	BY-AP-MW-16V	05/25/2022	<6.8e-005	<0.007105	<0.0003	<0.000102	<0.000508	8.86e-005 J	1.03 U
Vert. Delineation	BY-AP-MW-17V	05/25/2022	7.37e-005 J	<0.007105	<0.0003	0.000428	<0.000508	0.000103 J	5.37
Vert. Delineation	BY-AP-MW-1V	05/24/2022	<6.8e-005	<0.007105	<0.0003	0.000108 J	<0.000508	<6.8e-005	2
Vert. Delineation	BY-AP-MW-20V	05/24/2022	<6.8e-005	<0.007105	<0.0003	0.00164	<0.000508	<6.8e-005	0.97 U
Vert. Delineation	BY-AP-MW-23V	05/25/2022	0.000124 J	<0.007105	<0.0003	0.00142	<0.000508	<6.8e-005	0.285 U
Vert. Delineation	BY-AP-MW-25V	05/25/2022	<6.8e-005	<0.007105	<0.0003	<0.000102	<0.000508	<6.8e-005	0.527 U
Vert. Delineation	BY-AP-MW-5V	05/25/2022	<6.8e-005	<0.007105	<0.0003	<0.000102	<0.000508	<6.8e-005	1.03 U
Vert. Delineation	BY-AP-MW-7V	05/24/2022	<6.8e-005	<0.007105	<0.0003	0.00074	<0.000508	<6.8e-005	0.619 U
Vert. Delineation	BY-AP-MW-8V	05/23/2022	<6.8e-005	<0.007105	<0.0003	0.000286	<0.000508	<6.8e-005	1.13
Horiz. Delineation	BY-AP-MW-17H	05/25/2022	<6.8e-005	<0.007105	<0.0003	0.000454	<0.000508	<6.8e-005	1.71
Horiz. Delineation	BY-AP-MW-18H	05/23/2022	<6.8e-005	<0.007105	<0.0003	0.000361	<0.000508	<6.8e-005	1.03 U
Horiz. Delineation	BY-AP-MW-19H	05/24/2022	<6.8e-005	<0.007105	<0.0003	<0.000102	<0.000508	<6.8e-005	1.06 U
Horiz. Delineation	BY-AP-MW-20H	05/23/2022	<6.8e-005	<0.007105	<0.0003	0.000537	0.000538 J	<6.8e-005	0.657 U
Horiz. Delineation	BY-AP-MW-22H	05/24/2022	<6.8e-005	<0.007105	<0.0003	0.00145	<0.000508	<6.8e-005	0.656 U
Horiz. Delineation	BY-AP-MW-23H	05/25/2022	<6.8e-005	<0.007105	<0.0003	0.000131 J	<0.000508	<6.8e-005	0.674 U

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

EPA Appendix IV Se	EPA Appendix IV Set													
Hydraulic Location	Well	Sample Date	Antimony mg/L	Arsenic mg/L	Barium mg/L	Beryllium mg/L	Cadmium mg/L	Chromium mg/L	Cobalt mg/L	Fluoride mg/L				
Horiz. Delineation	BY-AP-MW-24H	05/24/2022	<0.000508	0.0718	0.245	<0.000406	<6.8e-005	0.000809 J	0.00571	0.149				
Horiz. Delineation	BY-AP-MW-25H	05/25/2022	<0.000508	0.000196 J	0.0197	<0.000406	<6.8e-005	0.00103	0.00132	<0.06				

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

EPA Appendix IV Set													
Hydraulic Location	Well	Sample Date	Lead mg/L	Lithium mg/L	Mercury mg/L	Molybdenum mg/L	Selenium mg/L	Thallium mg/L	Combined Radium 226 + 228 pCi/L				
Horiz. Delineation	BY-AP-MW-24H	05/24/2022	<6.8e-005	<0.007105	<0.0003	0.000923	<0.000508	<6.8e-005	1.08 U				
Horiz. Delineation	BY-AP-MW-25H	05/25/2022	<6.8e-005	<0.007105	<0.0003	0.000103 J	<0.000508	<6.8e-005	0.682 U				

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

General Chemistry a	eneral Chemistry and MNA Parameters									
Hydraulic Location	Well	Sample Date	Sulfide mg/L	Iron Total mg/L	Magnesium Total mg/L	Silicon mg/L	Sodium mg/L	Calcium mg/L	Silica mg/L	Aluminum mg/L
Upgradient	BY-UP-MW-1	05/31/2022	0	4.8	2.23	3.15	2.05	1.14	6.74	0.0898
Upgradient	BY-UP-MW-2	05/31/2022	0	0.0704	2.48	3.92	2.25	1.24	8.39	0.127
Upgradient	BY-UP-MW-3	05/31/2022	0	0.027 J	2.05	4.02	3.11	1.95	8.6	0.0446
Upgradient	BY-UP-MW-4	05/31/2022	0	0.222	2.2	4.12	2.69	2.02	8.82	0.233
Downgradient	BY-AP-MW-1	05/24/2022	0	155	13.1	10.9	24.4	43.9	23.3	0.0257
Downgradient	BY-AP-MW-10	05/24/2022	0	68	17.6	12.1	26.2	63.9	25.9	<0.00609
Downgradient	BY-AP-MW-11	05/23/2022	0	80	13.8	7.55	61	26	16.2	0.0586
Downgradient	BY-AP-MW-12	05/23/2022	0	74	15.3	7.48	44.8	20.6	16	0.19
Downgradient	BY-AP-MW-13	05/24/2022	0	27.1	6.94	7.28	53.9	19.2	15.6	0.116
Downgradient	BY-AP-MW-14	05/25/2022	0	35.3	6.72	9.37	80.4	11.4	20.1	0.195
Downgradient	BY-AP-MW-15	05/25/2022	0	105	5.31	6.03	36	6.41	12.9	<0.00609
Downgradient	BY-AP-MW-16	05/25/2022	0	94.6	7.61	11.2	24.6	13.9	24	0.0137
Downgradient	BY-AP-MW-2	05/24/2022	0	0.305	1.62	7.65	4.38	2.45	16.4	0.0125
Downgradient	BY-AP-MW-3	05/25/2022	0	0.00821 J	1.11	6.22	7.98	1.29	13.3	0.013
Downgradient	BY-AP-MW-4	05/25/2022	0	0.124	1.38	6.79	6.87	1.69	14.5	0.0313
Downgradient	BY-AP-MW-5	05/25/2022	0	84.9	5.5	12.2	19.8	14.6	26.1	0.00862 J
Downgradient	BY-AP-MW-6	05/25/2022	0	0.00905 J	1.2	6.62	6.62	1.62	14.2	0.00926 J
Downgradient	BY-AP-MW-7	05/24/2022	0	19.8	8.61	6.54	23.1	10.5	14	0.00839 J
Downgradient	BY-AP-MW-8	05/24/2022	0	74	10	15.3	19.4	31.5	32.7	0.00884 J
Downgradient	BY-AP-MW-9	05/24/2022	0	81.4	11.6	11.5	19.6	38.3	24.6	<0.00609

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

General Chemistry a	eneral Chemistry and MNA Parameters										
Hydraulic Location	Well	Sample Date	Manganese Total mg/L	Potassium mg/L	Nitrate Nitrite mg/L as N	Alkalinity Total as CaCO3 mg/L	Carbonate Alkalinity as CaCO3 mg/L	Bicarbonate Alkalinity as CaCO3 mg/L	Carbon, Total Organic mg/L	Chloride mg/L	
Upgradient	BY-UP-MW-1	05/31/2022	0.154	0.444 J	<0.2	8.56	-10000	8.56	1.58 J	1.93	
Upgradient	BY-UP-MW-2	05/31/2022	0.0241	0.905	1.84	0.44	-10000	-10000	1.14 J	2.17	
Upgradient	BY-UP-MW-3	05/31/2022	0.0196	0.987	2.11	1.24	-10000	1.24	<1	3.39	
Upgradient	BY-UP-MW-4	05/31/2022	0.0173	1.05	2.55	0.44	-10000	-10000	<1	3.31	
Downgradient	BY-AP-MW-1	05/24/2022	0.946	2.25	0.331	371	-10000	371	15.6	27.6	
Downgradient	BY-AP-MW-10	05/24/2022	1.82	1.46	0.257 J	337	-10000	337	12.4	30.8	
Downgradient	BY-AP-MW-11	05/23/2022	0.625	9.56	0.279 J	318	-10000	318	28.6	25.1	
Downgradient	BY-AP-MW-12	05/23/2022	0.849	2.76	0.212 J	274	-10000	274	20.1	26.2	
Downgradient	BY-AP-MW-13	05/24/2022	0.451	2.52	<0.2	166	-10000	166	24	43.5	
Downgradient	BY-AP-MW-14	05/25/2022	0.316	2.54	<0.2	196	-10000	196	17	45.3	
Downgradient	BY-AP-MW-15	05/25/2022	0.741	4.23	0.283 J	101	-10000	101	4.99	80.7	
Downgradient	BY-AP-MW-16	05/25/2022	0.845	2.11	0.282 J	219	-10000	219	10.5	20	
Downgradient	BY-AP-MW-2	05/24/2022	0.272	0.969	<0.2	12	-10000	12	<1	9.21	
Downgradient	BY-AP-MW-3	05/25/2022	0.00891	1.24	<0.2	2.52	-10000	2.52	<1	15.2	
Downgradient	BY-AP-MW-4	05/25/2022	0.0207	1.44	<0.2	1.76	-10000	1.76	<1	16.1	
Downgradient	BY-AP-MW-5	05/25/2022	0.67	1.46	0.23 J	193	-10000	193	14.5	20	
Downgradient	BY-AP-MW-6	05/25/2022	0.00532	0.987	<0.2	16	-10000	16	<1	6.63	
Downgradient	BY-AP-MW-7	05/24/2022	0.42	1.34	<0.2	124	-10000	124	5.15	13.2	
Downgradient	BY-AP-MW-8	05/24/2022	1.78	0.802	0.243 J	238	-10000	238	13.4	27.2	
Downgradient	BY-AP-MW-9	05/24/2022	2.16	1.03	0.3	255	-10000	255	12.3	17.3	

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

General Chemistry a	nd MNA Paramete	ers	
Hydraulic Location	Well	Sample Date	Sulfate mg/L
Upgradient	BY-UP-MW-1	05/31/2022	12.8
Upgradient	BY-UP-MW-2	05/31/2022	8.09
Upgradient	BY-UP-MW-3	05/31/2022	7.02
Upgradient	BY-UP-MW-4	05/31/2022	7.94
Downgradient	BY-AP-MW-1	05/24/2022	8.45
Downgradient	BY-AP-MW-10	05/24/2022	5.93
Downgradient	BY-AP-MW-11	05/23/2022	29.3
Downgradient	BY-AP-MW-12	05/23/2022	13
Downgradient	BY-AP-MW-13	05/24/2022	38.3
Downgradient	BY-AP-MW-14	05/25/2022	105
Downgradient	BY-AP-MW-15	05/25/2022	1.8 J
Downgradient	BY-AP-MW-16	05/25/2022	6.29
Downgradient	BY-AP-MW-2	05/24/2022	0.615 J
Downgradient	BY-AP-MW-3	05/25/2022	1.41 J
Downgradient	BY-AP-MW-4	05/25/2022	1.97 J
Downgradient	BY-AP-MW-5	05/25/2022	5.53
Downgradient	BY-AP-MW-6	05/25/2022	1.27 J
Downgradient	BY-AP-MW-7	05/24/2022	7.14
Downgradient	BY-AP-MW-8	05/24/2022	9.75
Downgradient	BY-AP-MW-9	05/24/2022	5.76

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

General Chemistry a	neral Chemistry and MNA Parameters									
Hydraulic Location	Well	Sample Date	Sulfide mg/L	Iron Total mg/L	Magnesium Total mg/L	Silicon mg/L	Sodium mg/L	Calcium mg/L	Silica mg/L	Aluminum mg/L
Vert. Delineation	BY-AP-MW-10V	05/24/2022	0	106	11.4	13.9	22.7	65	29.7	0.00682 J
Vert. Delineation	BY-AP-MW-12V	05/23/2022	0	86.6	14.7	6.58	42	20.6	14.1	0.00923 J
Vert. Delineation	BY-AP-MW-13V	05/25/2022	0	50.7	6.72	6.78	72.6	12	14.5	0.0133
Vert. Delineation	BY-AP-MW-14V	05/24/2022	0	25.5	3.56	6.68	174	7.03	14.3	0.0154
Vert. Delineation	BY-AP-MW-15V	05/24/2022	0	53.7	5.58	8.04	77.9	8.1	17.2	0.0497
Vert. Delineation	BY-AP-MW-16V	05/25/2022	0	4.18	1.77	6.54	57	1.8	14	0.0132
Vert. Delineation	BY-AP-MW-17V	05/25/2022	0	0.608	35.1	5.7	407	49.6	12.2	0.0639
Vert. Delineation	BY-AP-MW-1V	05/24/2022	0	0.646	2.25	7.08	65.4	3.55	15.2	0.0214
Vert. Delineation	BY-AP-MW-20V	05/24/2022	0	80.5	8.64	6.41	44.4	14.4	13.7	0.0357
Vert. Delineation	BY-AP-MW-23V	05/25/2022	0	0.605	0.527	5.94	139	0.899	12.7	0.0466
Vert. Delineation	BY-AP-MW-25V	05/25/2022	0	0.0431	0.353 J	6.33	4.55	0.573	13.5	0.0129
Vert. Delineation	BY-AP-MW-5V	05/25/2022	0	0.543	1.97	6.46	18.1	2.62	13.8	0.00715 J
Vert. Delineation	BY-AP-MW-7V	05/24/2022	0	19.3	4.88	8.68	76.8	8.84	18.6	0.0309
Vert. Delineation	BY-AP-MW-8V	05/23/2022	0	73.1	14	7.13	36.3	24.4	15.3	0.0084 J
Horiz. Delineation	BY-AP-MW-17H	05/25/2022	0	78.2	5.3	7.31	16.5	11.6	15.6	0.0401
Horiz. Delineation	BY-AP-MW-18H	05/23/2022	0	84.1	10.7	10.3	17.2	25.5	22	0.0211
Horiz. Delineation	BY-AP-MW-19H	05/24/2022	0	13.4	3.82	8.9	11.4	18.6	19	0.0482
Horiz. Delineation	BY-AP-MW-20H	05/23/2022	0	55.8	17.9	7.78	96.4	28.6	16.6	0.0264
Horiz. Delineation	BY-AP-MW-22H	05/24/2022	0	69.9	13.4	9.11	77.2	14.4	19.5	0.0206
Horiz. Delineation	BY-AP-MW-23H	05/25/2022	0	56.4	7.3	16	18.9	24.5	34.2	0.0145

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

General Chemistry a	eneral Chemistry and MNA Parameters											
Hydraulic Location	Well	Sample Date	Manganese Total mg/L	Potassium mg/L	Nitrate Nitrite mg/L as N	Alkalinity Total as CaCO3 mg/L	Carbonate Alkalinity as CaCO3 mg/L	Bicarbonate Alkalinity as CaCO3 mg/L	Carbon, Total Organic mg/L	Chloride mg/L		
Vert. Delineation	BY-AP-MW-10V	05/24/2022	0.812	2.12	0.271 J	351	-10000	351	12	19.4		
Vert. Delineation	BY-AP-MW-12V	05/23/2022	1.18	2.57	0.259 J	295	-10000	295	15	25.6		
Vert. Delineation	BY-AP-MW-13V	05/25/2022	0.794	9.48	<0.2	174	-10000	174	20.4	59.3		
Vert. Delineation	BY-AP-MW-14V	05/24/2022	0.349	7.91	<0.2	171	-10000	171	4.37	184		
Vert. Delineation	BY-AP-MW-15V	05/24/2022	1.13	3.25	0.255 J	33.4	-10000	33.4	1.37 J	191		
Vert. Delineation	BY-AP-MW-16V	05/25/2022	0.15	2	<0.2	22.6	-10000	22.6	1.64 J	56.6		
Vert. Delineation	BY-AP-MW-17V	05/25/2022	2.34	6.7	<0.2	91.8	-10000	91.7	<1	649		
Vert. Delineation	BY-AP-MW-1V	05/24/2022	0.178	2.47	<0.2	21.8	-10000	21.8	1.04 J	95.1		
Vert. Delineation	BY-AP-MW-20V	05/24/2022	1.92	2.29	0.216 J	208	-10000	208	8.66	35.4		
Vert. Delineation	BY-AP-MW-23V	05/25/2022	0.0258	1.5	<0.2	168	2.01	166	1.11 J	106		
Vert. Delineation	BY-AP-MW-25V	05/25/2022	0.00466	0.73	<0.2	8.04	-10000	8.02	<1	3.22		
Vert. Delineation	BY-AP-MW-5V	05/25/2022	0.0325	1.04	<0.2	28.1	-10000	28	<1	22.6		
Vert. Delineation	BY-AP-MW-7V	05/24/2022	0.245	1.99	<0.2	160	-10000	160	4.26	40.4		
Vert. Delineation	BY-AP-MW-8V	05/23/2022	0.762	2.59	0.298 J	267	-10000	267	16.2	22.1		
Horiz. Delineation	BY-AP-MW-17H	05/25/2022	0.357	1.37	0.251 J	143	-10000	143	5.77	16		
Horiz. Delineation	BY-AP-MW-18H	05/23/2022	1.29	1.28	0.579	213	-10000	213	14.4	18.9		
Horiz. Delineation	BY-AP-MW-19H	05/24/2022	1.11	1.19	<0.2	78	-10000	78	3.99	10.4		
Horiz. Delineation	BY-AP-MW-20H	05/23/2022	0.507	3.44	0.231 J	377	-10000	377	28.3	44.1		
Horiz. Delineation	BY-AP-MW-22H	05/24/2022	0.552	2.06	0.243 J	246	-10000	246	17.5	57.1		
Horiz. Delineation	BY-AP-MW-23H	05/25/2022	0.988	1.06	0.246 J	194	-10000	194	5.68	6.63		

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

General Chemistry a	nd MNA Paramete	rs	
Hydraulic Location	Well	Sample Date	Sulfate mg/L
Vert. Delineation	BY-AP-MW-10V	05/24/2022	5.73
Vert. Delineation	BY-AP-MW-12V	05/23/2022	6.64
Vert. Delineation	BY-AP-MW-13V	05/25/2022	122
Vert. Delineation	BY-AP-MW-14V	05/24/2022	13.6
Vert. Delineation	BY-AP-MW-15V	05/24/2022	1.77 J
Vert. Delineation	BY-AP-MW-16V	05/25/2022	35.1
Vert. Delineation	BY-AP-MW-17V	05/25/2022	49.1
Vert. Delineation	BY-AP-MW-1V	05/24/2022	21.1
Vert. Delineation	BY-AP-MW-20V	05/24/2022	3.79
Vert. Delineation	BY-AP-MW-23V	05/25/2022	4.25
Vert. Delineation	BY-AP-MW-25V	05/25/2022	2.13
Vert. Delineation	BY-AP-MW-5V	05/25/2022	2.91
Vert. Delineation	BY-AP-MW-7V	05/24/2022	6.06
Vert. Delineation	BY-AP-MW-8V	05/23/2022	8.35
Horiz. Delineation	BY-AP-MW-17H	05/25/2022	3.58
Horiz. Delineation	BY-AP-MW-18H	05/23/2022	9.46
Horiz. Delineation	BY-AP-MW-19H	05/24/2022	34.7
Horiz. Delineation	BY-AP-MW-20H	05/23/2022	95.1
Horiz. Delineation	BY-AP-MW-22H	05/24/2022	103
Horiz. Delineation	BY-AP-MW-23H	05/25/2022	4.01

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

General Chemistry and MNA Parameters												
Hydraulic Location	Well	Sample Date	Sulfide mg/L	Iron Total mg/L	Magnesium Total mg/L	Silicon mg/L	Sodium mg/L	Calcium mg/L	Silica mg/L	Aluminum mg/L		
Horiz. Delineation	BY-AP-MW-24H	05/24/2022	0	113	16.7	11.1	71.9	17.9	23.8	0.0262		
Horiz. Delineation	BY-AP-MW-25H	05/25/2022	0	0.0796	0.787	7.42	5.34	0.949	15.9	0.0135		

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

	General Chemistry and MNA Parameters												
	Hydraulic Location	Well	Sample Date	Manganese Total mg/L	Potassium mg/L	Nitrate Nitrite mg/L as N	Alkalinity Total as CaCO3 mg/L	Carbonate Alkalinity as CaCO3 mg/L	Bicarbonate Alkalinity as CaCO3 mg/L	Carbon, Total Organic mg/L	Chloride mg/L		
	Horiz. Delineation	BY-AP-MW-24H	05/24/2022	0.22	2.55	0.287 J	334	-10000	334	25.8	50.8		
Ī	Horiz. Delineation	BY-AP-MW-25H	05/25/2022	0.00351	0.958	<0.2	6.88	-10000	6.88	<1	5.32		

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Table 6. First Semi-Annual Monitoring Event

Analytical Results Summary Plant Barry Ash Pond 05/23/2022 - 05/31/2022

General Chemistry a	nd MNA Paramete	rs	
Hydraulic Location	Well	Sample Date	Sulfate mg/L
Horiz. Delineation	BY-AP-MW-24H	05/24/2022	24.3
Horiz. Delineation	BY-AP-MW-25H	05/25/2022	4.24

- 1. "J" indicates the result was detected above the MDL but below the PQL
- 2. "<" indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. DO Dissolved Oxygen, ORP Oxidation Reduction Potential, TDS Total Dissolved Solids.
- 5. mg/L milligrams per liter, mv millivolts, NTU nephelometric turbidity unit, C celsius, SU standard unit, uS/cm microseimens per centimeter, pCi/L picocurries per liter.
- 6. Shaded cells indicate result greater than GWPS, but does not necessarily indicate an SSL.

Appendix A

												BY-AP-MW-1	L									
Analyte	Units	03/02/2016	04/19/2016	06/08/2016	08/31/2016	10/19/2016	01/31/2017	03/21/2017	05/02/2017	06/06/2017	09/13/2017	01/24/2018	05/01/2018	11/28/2018	05/29/2019	10/01/2019	03/30/2020	09/01/2020	05/12/2021	05/18/2021	11/01/2021	05/24/2022
Appendix III																				•		
Boron	mg/L	2.03	2.2	1.61	1.55	1.59	1.84		1.73	1.56	1.87		1.81	1.8	1.75	1.91	1.77	2.11		1.99	2.02	2.08
Calcium	mg/L	46.5	49	33.5	34.2	35.1	38.5		35.1	32.4	40.5		39.7	35.8	33.4	36.7	33.7	40.5		39.5	38.4	43.9
Chloride	mg/L	2.18	9.01	21	21	21.4	-	25	26	27	24		25	26	27.6	24.6	24.9	25.7		25.1	31.3	27.6
Fluoride	mg/L	0.03 J	0.052 J	0.069 J	0.043 J	<0.01	-	0.04 J	0.05 J	0.049 J	0.06 J	0.05 J	0.05 J	<0.032	0.0858 J	0.0744 J	0.0726 J	0.194		0.0884 J	0.181	<0.06
pH_Field	SU	5.78	5.8	5.83	5.85	5.87	5.83	5.83	5.73	5.83	5.91	5.9	5.83	5.82	5.82	5.47	5.79	5.89		5.86	6.01	5.44
Sulfate	mg/L	0.31 J	0.335 J	0.556 J	<0.3	<0.3	-	<1.4	6	<1.4	4.7 J		<1.4	4.1 J	5.75	7.82	28.4	23.1		16.5	10.9	8.45
TDS	mg/L	426	442	461	456	444	422		442	433	456		416	408	403	430	419	454		450	480	409
Appendix IV																						
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	0.000687 J		<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008		<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.076	0.0973	0.0605	0.0687	0.0701	0.0669		0.0672	0.0527		0.07	0.0777	0.0677	0.0555	0.0635	0.0557	0.0811		0.0687	0.0694	0.0767
Barium	mg/L	0.219	0.201	0.274	0.296	0.281	0.211		0.29	0.25		0.289	0.28	0.271	0.29	0.293	0.279	0.33		0.339	0.322	0.328
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	0.00591 J	0.0077 J	0.00264 J	0.00246 J	0.00248 J	0.00556 J		0.00269 J	0.00295 J		0.00278 J	0.00435 J	0.0036 J	0.00223 J	0.00236 J	0.00415 J	0.00242 J		0.00294	0.00246	0.0025
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		0.000996	0.000914	0.00109
Combined Radium 226 + 228	pCi/L	1 U	3.0268	1.59	2.19		1.23		1.62	1.24		1.96 U	1.6	1.48	2.25	2.84	2.31	1.3	0.639 U	2.99	2.22	2.12
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<6.8e-005	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.1	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		0.000106 J	9.01e-005 J	<0.000102
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<6.8e-005	<6.8e-005	<6.8e-005

											BY-UP-	-MW-1									
Analyte	Units	02/23/2016	04/19/2016	06/06/2016	08/30/2016	10/18/2016	01/31/2017	03/20/2017	05/02/2017	06/06/2017	09/13/2017	01/23/2018	05/02/2018	11/27/2018	05/29/2019	10/02/2019	03/31/2020	09/09/2020	05/12/2021	10/19/2021	05/31/202
Appendix III																					
Boron	mg/L	0.0212 J	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02		0.0362 J	0.11	0.188	0.097 J	0.157	0.0999 J	0.0841 J	0.0708 J	0.0567 J
Calcium	mg/L	1.28	1.19	1.19	1.11	1.04	1.19		1.05	0.978	1.14	-	1.64	2.01	1.85	1.55	1.96	1.43	1.34	1.17	1.13
Chloride	mg/L	3.59	2.89	3.12	3.91	3.9		3.5	3.5	3.1	4	-	9.9	4.7	5.48	3.65	3.17	2.92	2.18	2.37	1.93
Fluoride	mg/L	0.03 J	0.023 J	0.062 J	0.053 J	0.042 J		<0.032	0.04 J	<0.032	0.04 J	<0.032	0.04 J	<0.032	0.0502 J	<0.05	<0.06	<0.06	<0.06	<0.06	<0.06
pH_Field	SU	4.62	4.74	4.65	4.64	4.74	4.54	4.67	4.79	4.76	4.81	4.79	4.62	4.73	4.65	4.57	4.64	4.65	4.74	4.67	3.89
Sulfate	mg/L	8.59	8.27	8.66	9.74	10.2		8.3	6.6	7.6	8.4	-	5.9	22	23.3	17.5	24.3	16.5	16.3	15.5	12.8
TDS	mg/L	26.7		32.7	33.3	27.3	32		31.3	35.3	36.7	-	34	50.7	58	46	53.3	42	40.7	40	32
Appendix IV	,																				
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	0.000925 J		<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000336	0.000346	0.000168 J
Barium	mg/L	0.117	0.099	0.107	0.106	0.102	0.0944		0.0868	0.0799		0.0884	0.137	0.157	0.166	0.129	0.176	0.124	0.123	0.103	0.101
Beryllium	mg/L	<0.0006	<0.0006	0.000612 J	<0.0006	<0.0006	<0.0006		0.00069 J	<0.0006		<0.0006	<0.0006	0.000856 J	<0.0006	<0.0006	<0.0006	<0.0006	0.000694 J	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000296 J	0.000301 J	0.000231 J
Cobalt	mg/L	0.0035 J	0.0038 J	0.00427 J	0.00348 J	0.00338 J	0.00308 J		0.00314 J	0.0036 J		0.00586 J	0.00702 J	0.0157	0.0109	0.0129	0.0123	0.00697	0.00611	0.00517	0.00484
Combined Radium 226 + 228	pCi/L	2.8971 U	1 U	0.841	1.74	1.47	0.952		0.768	1.04		0.513 U	0.916	1.37	1.57	0.905	1.77	1.77	0.639 U	1.77	1.34
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	9.79e-005 J	0.000115 J	8.38e-005 J
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<6.8e-005	<6.8e-005	<0.000102
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

												BY-AP-MW-2	!									
Analyte	Units	03/02/2016	04/19/2016	06/08/2016	08/31/2016	10/19/2016	01/31/2017	03/21/2017	05/02/2017	06/06/2017	09/12/2017	01/24/2018	05/01/2018	11/27/2018	05/29/2019	10/01/2019	03/31/2020	08/31/2020	05/11/2021	05/18/2021	11/01/2021	05/24/2022
Appendix III																						
Boron	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	<0.02	<0.02	<0.02		<0.02	<0.02	<0.03	<0.03	<0.03	<0.03		<0.03	<0.03	<0.03
Calcium	mg/L	3.86	3.22	3.17	3.07	2.91	2.94	-	2.82	2.79	2.88		2.82	2.8	2.82	2.94	2.95	3		3.17	3.13	2.45
Chloride	mg/L	6.08	6.2	6.2	6.51	6.85		7.2	8.3	8.5	8.6		7.6	8.8	8.31	8.19	8.48	8.3		7.89	8.16	9.21
Fluoride	mg/L	0.04 J	0.038 J	0.067 J	0.05 J	<0.01		<0.032	0.04 J	0.04 J	0.037 J	<0.032	<0.032	<0.032	<0.05	<0.05	<0.06	<0.06		<0.06	<0.06	<0.06
pH_Field	SU	6.08	5.92	5.9	5.87	5.82	5.87	5.85	5.61	5.82	5.61	5.83	5.8	5.71	5.7	4.97	5.71	5.57		5.83	5.2	4.78
Sulfate	mg/L	3.3	2.68	1.1	<0.3	<0.3		<1.4	5	<1.4	<1.4		<1.4	<1.4	0.885 J	<0.5	1.69	0.576 J		<0.5	1.56	0.615 J
TDS	mg/L	42	51.3	46.7	32.7	37.3	47.3	-	44	48	40.7		42.7	48	47.3	44.7	42	45.3		48.7	52	40.7
Appendix IV																						
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	0.000739 J	-	<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008		<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.00263 J	0.00247 J	0.0023 J	0.00237 J	0.00241 J	0.00185 J		0.00194 J	0.00175 J		0.00158 J	0.00166 J	0.00144 J	0.00132 J	0.0014 J	0.00149 J	0.00176 J		0.00159	0.00191	0.00114
Barium	mg/L	0.0285	0.0268	0.0248	0.026	0.0247	0.0228		0.0257	0.0219		0.0229	0.0279	0.0249	0.0232	0.0241	0.0264	0.0275		0.0259	0.0247	0.0251
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		0.000394 J	0.000288 J	<0.000203
Cobalt	mg/L	0.00842 J	0.008 J	0.00796 J	0.00752 J	0.00778 J	0.00647 J	-	0.00686 J	0.00694 J	-	0.00592 J	0.00693 J	0.0066	0.00745	0.00696	0.00716	0.00751		0.00746	0.00706	0.00582
Combined Radium 226 + 228	pCi/L	1 U	1 U	0.121 U	0.348 U	0.48	0.00333 U	-	0.4 U	0.083 U	-	0.404 U	0.457	0.359 U	1.18	0.284 U	0.699	0.0265 U	0.945 U	0.72 U	0.523 U	0.732 U
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<6.8e-005	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	-	<0.002	<0.002	-	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<6.8e-005	<6.8e-005	<0.000102
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	-	<0.002	<0.002	-	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	<0.0002	<0.0002	-	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<6.8e-005	<6.8e-005	<6.8e-005

											BY-UP	-MW-2									
Analyte	Units	02/23/2016	04/19/2016	06/07/2016	08/30/2016	10/18/2016	01/31/2017	03/20/2017	05/02/2017	06/06/2017	09/13/2017	01/23/2018	05/01/2018	11/27/2018	05/29/2019	10/02/2019	03/31/2020	09/09/2020	05/11/2021	10/19/2021	05/31/202
Appendix III																					
Boron	mg/L	0.0252 J	<0.02	0.0202 J	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02		<0.02	0.0207 J	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Calcium	mg/L	1.11	1.09	1.16	1.08	1.03	1.23		1.28	1.25	1.6	-	1.58	1.49	1.59	1.7	1.43	1.5	1.39	1.32	1.24
Chloride	mg/L	3.99	4.08	4.28	4.26	4.26	-	4.1	5	3.9	4.3	-	3.7	3.2	2.93	2.75	2.72	2.32	2.16	2.08	2.17
Fluoride	mg/L	0.02 J	0.021 J	0.06 J	0.05 J	0.04 J		<0.032	0.04 J	0.04 J	0.043 J	0.04 J	0.04 J	<0.032	<0.05	<0.05	<0.06	<0.06	<0.06	<0.06	<0.06
pH_Field	SU	4.79	4.84	4.81	4.76	4.84	4.6	4.71	4.8	4.72	4.71	4.67	4.61	4.72	4.58	4.43	4.6	4.67	4.29	4.6	3.31
Sulfate	mg/L	7.2	7.22	7.92	8.17	7.99	-	6.1	5	5.3	4.9 J	-	4.2 J	3.7 J	5.94	6.04	6.83	6.08	7.92	7.48	8.09
TDS	mg/L	30.7		35.3	27.3		32.7		30.7	34.7	39.3	-	42	31.3	40	41.3	40	40.7	35.3	36	30.7
Appendix IV																					
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	0.000898 J		<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000136 J	0.000122 J	<8.1e-005
Barium	mg/L	0.111	0.0875	0.0979	0.108	0.103	0.109		0.125	0.108		0.153	0.167	0.158	0.172	0.183	0.171	0.172	0.165	0.145	0.153
Beryllium	mg/L	<0.0006	<0.0006	0.00093 J	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		<0.0006	<0.0006	0.000801 J	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	0.000413 J
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		0.00596 J	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00136	0.00135	0.0012
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		0.0021 J	<0.002	0.00209 J	0.00248 J	0.00244 J	0.00224 J	0.00219 J	0.00194	0.00192	0.00187
Combined Radium 226 + 228	pCi/L	1 U	1 U	0.652	0.411 U	1	0.398 U		0.66	0.639		0.669 U	1.06	0.636	0.579 U	1.33	0.814	0.653 U	0.945 U	1.85	1.38
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000118 J	0.0001 J	7.81e-005 J
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<6.8e-005	<6.8e-005	<0.000102
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000602 J	<0.000508	0.000633 J
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

											I	BY-AP-MW-3	1									
Analyte	Units	03/02/2016	04/19/2016	06/07/2016	08/31/2016	10/19/2016	01/31/2017	03/21/2017	05/02/2017	06/06/2017	09/12/2017	01/24/2018	05/01/2018	11/27/2018	05/29/2019	10/01/2019	03/31/2020	09/01/2020	05/11/2021	05/18/2021	11/01/2021	05/25/2022
Appendix III																						
Boron	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	<0.02	<0.02	<0.02		<0.02	<0.02	<0.03	<0.03	<0.03	<0.03		<0.03	<0.03	<0.03
Calcium	mg/L	1.11	1.01	1.06	0.978	0.906	1.04	-	0.969	0.902	0.988		1.07	0.999	1.09	1.08	1.1	1.08		1.12	1.09	1.29
Chloride	mg/L	8.04	7.6	7.7	7.7	7.73		7.2	8.6	8.3	8.5		7.6	8.4	9.01	8.05	9.07	8.97		9.52	9.76	15.2
Fluoride	mg/L	0.01 J	0.014 J	0.049 J	0.034 J	0.023 J		<0.032	<0.032	0.1	<0.032	<0.032	<0.032	<0.032	<0.05	<0.05	<0.06	<0.06		<0.06	<0.06	<0.06
pH_Field	SU	5.14	5.06	5.13	5.11	5.05	5.14	5.13	4.85	5.15	4.96	5.22	5.11	5.05	5.05	4.37	5.08	4.24		4.93	4.94	4.64
Sulfate	mg/L	0.79 J	0.674 J	1	0.702 J	0.739 J		<1.4	5	5	<1.4		<1.4	<1.4	0.747 J	0.61 J	1.02	0.705 J		0.883 J	1.01	1.41 J
TDS	mg/L	27.3	33.3	44	29.3	29.3	36.7	-	28	36.7	35.3		34.7	41.3	40	36.7	37.3	39.3		38	35.3	50.7
Appendix IV																						
Antimony	mg/L	<0.0006	<0.0006	0.000606 J	<0.0006	<0.0006	0.000637 J	-	<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008		<0.000507	<0.000508	<0.000508
Arsenic	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<6.8e-005	<6.8e-005	<8.1e-005
Barium	mg/L	0.0306	0.0292	0.0318	0.0324	0.0313	0.0306		0.0332	0.0275		0.0317	0.0356	0.0339	0.037	0.0356	0.0393	0.038		0.0406	0.0371	0.0515
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	-	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		0.000919 J	0.000932 J	0.00104
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	-	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		0.000196 J	0.000156 J	0.000284
Combined Radium 226 + 228	pCi/L	1 U	1 U	0.455	0.329 U	0.536	0.496	-	0.149 U	0.191 U		0.543 U	0.372 U	0.591	2.31	1.52	0.478 U	0.158 U	0.521 U	0.749 U	0.688 U	1.72
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-	<0.001	<0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<6.8e-005	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	-	<0.00025	<0.00025	-	<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	-	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<6.8e-005	<6.8e-005	<0.000102
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	-	<0.002	<0.002	-	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<6.8e-005	<6.8e-005	<6.8e-005

											BY-UP-	-MW-3									
Analyte	Units	02/23/2016	04/19/2016	06/07/2016	08/30/2016	10/18/2016	01/31/2017	03/20/2017	05/02/2017	06/06/2017	09/13/2017	01/23/2018	05/01/2018	11/27/2018	05/29/2019	10/02/2019	03/31/2020	09/09/2020	05/11/2021	10/18/2021	05/31/2022
Appendix III																					
Boron	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02		<0.02	<0.02	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Calcium	mg/L	1.77	1.68	1.68	1.62	1.53	1.65		1.58	1.55	1.71	-	1.76	1.69	1.74	1.86	1.92	1.97	2.06	2.1	1.95
Chloride	mg/L	3.68	3.72	3.66	3.7	3.77		3.7	4.6	3.4	3.9		4.1	3.5	3.58	3.64	3.47	3.47	3.42	3.41	3.39
Fluoride	mg/L	0.02 J	0.016 J	0.052 J	0.038 J	0.03 J	-	<0.032	0.1	<0.032	<0.032	<0.032	<0.032	<0.032	<0.05	<0.05	<0.06	<0.06	<0.06	<0.06	<0.06
pH_Field	SU	4.96	4.94	4.96	4.92	4.98	4.74	4.9	4.98	4.94	4.93	4.91	4.87	4.94	4.8	4.52	4.4	4.76	4.53	4.55	3.54
Sulfate	mg/L	7.44	7.66	8.16	8.43	8.47	-	7.4	6.3	7.1	7.3		6.9	6.5	7.81	7.62	7.98	7.13	7.73	7.36	7.18
TDS	mg/L	40	32	38.7	31.3	26.7	30		30.7	32.7	38		35.3	36	37.3	36.7	39.3	42.7	44	36	31.3
Appendix IV																					
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	0.000911 J		<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<6.8e-005	8.69e-005 J	<8.1e-005
Barium	mg/L	0.0862	0.0718	0.0754	0.0768	0.0727	0.0698		0.0723	0.07		0.0747	0.0877	0.0804	0.0831	0.089	0.0927	0.0919	0.0981	0.0935	0.0993
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	7.25e-005 J	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		0.00229 J	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00146	0.00135	0.00129
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	-	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00142	0.00146	0.00154
Combined Radium 226 + 228	pCi/L	1 U	1 U	0.342 U	0.702	0.791	0.0613 U		0.974	0.748		0.558 U	0.296 U	0.357 U	0.275 U	0.458 U	0.941	1.05	0.521 U	1.75	1.67
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<6.8e-005	<6.8e-005	<0.000102
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	-	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

												BY-AP-MW-4	,									
Analyte	Units	03/01/2016	04/19/2016	06/07/2016	08/30/2016	10/19/2016	01/31/2017	03/21/2017	05/02/2017	06/06/2017	09/12/2017	01/24/2018	05/01/2018	11/27/2018	05/29/2019	10/01/2019	03/31/2020	09/01/2020	05/11/2021	05/18/2021	11/01/2021	05/25/2022
Appendix III																						
Boron	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02		<0.02	<0.02	<0.03	<0.03	<0.03	<0.03		<0.03	<0.03	<0.03
Calcium	mg/L	1.07	0.969	1.08	0.952	1.17	0.946	-	0.826	0.834	0.884		0.921	1.01	0.622	0.645	0.898	0.566		0.974	0.816	1.54
Chloride	mg/L	7.74	7.66	11.3	10.8	11.1		11	12	12	11		9.2	10	8.52	7.35	9.54	7.82		9.53	7.99	16.1
Fluoride	mg/L	0.02 J	0.016 J	0.047 J	0.035 J	0.025 J		<0.032	<0.032	0.1	<0.032	<0.032	<0.032	<0.032	<0.05	<0.05	<0.06	<0.06		<0.06	<0.06	<0.06
pH_Field	SU	5.19	5.06	4.7	4.77	4.67	4.42	4.45	4.46	4.89	4.71	5.03	4.44	4.78	4.65	4.28	4.69	4.23		4.17	5.18	4.6
Sulfate	mg/L	2.58	2.3	2.58	2.81	5.06		3.4 J	2.7 J	1.5 J	1.9 J		1.4 J	2.3 J	2.83	2.09	4.12	1.83		4.43	3.34	1.97 J
TDS	mg/L	27.3	38	48.7	32.7	36	40.7	-	30.7	41.3	34.7		39.3	32	36	32	42.7	36		47.3	32	48.7
Appendix IV																						
Antimony	mg/L	<0.0006	<0.0006	0.000869 J	<0.0006	<0.0006	0.00086 J		<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008		<0.000507	<0.000508	<0.000508
Arsenic	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		0.000125 J	0.000203	8.52e-005 J
Barium	mg/L	0.018	0.0166	0.0271	0.0312	0.0443	0.0231	-	0.0241	0.0276		0.0293	0.0205	0.0321	0.0213	0.0207	0.0193	0.0131		0.0225	0.0217	0.0381
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		<0.0006	<0.0006	0.00071 J	<0.0006	<0.0006	<0.0006	<0.0006		<0.000406	<0.000406	0.000656 J
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	-	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		0.000544 J	0.000668 J	0.000372 J
Cobalt	mg/L	<0.002	<0.002	0.00424 J	0.00262 J	0.00469 J	0.0127	-	0.00891 J	0.00217 J	-	<0.002	0.0126	0.00363 J	0.00576	<0.002	0.0205	0.00657		0.018	0.00478	0.00431
Combined Radium 226 + 228	pCi/L	1 U	1 U	0.287 U	0.585	1.85	0.25 U	-	0.391 U	0.183 U	-	0.622 U	0.0917 U	0.695	0.947	0.7	0.323 U	0.39 U	0.969 U	0.734 U	0.888 U	0.821 U
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		0.00013 J	6.92e-005 J	0.000176 J
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	-	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<6.8e-005	<6.8e-005	<0.000102
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	-	<0.002	<0.002	-	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<6.8e-005	<6.8e-005	<6.8e-005

2. P.G/L. Pictoriles per Liter
3. J. Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantita

											BY-UP-	-MW-4									
Analyte	Units	02/23/2016	04/19/2016	06/06/2016	08/30/2016	10/18/2016	01/31/2017	03/20/2017	05/02/2017	06/06/2017	09/12/2017	01/23/2018	05/01/2018	11/26/2018	05/28/2019	10/02/2019	03/31/2020	09/08/2020	05/11/2021	10/18/2021	05/31/2022
Appendix III					1																
Boron	mg/L	0.0257 J	<0.02	<0.02	<0.02	0.022 J	<0.02		<0.02	<0.02	<0.02		<0.02	<0.02	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Calcium	mg/L	1.42	1.31	1.35	1.31	1.22	1.36	-	1.24	1.28	1.47		1.47	1.52	1.6	1.7	1.78	1.94	1.93	2.01	2.03
Chloride	mg/L	3.5	3.63	3.6	3.54	3.68	-	4.6	3.9	3.4	4.3	-	3.8	3.6	3.6	3.5	3.34	3.29	3.33	3.32	3.31
Fluoride	mg/L	0.02 J	0.015 J	0.05 J	0.036 J	0.025 J		<0.032	0.1	<0.032	<0.032	<0.032	<0.032	<0.032	<0.05	<0.05	<0.06	<0.06	<0.06	<0.06	<0.06
pH_Field	SU	4.74	4.86	4.88	4.91	4.95	4.71	4.83	4.93	4.9	4.82	4.85	4.8	4.88	4.73	4.67	4.51	4.75	4.67	4.38	3.97
Sulfate	mg/L	7.04	6.74	7.04	7.57	6.62	-	7	5.6	6.6	7.2	-	5.9	5.1	7.1	6.88	10.8	6.52	6.8	6.58	7.94
TDS	mg/L			28.7	25.3	-	26	-		42.7	26.7		34.7	32.7	31.3	36	36.7	39.3	46.7	36	36.7
Appendix IV																					
Antimony	mg/L	0.000606 J	<0.0006	<0.0006	<0.0006	<0.0006	0.000928 J		<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	0.0017 J	<0.001	0.000217	0.000193 J	<8.1e-005
Barium	mg/L	0.0973	0.0802	0.0862	0.0841	0.0715	0.0825	-	0.0777	0.078		0.0825	0.102	0.0994	0.102	0.111	0.129	0.125	0.125	0.124	0.129
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	0.00604 J	<0.002	0.00159	0.00146	0.00156
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00137	0.00139	0.00138
Combined Radium 226 + 228	pCi/L	2.1138	1 U	0.757	0.992	0.905	1.08		1.18	1.1		1.32 U	1.19	0.863	0.474 U	0.624 U	1.09	1.27	0.969 U	2.19	1.47
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	0.00126 J	<0.001	0.000159 J	0.00012 J	0.000173 J
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<6.8e-005	<6.8e-005	<0.000102
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

										1	BY-AP-MW-5	;								
Analyte	Units	03/01/2016	04/20/2016	06/07/2016	08/30/2016	10/18/2016	01/31/2017	03/22/2017	05/03/2017	06/07/2017	09/14/2017	01/24/2018	05/02/2018	11/27/2018	05/29/2019	10/01/2019	03/31/2020	09/01/2020	11/02/2021	05/25/2022
Appendix III																				
Boron	mg/L	0.0462 J	0.0719 J	0.0591 J	0.0675 J	0.0699 J	0.0518 J		0.0737 J	0.0518 J	0.0825 J		0.0603 J	0.0613 J	0.0946 J	0.103	0.0782 J	0.115	0.0755 J	0.0565 J
Calcium	mg/L	15	14.3	14.8	13.7	13.3	13.7		14.3	14.7	15.1		14.5	13.7	14.5	13.8	14.4	13.6	16.2	14.6
Chloride	mg/L	19.7	18.9	18.5	17.9	18.2		22	22	21	21		20	21	19.7	19.8	19.8	19.1	21	20
Fluoride	mg/L	0.04 J	0.043 J	0.075 J	0.057 J	0.049 J		0.04 J	0.05 J	0.05 J	0.06 J	0.05 J	0.05 J	<0.032	0.0923 J	0.0557 J	0.0735 J	0.0921 J	0.0964 J	<0.06
pH_Field	SU	5.99	5.96	6.03	6	5.99	5.96	6.01	5.99	6.01	6	5.98	5.99	6.01	5.93	5.47	6.01	5.93	6.36	5.99
Sulfate	mg/L	<0.3	<0.3	0.583 J	<0.3	<0.3	-	<1.4	<1.4	5	<1.4		<1.4	2.7 J	5.51	7.4	23.7	11	15	5.53
TDS	mg/L	273	269	272	244	238	266		259	255	276		247	248	259	243	243	253	297	252
Appendix IV																				
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	0.000765 J		<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.000508	<0.000508
Arsenic	mg/L	0.0277	0.0307	0.0308	0.033	0.0296	0.0264		0.0309	0.0283		0.0282	0.0315	0.0283	0.0301	0.0307	0.0329	0.0372	0.0357	0.0334
Barium	mg/L	0.136	0.132	0.141	0.136	0.125	0.125		0.146	0.126		0.127	0.154	0.139	0.146	0.138	0.15	0.154	0.159	0.155
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00101 J	0.00103
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00197	0.00184
Combined Radium 226 + 228	pCi/L	1.67764 U	3.0801	1.5	1.17	1.93	1		1.48	0.915		1.74 U	0.58	1.43	2.16	2.14	0.754	1.1	2.06	1.71
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000124 J	0.000234
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005

											BY-AP-	-MW-6									
Analyte	Units	03/01/2016	04/19/2016	06/07/2016	08/30/2016	10/19/2016	01/31/2017	03/22/2017	05/03/2017	06/07/2017	09/14/2017	01/24/2018	05/02/2018	11/28/2018	05/29/2019	10/01/2019	03/31/2020	09/02/2020	05/17/2021	11/02/2021	05/25/2022
Appendix III				L				L	L	L			L					L			
Boron	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02		<0.02	<0.02	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Calcium	mg/L	1.87	1.69	1.75	1.77	1.8	1.98		1.97	1.98	2.14		2.13	1.91	1.72	1.92	1.68	1.8	1.93	1.97	1.62
Chloride	mg/L	5.77	5.57	5.52	5.5	5.55		6	6.4	5.9	6.5	-	5.5	6.2	6.15	5.99	5.94	5.94	6.26	6.4	6.63
Fluoride	mg/L	<0.01	0.016 J	0.048 J	0.034 J	0.023 J		0.1	0.1	0.1	<0.032	<0.032	<0.032	<0.032	<0.05	<0.05	<0.06	<0.06	<0.06	<0.06	<0.06
pH_Field	SU	5.59	5.55	5.43	5.39	5.31	5.26	5.32	5.35	5.32	5.29	5.32	5.33	5.46	5.31	4.7	5.22	5.16	5.21	5.59	4.57
Sulfate	mg/L	0.36 J	0.435 J	1.22	1.08	1.01		<1.4	1.4 J	1.5 J	1.8 J	-	<1.4	<1.4	1.17	1.04	1.21	1.02	0.981 J	1.37	1.27 J
TDS	mg/L	45.3	46	46	30	37.3	43.3		44.7	45.3	48.7	-	44	50.7	48.7	38	42	37.3	46.7	38	40.7
Appendix IV																					
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	0.000852 J		<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.00142 J	0.00138 J	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000103 J	9.83e-005 J	<8.1e-005
Barium	mg/L	0.0278	0.0242	0.0223	0.0242	0.024	0.0248		0.0268	0.0256		0.0254	0.0276	0.0231	0.0244	0.0257	0.0244	0.0282	0.0305	0.0286	0.0268
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	7.34e-005 J	0.000197 J
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000313 J	0.000232 J	0.000245 J
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000678	0.000601	0.000938
Combined Radium 226 + 228	pCi/L	1 U	1 U	0.353 U	0.428 U	0.449 U	-0.0173 U		0.447	0.572		1.09 U	0.187 U	0.478 U	-0.276 U	0.742	0.291 U	0.241 U	1.84	0.773 U	1.06 U
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	0.00185 J	0.00545	0.00276 J	0.00171 J	0.00162	0.00336	0.0112
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000117 J	0.00011 J	0.000319
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	-	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

											BY-AP-	-MW-7									
Analyte	Units	03/01/2016	04/20/2016	06/07/2016	08/31/2016	10/19/2016	01/31/2017	03/22/2017	05/03/2017	06/07/2017	09/14/2017	01/24/2018	05/02/2018	11/28/2018	05/29/2019	09/30/2019	03/30/2020	09/02/2020	05/18/2021	10/27/2021	05/24/202
Appendix III																					
Boron	mg/L	0.0546 J	0.0472 J	0.0417 J	0.036 J	0.0386 J	0.0343 J		0.037 J	0.0227 J	0.0471 J		0.0313 J	0.0311 J	0.042 J	0.0418 J	0.0369 J	0.042 J	0.037 J	0.0427 J	0.0369 J
Calcium	mg/L	7.65	7.54	7.71	8.1	8.59	8.78		8.85	8.99	9.64		9.14	9.66	8.88	9.8	10.1	10.4	10.2	10	10.7
Chloride	mg/L	11.2	10.8	10.8	10.8	10.8		13	14	14	13		13	13	13.3	13.1	13.3	12.9	14.2	15.3	13.2
Fluoride	mg/L	0.06 J	0.078 J	0.101 J	0.086 J	0.075 J		0.06 J	0.08 J	0.08 J	0.07 J	0.09 J	0.08 J	0.07 J	0.0937 J	0.0925 J	0.0933 J	0.109	0.11	0.0823 J	0.0724 J
pH_Field	SU	6.36	6.31	6.3	6.31	6.23	6.26	6.32	6.29	6.27	6.25	6.35	6.29	6.33	6.18	6.36	6.32	6.25	6.4	6.35	6.32
Sulfate	mg/L	0.3 J	0.514 J	0.971 J	0.445 J	0.366 J	-	<1.4	<1.4	5	<1.4		<1.4	<1.4	2.77	2.51	4.78	3.59	4.6	5.17	7.14
TDS	mg/L	129	128	140	112	134	134	-	127	134	141		133	138	132	137	135	129	175	123	148
Appendix IV																					
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	0.00107 J		<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.0166	0.02	0.0223	0.0231	0.0244	0.0197		0.0212	0.0203		0.0214	0.0218	0.0209	0.0178	0.0217	0.0215	0.0234	0.0215	0.0236	0.0195
Barium	mg/L	0.0519	0.0517	0.0577	0.0614	0.0618	0.0576		0.0601	0.054		0.0568	0.063	0.0654	0.059	0.0648	0.059	0.0745	0.07	0.0664	0.0715
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	0.00328 J	<0.002	<0.002	<0.002	<0.002	<0.002	0.00709	0.00309	0.000295 J
Cobalt	mg/L	0.011	0.0148	0.0172	0.0175	0.0189	0.0165	-	0.0172	0.0173		0.0158	0.0169	0.0178	0.0197	0.0186	0.0172	0.0197	0.0189	0.0206	0.0237
Combined Radium 226 + 228	pCi/L	1 U	1 U	0.555 U	0.284 U	0.557 U	0.0949 U		0.53	-0.231 U		0.691 U	0.535	0.62	0.244 U	0.388 U	0.744	0.567	0.597 U	1.46 U	1.05 U
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01		<0.01	0.0108 J	<0.01	<0.01	<0.01	0.0102 J	<0.01	0.0882	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000214	0.000182 J	0.000176 J
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

											BY-AP-	-MW-8									
Analyte	Units	03/01/2016	04/20/2016	06/07/2016	08/30/2016	10/18/2016	01/31/2017	03/22/2017	05/03/2017	06/07/2017	09/14/2017	01/24/2018	05/02/2018	11/27/2018	05/29/2019	09/30/2019	03/30/2020	09/02/2020	05/11/2021	10/26/2021	05/24/2022
Appendix III					1																
Boron	mg/L	1.72	1.7	1.57	1.67	1.4	1.46		1.45	1.41	1.16		1.12	1.31	1.44	1.38	1.12	1.26	0.971	0.933	1.11
Calcium	mg/L	36.1	34.5	34.7	34.1	33.2	32.3	-	34.1	34.7	34.4		32.3	32.5	31.9	33	32.2	31.5	33	33.5	31.5
Chloride	mg/L	24.5	22.5	21.6	21.6	20.2	-	24	25	24	24	-	23	27	27.4	25.5	22.6	22.2	21.9	21.7	27.2
Fluoride	mg/L	0.03 J	0.043 J	0.069 J	0.052 J	0.042 J		0.1	0.05 J	0.05 J	0.05 J	0.04 J	0.04 J	<0.032	0.0958 J	0.0559 J	0.0701 J	<0.06	0.094 J	<0.06	0.0713 J
pH_Field	SU	6.21	6.22	6.26	6.21	6.21	6.17	6.22	6.22	6.21	6.18	6.16	6.17	6.18	6.11	6.19	6.2	5.89	6.25	6.26	5.6
Sulfate	mg/L	<0.3	<0.3	0.504 J	<0.3	<0.3	-	<1.4	2.7 J	5	<1.4		<1.4	<1.4	6.01	5.29	33.1	15.8	35.4	25.7	9.75
TDS	mg/L	309	324	314	308	295	303	-	300	284	325		306	303	291	293	310	298	318	332	303
Appendix IV																					
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	0.00074 J		<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.036	0.0399	0.0401	0.0387	0.0394	0.0408		0.0416	0.0395		0.0536	0.0572	0.0536	0.0482	0.0514	0.0589	0.0629	0.0659	0.0668	0.0583
Barium	mg/L	0.142	0.143	0.145	0.147	0.14	0.134		0.145	0.128		0.129	0.149	0.143	0.138	0.138	0.141	0.151	0.147	0.136	0.148
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00156	0.00165	0.00128
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000778	0.000788	0.00071
Combined Radium 226 + 228	pCi/L	1 U	2.0115 U	0.853	0.669	1.32	0.801		0.648	0.408 U		0.706 U	0.572	0.687	0.627 U	0.321 U	0.6	3.95	0.648 U	1.61	0.733 U
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000321	0.000193 J	0.000258
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

											BY-AP-	MW-9									
Analyte	Units	03/01/2016	04/20/2016	06/08/2016	08/31/2016	10/19/2016	02/01/2017	03/22/2017	05/03/2017	06/07/2017	09/14/2017	01/23/2018	05/02/2018	11/28/2018	05/30/2019	09/30/2019	03/31/2020	09/02/2020	05/18/2021	10/27/2021	05/24/2022
Appendix III		33,33,232	1 * * * * * * * * * * * * * * * * * * *	1,,	1 33,33,333	,,	,,	***	33,33,333	33,31,232	33,2 ,, 232		33,33,333	,,	33,33,232						1
Boron	mg/L	1.79	2.01	2.23	2.14	2.13	2.17		2.28	2.25	2.41		2.34	2.23	2.44	2.34	2.27	2.05	2.08	2.04	2.01
Calcium	mg/L	40.3	38.2	39.2	38.2	38.7	39.2	-	39.1	40.3	40.7		40	39.7	38.3	39.9	40.1	38	40.5	40.3	39.6
Chloride	mg/L	20.4	22.7	25.3	24.4	23	-	26	26	27	24		22	23	27.3	21.7	20.6	18.5	18.3	19.1	17.3
Fluoride	mg/L	0.04 J	0.052 J	0.077 J	0.056 J	0.045 J	-	0.05 J	0.06 J	0.06 J	0.07 J	0.06 J	0.05 J	0.04 J	0.0745 J	0.0679 J	0.0655 J	0.0804 J	0.0709 J	0.0803 J	<0.06
pH_Field	SU	6.26	6.26	6.25	6.29	6.22	6.24	6.28	6.17	6.24	6.24	6.3	6.31	6.32	6.14	6.07	6.31	5.97	6.3	6.13	6.03
Sulfate	mg/L	<0.3	<0.3	0.51 J	<0.3	<0.3	-	<1.4	2.7 J	5	<1.4		<1.4	1.4 J	4.69	3.77	43.5	21.9	27.7	6.33	5.76
TDS	mg/L	314	338	288	334	333	330		338	300	350		333	330	316	319	330	301	314	302	268
Appendix IV																					
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	0.000738 J		<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.0322	0.0354	0.0385	0.0404	0.0412	0.0374		0.0444	0.0423		0.0435	0.0437	0.0422	0.0383	0.0391	0.0393	0.0432	0.0435	0.0468	0.0414
Barium	mg/L	0.114	0.114	0.128	0.123	0.118	0.104		0.126	0.111		0.115	0.125	0.119	0.119	0.117	0.119	0.124	0.125	0.117	0.122
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00078 J	0.00087 J	0.000701 J
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000725	0.000702	0.000695
Combined Radium 226 + 228	pCi/L	1.5514 U	1 U	0.837	0.917	1.41	0.785	-	1.33	0.758	-	1.06 U	0.983	0.747	1.08	0.58	0.82	2.25	0.98 U	1.07 U	2.11
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00022	0.000214	0.000206
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

											BY-AP-	MW-10									
Analyte	Units	03/01/2016	04/20/2016	06/08/2016	08/31/2016	10/19/2016	02/01/2017	03/22/2017	05/03/2017	06/07/2017	09/14/2017	01/23/2018	05/02/2018	11/28/2018	05/30/2019	09/30/2019	03/31/2020	09/01/2020	05/11/2021	10/27/2021	05/24/202
Appendix III																					
Boron	mg/L	1.39	1.51	1.62	1.73	1.77	1.42		1.52	1.52	1.96		2	2	2.11	2.02	2.12	2.02	1.99	2.39	2.34
Calcium	mg/L	50.6	49.1	48.7	57.9	52.2	47.6		51.3	51.4	54.9		53.3	54.2	60.5	63.1	63.6	57.2	62.7	64.2	62.6
Chloride	mg/L	19.6	18.8	18.6	18.5	18.7		21	22	22	22		23	25	25.9	25.7	26.1	25	27.3	27.2	30.8
Fluoride	mg/L	0.02 J	0.034 J	0.061 J	0.04 J	0.03 J		<0.032	0.04 J	0.04 J	0.04 J	<0.032	<0.032	<0.032	0.0573 J	<0.05	<0.06	0.0794 J	0.105	<0.06	<0.06
pH_Field	SU	6.33	6.31	6.34	6.35	6.35	6.27	6.29	6.23	6.27	6.27	6.32	6.36	6.32	6.23	6.11	6.37	6.33	6.4	5.91	5.81
Sulfate	mg/L	0.34 J	<0.3	0.538 J	<0.3	<0.3	-	<1.4	4.1 J	5	<1.4		<1.4	<1.4	3.76	2.77	20.1	15.6	13.2	5.72	14.7
TDS	mg/L	326	366	314	368	381	342		369	340	391		343	378	377	361	387	392	391	373	357
Appendix IV																					
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	0.000743 J		<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.0264	0.0303	0.0306	0.0304	0.0314	0.0274		0.03	0.0303		0.0362	0.0433	0.0536	0.0671	0.0704	0.0702	0.0763	0.0762	0.0705	0.078
Barium	mg/L	0.0634	0.0622	0.0642	0.063	0.0577	0.0607		0.0665	0.0632		0.0673	0.0752	0.066	0.063	0.0669	0.0727	0.078	0.0757	0.0638	0.0646
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000685 J	0.000724 J	0.000522 J
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000636	0.000645	0.000543
Combined Radium 226 + 228	pCi/L	1 U	1 U	1.06	0.871	1.9	1		1.07	0.254 U		0.795 U	0.405	0.609	0.0949 U	0.965	1.14	1.68	1.12 U	1.2 U	1.36 U
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.1	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<6.8e-005	<6.8e-005	<0.000102
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

		1									BY-AP-	NAVA/ 11									
Analyte	Units		1	1	ı	1					BT-AP-	NINA-11		- 1			1	1	1		τ
		03/01/2016	04/20/2016	06/08/2016	08/31/2016	10/19/2016	02/01/2017	03/22/2017	05/03/2017	06/07/2017	09/13/2017	01/23/2018	05/02/2018	11/28/2018	05/29/2019	09/30/2019	03/31/2020	09/01/2020	05/19/2021	11/02/2021	05/23/2022
Appendix III																					
Boron	mg/L	0.0482 J	0.059 J	0.0568 J	0.0651 J	0.06 J	0.0638 J		0.0655 J	0.0468 J	0.0751 J		0.0545 J	0.0545 J	0.082 J	0.103	0.0815 J	0.104	0.0856 J	0.0691 J	0.056 J
Calcium	mg/L	35.3	28.9	27.6	25.4	25.7	25.6		24	25.2	25.5	-	25.2	24.6	23.9	24.6	25.1	23.9	41.5	25.8	26.6
Chloride	mg/L	21.7	20.7	20.4	20.3	20.3		27	27	24	26		23	25	27.8	25	24.1	23.2	23.1	25.1	25.1
Fluoride	mg/L	0.06 J	0.073 J	0.085 J	0.064 J	0.05 J		0.05 J	0.06 J	0.06 J	0.07 J	0.06 J	0.06 J	0.05 J	0.0759 J	0.0733 J	0.078 J	0.0841 J	0.0994 J	0.101	0.0709 J
pH_Field	SU	6.34	6.31	6.33	6.29	6.26	6.22	6.22	6.15	6.21	6.26	6.28	6.33	6.28	6.24	5.85	6.26	5.87	6.33	5.84	6.32
Sulfate	mg/L	1.02	1.1	0.701 J	<0.3	<0.3		2.1 J	3.6 J	5	<1.4		<1.4	<1.4	24.1	37.4	57.5	42.8	16.5	133	29.3
TDS	mg/L	395	376	324	367	367	391		373	367	378	-	330	357	367	399	393	399	422	390	404
Appendix IV																					
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	0.000812 J		<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.01	0.0127	0.0136	0.0149	0.0149	0.0151		0.0155	0.0145		0.0154	0.0158	0.014	0.0132	0.0145	0.0158	0.0165	0.0166	0.0161	0.0149
Barium	mg/L	0.122	0.11	0.105	0.102	0.0953	0.0917		0.0951	0.0864		0.0868	0.0816	0.0796	0.0653	0.0759	0.0842	0.0923	0.112	0.0894	0.0691
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	0.00213 J	0.00214 J	0.00205 J	0.00221 J	0.00213 J	0.00228 J		0.00229 J	0.00233 J		0.00248 J	0.00273 J	0.0023 J	0.00211 J	0.00228 J	0.00358 J	0.00259 J	0.00301	0.00348	0.00255
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00257	0.00118	0.00121
Combined Radium 226 + 228	pCi/L	10	0.667	0.704	0.726	0.737	0.766		0.515	1.04		1.17 U	0.505	0.232 U	0.726	0.489 U	0.462 U	0.752	1.15	0.504 U	0.452 U
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000102 J	0.000126 J	9.32e-005 J
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01		<0.01	0.0384 J	0.0262	0.0321	0.0228	0.022	<0.01	0.00754 J	<0.007105	0.0269
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00652	0.00161	0.00149
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

											E	BY-AP-MW-1	2									
Analyte	Units	03/02/2016	04/20/2016	06/07/2016	06/08/2016	08/31/2016	10/19/2016	02/01/2017	03/22/2017	05/03/2017	06/07/2017	09/13/2017	01/23/2018	05/02/2018	11/28/2018	05/29/2019	10/01/2019	03/31/2020	09/01/2020	05/18/2021	11/01/2021	05/23/2022
Appendix III																						
Boron	mg/L	0.0502 J	0.0672 J		0.0659 J	0.065 J	0.0721 J	0.06 J		0.0768 J	0.0625 J	0.0926 J		0.064 J	0.064 J	0.0952 J	0.0967 J	0.0856 J	0.115	0.0927 J	0.0769 J	0.0653 J
Calcium	mg/L	21	20.1		20.2	19.9	20.4	20.9		20.9	21.2	22.1		22.2	22.1	21.4	23.1	22.4	22.2	23.1	21.8	20.6
Chloride	mg/L	22.2	21.7		22	22.3	20.8		23	25	23	23		21	23	24.1	26.1	23.9	23.4	25.4	27.4	26.2
Fluoride	mg/L	0.04 J	0.059 J		0.08 J	0.059 J	0.045 J	-	0.04 J	0.06 J	0.06 J	0.07 J	0.05 J	0.06 J	0.04 J	0.0677 J	0.0682 J	0.0755 J	0.0845 J	0.0614 J	0.0928 J	0.0873 J
pH_Field	SU	6.16	6.17		6.25	6.23	6.2	6.08	6.12	6.12	6.13	6.19	6.17	6.15	6.11	6.13	6	6.21	6.19	5.58	5.75	6.12
Sulfate	mg/L	<0.3	<0.3		0.511 J	<0.3	<0.3		<1.4	2.1 J	5	<1.4		<1.4	<14	7.04	35.3	35.8	32.1	25.1	27	13
TDS	mg/L	351	353		330	354	354	360		341	337	359		310	336	321	344	331	356	332	349	345
Appendix IV																						
Antimony	mg/L	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	0.000838 J		<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.0215	0.0214		0.0221	0.0223	0.0227	0.0215		0.0227	0.0211		0.0227	0.0239	0.0216	0.0215	0.0221	0.0246	0.0246	0.0237	0.0245	0.0249
Barium	mg/L	0.0815	0.0692		0.0763	0.0741	0.0727	0.0701		0.078	0.0682		0.0744	0.0814	0.0788	0.0769	0.0795	0.0851	0.0827	0.0902	0.0823	0.0802
Beryllium	mg/L	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	0.0042 J	0.0034 J		0.00308 J	0.0032 J	0.0035 J	0.00371 J		0.00369 J	0.00372 J		0.00605 J	0.00351 J	0.00353 J	0.00333 J	0.00325 J	0.0056 J	0.00332 J	0.00377	0.00423	0.00374
Cobalt	mg/L	0.00235 J	0.00212 J		0.00276 J	0.00261 J	0.00256 J	0.00231 J		0.00279 J	0.00262 J		0.00248 J	0.00271 J	0.00274 J	0.00358 J	0.00303 J	0.00364 J	0.0031 J	0.00336	0.0037	0.00428
Combined Radium 226 + 228	pCi/L	1 U	1 U	1.08		0.528	0.81	1.11		0.639	0.705		1.1 U	1.11	0.846	2.06	0.984	1.26	1.2	1.11	1.79	1.4
Lead	mg/L	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000326	0.000292	0.000179 J
Lithium	mg/L	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01		<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000947	0.000985	0.000899
Selenium	mg/L	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

2. P.G/L. Pictoriles per Liter
3. J. Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantita

												BY-AP-MW-1	3									
Analyte	Units	03/02/2016	04/20/2016	06/07/2016	06/08/2016	08/31/2016	10/19/2016	01/31/2017	03/22/2017	05/03/2017	06/07/2017	09/13/2017	01/22/2018	05/02/2018	11/28/2018	05/29/2019	10/01/2019	03/31/2020	09/01/2020	05/19/2021	10/26/2021	05/24/2022
Appendix III															•					•		
Boron	mg/L	0.0328 J	0.0434 J		0.0391 J	0.0401 J	0.0427 J	0.034 J		0.0416 J	0.0277 J	0.044 J		0.0393 J	0.0417 J	0.0528 J	0.0604 J	0.0505 J	0.0642 J	0.0604 J	0.0511 J	0.0453 J
Calcium	mg/L	16.7	13.1		11.7	11.3	11.8	12.5		12	12.8	13.3		13.8	15.2	12.8	13.4	13.2	12.3	12.9	12.3	19
Chloride	mg/L	47.3	40.5		37.2	38.2	39.4		49	48	49	42		47	43	44	39	44.9	39.1	46.8	38.4	43.5
Fluoride	mg/L	0.05 J	0.064 J		0.082 J	0.062 J	0.049 J		0.05 J	0.06 J	0.07 J	0.07 J	0.06 J	0.07 J	0.05 J	0.0679 J	0.0661 J	0.0665 J	0.0757 J	0.0748 J	0.0641 J	0.0769 J
pH_Field	SU	6.1	6.14		6.11	6.1	6.1	6.07	6.07	6.1	6.07	6.12	6.12	6.13	6.04	6.01	6.02	5.98	5.82	5.79	5.69	5.5
Sulfate	mg/L	<0.3	<0.3		0.496 J	<0.3	<0.3		6.9	6.6	6	2.2 J		4.1 J	4.9 J	49.5	47.7	23.2	14.2	50.4	21	38.3
TDS	mg/L	319	305		287	295	305	325		306	320	332		320	304	307	296	290	285	300	280	259
Appendix IV																						
Antimony	mg/L	<0.0006	<0.0006		0.00111 J	<0.0006	<0.0006	0.000834 J		<0.0006	0.000857 J		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.0115	0.0123		0.0121	0.0127	0.0131	0.0131		0.014	0.0141		0.0149	0.0175	0.0141	0.0138	0.0144	0.0154	0.0148	0.014	0.013	0.013
Barium	mg/L	0.0947	0.0758		0.071	0.0722	0.0707	0.0686		0.0756	0.0695		0.0688	0.0806	0.0697	0.0704	0.0686	0.0728	0.0722	0.0817	0.0667	0.0723
Beryllium	mg/L	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	0.00103 J		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	0.00077 J		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	0.00656 J	0.00661 J		0.0067 J	0.00693 J	0.00732 J	0.00699 J		0.00712 J	0.00752 J		0.00729 J	0.00642 J	0.0068 J	0.00727 J	0.00733 J	0.00955 J	0.00888 J	0.00692	0.00755	0.00634
Cobalt	mg/L	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00113	0.00122	0.00184
Combined Radium 226 + 228	pCi/L	1 U	0.398	0.812		0.46 U	0.601	1.1		0.832	0.752		0.898 U	0.752	0.523	1.01	1.07	0.725	0.698	1.15	1.74	0.915 U
Lead	mg/L	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01		<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000437	0.000432	0.00356
Selenium	mg/L	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	0.000878 J		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

											BY-AP-	MW-14									
Analyte	Units		I														I	I			
		03/02/2016	04/20/2016	06/08/2016	08/30/2016	10/18/2016	01/31/2017	03/22/2017	05/02/2017	06/06/2017	09/13/2017	01/23/2018	05/02/2018	11/27/2018	05/29/2019	10/01/2019	03/31/2020	09/02/2020	05/25/2021	10/27/2021	05/25/2022
Appendix III																					
Boron	mg/L	0.0395 J	0.0549 J	0.0593 J	0.0534 J	0.0597 J	0.0479 J	-	0.0587 J	0.0428 J	0.0647 J	-	0.0484 J	0.0493 J	0.0682 J	0.0701 J	0.0655 J	0.0789 J	0.074 J	0.0677 J	0.0649 J
Calcium	mg/L	9.53	9.55	13.1	12.1	11.4	10.8	-	11.9	12.2	13.9	-	10.6	10.8	11.2	11.4	9.04	10.8	11.2	11.4	11
Chloride	mg/L	36.6	35.5	43.8	41.6	39.5		46	42	44	43		39	43	50.1	44.8	44.7	47.2	52.1	42.9	45.3
Fluoride	mg/L	0.07 J	0.076 J	0.105 J	0.083 J	0.067 J		0.06 J	0.08 J	0.077 J	0.07 J	0.08 J	0.08 J	0.06 J	0.0781 J	0.0885 J	0.0867 J	0.0957 J	0.0957 J	0.0651 J	0.0733 J
pH_Field	SU	6.08	6.04	6.13	6.08	6.13	6.06	6.09	5.94	6.1	6.11	6.12	6.13	6.07	6.07	6.01	5.76	5.8	5.82	6.41	6.14
Sulfate	mg/L	<0.3	<0.3	0.514 J	<0.3	<0.3	-	<1.4	1.8 J	<1.4	<1.4	-	1.6 J	<1.4	67.6	61.6	34.7	18.5	59.2	98.5	105
TDS	mg/L	266	311	353	328	310	312	-	300	335	339		301	295	318	317	317	327	318	327	328
Appendix IV																					
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	0.00086 J		<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.0101	0.0119	0.0119	0.0127	0.0136	0.0124		0.0131	0.0129		0.0148	0.0156	0.0145	0.014	0.0152	0.0177	0.0174	0.0172	0.0174	0.0183
Barium	mg/L	0.0491	0.049	0.0627	0.0635	0.0603	0.0533	-	0.0616	0.0585		0.0608	0.0614	0.0589	0.0617	0.0605	0.0619	0.0687	0.0745	0.0651	0.0692
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	0.00552 J	0.00572 J	0.00492 J	0.00534 J	0.00556 J	0.00514 J		0.00524 J	0.00541 J		0.00573 J	0.00534 J	0.00523 J	0.00455 J	0.00508 J	0.00463 J	0.00482 J	0.00365	0.00401	0.00315
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	-	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00124	0.00125	0.00117
Combined Radium 226 + 228	pCi/L	1 U	1 U	0.631	0.693	0.626	0.0723 U		0.363 U	0.198 U		0.294 U	0.522	0.576	0.437 U	1.11	0.941	2.12	0.978 U	0.587 U	1.25
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	7.64e-005 J	8.69e-005 J	0.000102 J
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000701	0.00053	0.000508
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

											BY-AP-	MW-15									
Analyte	Units	03/02/2016	04/19/2016	06/08/2016	08/31/2016	10/19/2016	01/31/2017	03/21/2017	05/02/2017	06/06/2017	09/13/2017	01/22/2018	05/01/2018	11/27/2018	05/29/2019	10/01/2019	04/01/2020	09/02/2020	05/11/2021	10/26/2021	05/25/2022
Appendix III			L	L		L		L	L	L									L		
Boron	mg/L	0.0447 J	0.0645 J	0.0592 J	0.0632 J	0.0637 J	0.0536 J		0.0775 J	0.0535 J	0.0937 J		0.0683 J	0.0715 J	0.116	0.116	0.1	0.148	0.109	0.0953 J	0.0826 J
Calcium	mg/L	6.61	5.97	6.36	6.28	6.57	6.77		6.94	6.88	7.43		7.42	7.58	7.22	6.9	7.32	7.04	6.98	6.46	6.35
Chloride	mg/L	20.9	19.8	24	28	21.3		34	33	35	36	-	42	43	47.2	56.3	54.7	47	80	85.4	79.7
Fluoride	mg/L	0.18 J	0.21 J	0.223 J	0.196 J	0.166 J	-	0.18	0.18	0.18	0.2	0.19	0.19	0.18	0.168	0.185	0.187	0.18	0.214	0.171	0.168
pH_Field	SU	6.61	6.75	6.63	6.71	6.66	6.73	6.62	6.49	6.7	6.66	6.73	6.62	6.58	6.63	6.2	6.72	6.57	6.76	6.7	6.68
Sulfate	mg/L	<0.3	<0.3	0.489 J	<0.3	<0.3		<1.4	5	<1.4	<1.4		<1.4	<1.4	3.27	1.72	7.5	7.61	7.54	26.4	1.8 J
TDS	mg/L	182	151	168	188	180	166		183	187	202		197	190	198	236	231	208	279	269	255
Appendix IV	•																				
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	0.000746 J	-	<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.0128	0.0157	0.0168	0.0168	0.0178	0.0164		0.0172	0.0158		0.0173	0.0181	0.0158	0.0148	0.017	0.0183	0.0206	0.0184	0.0186	0.0183
Barium	mg/L	0.0468	0.043	0.0465	0.0464	0.0481	0.0427		0.0473	0.0437		0.0501	0.0575	0.0557	0.0562	0.0628	0.0697	0.0736	0.0762	0.0784	0.0835
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000581 J	0.00052 J	0.000489 J
Cobalt	mg/L	0.0279	0.0269	0.0293	0.0272	0.0285	0.025		0.0274	0.0285		0.0273	0.0298	0.0311	0.0343	0.0336	0.0344	0.0385	0.0349	0.0347	0.0377
Combined Radium 226 + 228	pCi/L	1 U	1 U	0.557	0.765	0.654	0.402 U		0.578	0.128 U		0.768 U	0.651	0.764	0.433	0.988	0.527	1.87	0.684 U	1.95	1.3
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	8.21e-005 J
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	<0.01	<0.01		<0.01	<0.01	0.0169 J	0.0254	0.0248	0.0174 J	<0.01	0.00788 J	0.0117 J	0.0116 J
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	0.00238 J	0.00203 J	<0.002	<0.002	<0.002	<0.002		0.00201 J	<0.002		0.00211 J	<0.002	<0.002	<0.002	<0.002	<0.002	0.00209 J	0.00171	0.00206	0.002
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

											BY-AP-	MW-16									
Analyte	Units	03/02/2016	04/19/2016	06/08/2016	08/31/2016	10/19/2016	01/31/2017	03/21/2017	05/02/2017	06/06/2017	09/13/2017	01/23/2018	05/01/2018	11/27/2018	05/29/2019	10/01/2019	03/31/2020	09/02/2020	05/19/2021	11/01/2021	05/25/202
Appendix III																					
Boron	mg/L	1.47	1.53	1.7	1.68	1.53	1.51		1.64	1.57	2.18		1.57	1.58	1.7	2.05	1.74	1.9	1.74	2.18	1.98
Calcium	mg/L	14.6	13.3	13.2	11.8	12.9	13.5		13.5	13.6	11.8		14	13.3	13.4	11.7	14.2	13.1	14.2	13.4	13.9
Chloride	mg/L	16.6	15.7	15.1	15.9	15.3		19	19	19	21		18	20	20	20.3	20.8	20.8	21.4	22.3	20
Fluoride	mg/L	0.04 J	0.05 J	0.073 J	0.051 J	<0.01		0.04 J	0.05 J	0.053 J	0.06 J	0.05 J	0.05 J	<0.032	0.0683 J	0.0774 J	0.0602 J	<0.06	0.0793 J	0.0887 J	<0.06
pH_Field	SU	5.79	5.78	5.8	5.83	5.81	5.84	5.79	5.68	5.8	5.86	5.86	5.85	5.76	5.76	5.23	5.75	5.47	5.8	5.36	5.74
Sulfate	mg/L	<0.3	<0.3	0.514 J	<0.3	<0.3	-	<1.4	5	<1.4	2.6 J		<1.4	<1.4	6.72	3.4	17.5	13.3	3.11	11.9	6.29
TDS	mg/L	263	259	285	279	264	270	-	259	278	333		274	250	264	295	276	279	274	324	299
Appendix IV																					
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	0.000769 J		<0.0006	<0.0006		<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.0102	0.0103	0.0105	0.0117	0.0108	0.0102		0.0102	0.00982		0.0151	0.0114	0.0108	0.0106	0.0138	0.012	0.0137	0.0118	0.0151	0.0144
Barium	mg/L	0.0921	0.0775	0.0798	0.0801	0.0766	0.075		0.0761	0.07		0.0779	0.0877	0.0792	0.081	0.0803	0.091	0.0954	0.102	0.0988	0.0961
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	0.00215 J	<0.002	<0.002		<0.002	<0.002		0.00253 J	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00162	0.0018	0.00135
Cobalt	mg/L	0.0212	0.018	0.0176	0.0134	0.0193	0.017		0.0166	0.0172		0.00621 J	0.0189	0.0182	0.0206	0.0107	0.0199	0.0192	0.0182	0.0139	0.0155
Combined Radium 226 + 228	pCi/L	1 U	1 U	0.344 U	0.582	0.448	0.653		0.698	0.548		0.98 U	0.623	0.744	2.51	0.443 U	0.341 U	2.25	0.321 U	1.28	0.927 U
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.000191 J	<6.8e-005	9.73e-005 J
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		<0.00025	<0.00025		<0.00025	<0.00025	<0.00025	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000136 J	<6.8e-005	<0.000102
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

				1	BY-AP-MW-1	v					BY-AP-	MW-5V						BY-AP-	MW-7V			
Analyte	Units	01/08/2019	10/02/2019	03/30/2020	09/01/2020	05/18/2021	11/01/2021	05/24/2022	01/08/2019	10/02/2019	03/31/2020	09/01/2020	11/02/2021	05/25/2022	01/09/2019	10/01/2019	12/02/2019	03/30/2020	09/02/2020	05/18/2021	10/27/2021	05/24/2022
Appendix III																				•		
Boron	mg/L	0.0205 J	<0.03	0.0347 J	0.0368 J	0.0334 J	<0.03	0.0337 J	0.029 J	0.0336 J	0.0339 J	0.0414 J	<0.03	<0.03	0.0615 J	0.0546 J	-	0.0555 J	0.0565 J	0.0599 J	0.0546 J	0.162
Calcium	mg/L	15.7	3.16	3.23	3.43	3.79	3.68	3.65	3.7	2.43	1.88	2.13	2.11	2.58	37	18.7		20	13.9	14.1	17.2	7.22
Chloride	mg/L	42	60.7	69.1	69	79.5	79.4	95.1	20.9	25.8	25.8	30.6	30.5	22.6	16.9	13.2		15.5	14.2	19	18.9	40.4
Fluoride	mg/L	0.0548 J	0.0595 J	<0.06	<0.06	<0.06	<0.06	<0.06	<0.05	0.0777 J	<0.06	0.0807 J	0.0627 J	<0.06	0.139	0.0871 J		0.127	0.126	0.112	0.0795 J	0.0869 J
pH_Field	SU	6.38	5.27	5.65	5.62	5.55	5.76	4.9	6.07	5.9	6.05	5.7	6.35	5.88	7.12	6.67	6.56	6.69	6.49	6.53	6.78	6.92
Sulfate	mg/L	20.9	10.5	11.1	13	16	20.2	21.1	1.75	5.8	0.98 J	1.47	1.34	2.91	3.69	2		9.65	6.7	5.53	5.31	6.06
TDS	mg/L	192	154	160	175	189	190	176	76.7	98	81.3	94	77.3	75.3	240	182		204	168	192	169	228
Appendix IV																						
Antimony	mg/L	0.00125 J	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508	0.00207 J	<0.0008	<0.0008	<0.0008	<0.000508	<0.000508	0.000861 J	<0.0008		<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.00109 J	0.00157 J	0.00152 J	0.00179 J	0.00144	0.000856	0.000696	<0.001	<0.001	<0.001	<0.001	0.00101	<8.1e-005	<0.001	0.00278 J		0.005	0.0024 J	0.00242	0.0027	0.00212
Barium	mg/L	0.0826	0.0611	0.062	0.0795	0.0861	0.0731	0.0863	0.0372	0.0338	0.0313	0.0399	0.0368	0.0578	0.112	0.0541		0.0519	0.0648	0.0805	0.0684	0.0803
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.0006	<0.0006		<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<0.0003	<0.0003		<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	0.000447 J	0.000454 J	0.000384 J	<0.002	<0.002	<0.002	<0.002	0.000991 J	0.000476 J	<0.002	<0.002	-	<0.002	<0.002	0.000463 J	0.000515 J	0.000226 J
Cobalt	mg/L	0.00911	0.00289 J	<0.002	0.00407 J	0.00483	0.00578	0.00765	<0.002	<0.002	<0.002	<0.002	0.000132 J	0.00106	<0.002	<0.002		<0.002	<0.002	0.000139 J	0.000134 J	0.00011 J
Combined Radium 226 + 228	pCi/L	1.06	1.03	0.579	0.948	0.814 U	1.3 U	2	0.298 U	0.206 U	0.024 U	0.741	0.158 U	1.03 U	0.527	1.01	-	0.604	1.12	0.199 U	0.914 U	0.619 U
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	<0.001	<0.001	-	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005
Lithium	mg/L	0.0219	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	0.0662	<0.01	<0.01	<0.01	<0.01	<0.007105	0.00746 J	<0.007105
Mercury	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	0.00018 J	0.00013 J	<0.000102	<0.002	<0.002	<0.002	<0.002	8.05e-005 J	<0.000102	0.00511 J	<0.002		<0.002	<0.002	0.00021	0.000456	0.00074
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508	<0.002	<0.002	<0.002	<0.002	<0.000508	<0.000508	<0.002	<0.002	-	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<0.0002	<0.0002		<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

				E	3Y-AP-MW-8	v					E	BY-AP-MW-10	v					В	Y-AP-MW-1	2V		
Analyte	Units	01/09/2019	10/01/2019	03/30/2020	09/02/2020	05/18/2021	10/26/2021	05/23/2022	01/08/2019	10/01/2019	03/31/2020	09/01/2020	05/18/2021	10/27/2021	05/24/2022	01/08/2019	10/02/2019	03/31/2020	09/01/2020	05/18/2021	11/01/2021	05/23/2022
Appendix III																						
Boron	mg/L	0.164	0.241	0.247	0.26	0.247	0.216	0.254	0.677	1.03	1.04	1.06	0.971	0.933	0.938	0.0939 J	0.134	0.101	0.149	0.118	0.0962 J	0.0765 J
Calcium	mg/L	27.2	24.2	24.5	23.3	26.4	25.7	24.3	57.2	61.2	66.6	57.3	64	61.6	64.2	33.8	21.8	21.3	21	22.1	21.4	20.6
Chloride	mg/L	21.9	22.6	22.7	22.6	22.7	23.9	22.1	21.3	20	20.7	22.9	21	21	19.4	23.1	28	25	26.4	25.5	26.1	25.6
Fluoride	mg/L	0.0831 J	0.0832 J	0.0935 J	0.098 J	0.0958 J	0.107	0.108 J	0.123	0.0517 J	<0.06	0.0695 J	<0.06	<0.06	<0.06	0.0729 J	0.12	0.0828 J	0.0947 J	0.0783 J	0.123	<0.06
pH_Field	SU	6.38	6.16	6.2	5.79	6.33	6.26	6.08	6.5	6.05	6.38	6.34	6.34	6.1	5.77	6.48	5.9	6.33	6.2	5.92	6.09	6.22
Sulfate	mg/L	1.74	7	75.8	24	19.6	58.2	8.35	93.7	5.19	20.3	30.1	24.9	6.04	5.73	10.3	7.18	61.1	47.5	32.8	10.9	6.64
TDS	mg/L	276	324	328	318	331	350	331	462	393	413	403	401	400	403	348	321	328	338	329	352	352
Appendix IV																						
Antimony	mg/L	<0.0008	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508	0.000965 J	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508	0.00117 J	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.00121 J	0.00243 J	0.00275 J	0.00346 J	0.00398	0.0048	0.00414	<0.001	<0.001	<0.001	<0.001	0.000356	0.000331	0.00032	0.0112	0.022	0.025	0.0257	0.0251	0.0256	0.0257
Barium	mg/L	0.337	0.264	0.264	0.289	0.299	0.282	0.282	0.149	0.163	0.184	0.203	0.212	0.182	0.194	0.144	0.101	0.0939	0.102	0.111	0.103	0.101
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	0.00129	0.00124	0.00124	<0.002	<0.002	<0.002	<0.002	0.000684 J	0.000677 J	0.000493 J	0.0021 J	<0.002	<0.002	<0.002	0.00112	0.000862 J	0.000813 J
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	0.000882	0.000879	0.000921	<0.002	<0.002	<0.002	<0.002	0.000648	0.000613	0.000618	<0.002	<0.002	<0.002	<0.002	0.00237	0.00231	0.00263
Combined Radium 226 + 228	pCi/L	1.69	1.66	0.787	2.89	0.975 U	1.61	1.13	1.35	1.99	0.957	0.625 U	1.66	1.44 U	1.2	1.04	0.896	0.923	1.03	1.31	0.814 U	0.962 U
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005	<0.001	<0.001	<0.001	<0.001	8.16e-005 J	<6.8e-005	<6.8e-005
Lithium	mg/L	0.0217	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105	0.0313	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105	0.0148 J	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	0.00243 J	<0.002	<0.002	<0.002	0.000363	0.000276	0.000286	0.00335 J	<0.002	<0.002	<0.002	0.000148 J	0.000143 J	0.000148 J	0.00303 J	<0.002	<0.002	<0.002	0.00106	0.00118	0.00112
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

			В	Y-AP-MW-13	BV			В	Y-AP-MW-14	IV				В	Y-AP-MW-15	5V				В	Y-AP-MW-1	5V	
Analyte	Units	06/17/2020	09/02/2020	05/19/2021	10/26/2021	05/25/2022	06/17/2020	09/02/2020	05/25/2021	10/26/2021	05/24/2022	07/31/2019	10/01/2019	05/12/2020	09/01/2020	05/25/2021	10/26/2021	05/24/2022	06/16/2020	09/02/2020	05/19/2021	10/26/2021	05/25/2022
Appendix III																							
Boron	mg/L	0.0847 J	0.112	0.0976 J	0.0888 J	0.0867 J	0.426	0.407	0.43	0.393	0.376	0.0439 J	0.0824 J	0.0559 J	0.0907 J	0.0617 J	0.0498 J	0.0376 J	<0.03	<0.03	<0.03	<0.03	<0.03
Calcium	mg/L	20.2	12.3	12.7	11.3	11.9	5.32	4.7	4.66	5.28	6.83	9.32	8.41	8.01	6.9	8.47	8.13	8.26	2.15	2.02	2.26	1.96	1.79
Chloride	mg/L	77	51.7	64.4	47.7	59.3	240	178	210	191	184	157	195	190	170	180	183	191	77.4	75.6	81.2	68.3	56.6
Fluoride	mg/L	0.103	0.0864 J	0.0884 J	0.096 J	<0.06	0.343	0.359	0.378	0.384	0.291	0.0515 J	0.0931 J	0.0946 J	0.0624 J	<0.06	<0.06	<0.06	0.0744 J	<0.06	<0.06	<0.06	<0.06
pH_Field	SU	6.25	6.23	6.2	6.81	6.3	7.27	7.02	7.2	6.91	6.71	5.37	5.68	5.68	5.91	5.6	5.93	5.7	5.2	5.23	5.24	5.26	5.26
Sulfate	mg/L	101	30.6	39.7	47.3	122	28	63.6	39.5	75.1	13.6	2.65	0.854 J	1.61	2.21	1.19	0.966 J	2.35	41.5	40	40.9	38.1	35.1
TDS	mg/L	449	361	362	355	343	546	498	520	474	508	337	321	327	318	335	358	348	238	219	213	195	188
Appendix IV																							
Antimony	mg/L	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508	0.00094 J	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.00321 J	0.00708	0.00877	0.0103	0.0106	0.00208 J	0.00433 J	0.00324	0.0041	0.00532	0.0174	0.0243	0.0206	0.0401	0.0233	0.0242	0.0255	0.00135 J	0.0012 J	0.00123	0.00105	0.00126
Barium	mg/L	0.106	0.109	0.114	0.0827	0.0852	0.0809	0.0766	0.0729	0.0653	0.067	0.144	0.13	0.155	0.134	0.184	0.149	0.156	0.0658	0.0733	0.0743	0.0589	0.0569
Beryllium	mg/L	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	0.000201 J	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	0.00537 J	0.00525 J	0.00416	0.00606	0.00488	<0.002	<0.002	0.00113	0.00098 J	0.000605 J	<0.002	<0.002	<0.002	<0.002	0.000258 J	0.000385 J	0.000207 J	0.00222 J	<0.002	0.000385 J	0.000402 J	<0.000203
Cobalt	mg/L	<0.002	<0.002	0.000827	0.00114	0.00127	<0.002	0.00444 J	0.00271	0.00419	0.00353	0.0632	0.0629	0.0719	0.0665	0.0694	0.0756	0.0788	0.0144	0.0163	0.0153	0.0159	0.0139
Combined Radium 226 + 228	pCi/L	1.22	2.49	0.783 U	1.6	0.951 U	0.726	1.54	0.859 U	1.34 U	1.26	1.09	1.51	1.67	1.28	1.72	2.53	1.85	0.642	1.15	0.496 U	0.773 U	1.03 U
Lead	mg/L	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005	<0.001	<0.001	7.24e-005 J	<6.8e-005	<6.8e-005	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	0.000111 J	<0.001	<0.001	<6.8e-005	<6.8e-005	0.000127 J
Lithium	mg/L	<0.01	<0.01	<0.007105	0.0484	0.0318	<0.01	<0.01	<0.007105	<0.007105	<0.007105	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	0.00237 J	<0.002	0.000642	0.00135	0.000703	0.00451 J	0.00229 J	0.00135	0.0012	0.00275	<0.002	<0.002	<0.002	<0.002	0.000106 J	0.000109 J	<0.000102	<0.002	<0.002	<6.8e-005	<6.8e-005	<0.000102
Selenium	mg/L	<0.002	<0.002	<0.000507	<0.000508	<0.000508	<0.002	<0.002	<0.000507	<0.000508	<0.000508	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005	<0.0002	<0.0002	<0.0002	<0.0002	8.49e-005 J	7.4e-005 J	0.00014 J	<0.0002	<0.0002	9.13e-005 J	0.000103 J	8.86e-005 J

			В	Y-AP-MW-17	rv			В	Y-AP-MW-20)V			В	Y-AP-MW-23	v			В	Y-AP-MW-25	v	
Analyte	Units	06/16/2020	09/01/2020	05/18/2021	10/25/2021	05/25/2022	06/17/2020	09/01/2020	05/19/2021	11/01/2021	05/24/2022	06/16/2020	09/01/2020	05/17/2021	10/26/2021	05/25/2022	06/17/2020	09/02/2020	05/24/2021	11/02/2021	05/25/2022
Appendix III				,															,		
Boron	mg/L	0.176	0.124	0.124	0.113	0.177	0.118	0.134	0.119	0.11	0.095 J	0.325	0.307	0.32	0.306	0.308	<0.03	<0.03	<0.03	<0.03	<0.03
Calcium	mg/L	65.3	20.5	15	6.58	50.2	17.9	14.7	15.3	15.1	14.6	1.25	1.27	1.33	0.837	0.873	0.842	0.547	0.554	0.567	0.573
Chloride	mg/L	734	273	225	111	649	29.2	27.1	32.4	29.6	35.4	120	117	134	124	106	4.04	3.85	3.48	3.42	3.22
Fluoride	mg/L	0.0994 J	0.144	0.16	0.172	0.0799 J	0.155	0.106	0.123	0.14	0.0852 J	0.393	0.401	0.379	0.445	0.385	<0.06	<0.06	<0.06	<0.06	<0.06
pH_Field	SU	6.43	6.49	6.55	6.53	6.34	6.26	6.03	6.44	6	6.28	8.08	7.98	7.87	8.31	7.44	5.27	5.32	5.24	5.13	5.45
Sulfate	mg/L	57.4	26.6	17.4	11	49.1	10.1	38.3	1.93	5.66	3.66	28.6	9.25	6.92	4.23	4.25	2.39	2.26	2.59	2.08	2.13
TDS	mg/L	1460	576	438	280	1270	301	308	271	282	296	479	391	386	362	359	37.3	34	26.7	36	29.3
Appendix IV																					
Antimony	mg/L	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.0117	0.00472 J	0.00546	0.00162	0.00192	0.00584	0.00845	0.0148	0.0182	0.0193	0.00193 J	<0.001	0.00119	0.00119	0.00158	<0.001	<0.001	<6.8e-005	<6.8e-005	<8.1e-005
Barium	mg/L	0.62	0.277	0.255	0.0928	0.683	0.152	0.115	0.107	0.0883	0.0907	0.02	0.00933 J	0.0094	0.00766	0.00729	0.0132	0.0111	0.00981	0.00907	0.00947
Beryllium	mg/L	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	0.00475 J	<0.002	0.000973 J	0.000619 J	0.000477 J	<0.002	<0.002	0.000669 J	0.000606 J	0.00053 J	0.0221	0.00284 J	0.00163	0.000605 J	0.000455 J	<0.002	<0.002	0.00119	0.0013	0.00126
Cobalt	mg/L	0.0858	0.022	0.0197	0.00915	0.0717	0.00593	0.012	0.0173	0.0236	0.0264	0.00302 J	<0.002	0.000217	<6.8e-005	<6.8e-005	0.0026 J	<0.002	0.000422	0.000366	0.00026
Combined Radium 226 + 228	pCi/L	2.17	1.9	1.05 U	1.04 U	5.37	0.767	1.43	1.43	1.48	0.97 U	0.752 U	0.323 U	0.374 U	0.285 U	0.285 U	0.479	0.596	0.531 U	1.05 U	0.527 U
Lead	mg/L	<0.001	<0.001	0.000137 J	<6.8e-005	7.37e-005 J	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005	0.00222 J	<0.001	0.000216	9.98e-005 J	<6.8e-005	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.007105	<0.007105	<0.007105	<0.01	<0.01	<0.007105	<0.007105	<0.007105	<0.01	<0.01	<0.007105	<0.007105	<0.007105	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	0.000571	0.000877	0.000428	<0.002	<0.002	0.00155	0.00181	0.0015	<0.002	<0.002	0.00147	0.00124	0.00151	<0.002	<0.002	9.23e-005 J	<6.8e-005	<0.000102
Selenium	mg/L	<0.002	<0.002	<0.000507	<0.000508	<0.000508	<0.002	<0.002	<0.000507	<0.000508	<0.000508	<0.002	<0.002	<0.000507	<0.000508	<0.000508	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<6.8e-005	<6.8e-005	9.64e-005 J	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

				В	Y-AP-MW-17	7H					В	Y-AP-MW-18	н					В	Y-AP-MW-1	ЭН		
Analyte	Units	07/31/2019	10/02/2019	04/01/2020	09/01/2020	05/17/2021	10/25/2021	05/25/2022	03/20/2019	10/01/2019	04/01/2020	09/01/2020	05/19/2021	10/25/2021	05/23/2022	07/31/2019	10/01/2019	05/12/2020	09/01/2020	05/25/2021	10/25/2021	05/24/2022
Appendix III																				•		
Boron	mg/L	0.0782 J	0.129	0.073 J	0.146	0.0911 J	0.0885 J	0.0597 J	0.924	1.05	0.435	0.855	0.866	0.931	0.91	0.848	0.931	1.22	0.895	0.252	0.142	0.159
Calcium	mg/L	19.1	13.2	27	10.8	12.8	10.5	11.6	28.2	27.2	23.1	25.6	27.1	27.1	25.3	31.8	31.1	34.2	31.6	23.9	18.3	19.2
Chloride	mg/L	18	17.7	17.2	18.2	17.1	19.2	16	17.6	20.1	12.2	19.8	19.3	20.5	18.9	16.4	16.8	17.9	17.6	10.7	10.1	10.4
Fluoride	mg/L	0.178	0.254	0.151	0.196	0.148	0.182	0.138	0.126	0.071 J	0.0722 J	0.0784 J	0.0886 J	0.0728 J	0.0857 J	0.089 J	0.0712 J	0.0732 J	0.0752 J	0.0673 J	<0.06	<0.06
pH_Field	SU	6.64	6.58	6.52	6.56	6.35	6.48	6.21	6.19	6.26	6.48	6.15	6.23	6.76	6.24	6.21	6.33	6.09	6.31	6.1	6.13	5.8
Sulfate	mg/L	23	10.6	19.4	7.61	10.2	24.5	3.58	12.7	8.49	24.2	30.6	7.48	55	9.46	11.3	5.9	22.9	16.9	26.6	28.7	34.7
TDS	mg/L	212	203	243	236	201	225	194	308	283	210	281	293	302	292	312	316	321	294	162	123	133
Appendix IV																						
Antimony	mg/L	0.000878 J	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508	0.0011 J	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508	0.00137 J	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.0221	0.0251	0.0208	0.0371	0.0329	0.0364	0.03	0.00835	0.0137	0.00937	0.015	0.0147	0.0155	0.0142	<0.001	<0.001	<0.001	0.00101 J	0.0015	0.00134	0.00104
Barium	mg/L	0.138	0.117	0.194	0.114	0.125	0.0974	0.125	0.154	0.126	0.109	0.123	0.147	0.12	0.128	0.137	0.113	0.167	0.159	0.104	0.0738	0.0819
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	0.000627 J	0.00071 J	0.000324 J	0.00243 J	<0.002	<0.002	<0.002	0.00132	0.00135	0.00133	<0.002	<0.002	<0.002	<0.002	0.000391 J	0.00044 J	0.000454 J
Cobalt	mg/L	<0.002	0.0033 J	<0.002	0.00258 J	0.0013	0.00371	0.0014	<0.002	<0.002	0.013	<0.002	0.00109	0.00101	0.00108	<0.002	<0.002	<0.002	<0.002	0.00294	0.00501	0.00513
Combined Radium 226 + 228	pCi/L	0.621	1.14	0.797	0.44 U	1.64	1.57	1.71	0.473	0.6	1.05	0.684	0.971 U	1.2	1.03 U	0.272 U	0.817	0.691	0.675	1.04 U	1.03 U	1.06 U
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	9.09e-005 J	<6.8e-005	<6.8e-005	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	0.000469	0.000779	0.000454	<0.002	<0.002	<0.002	<0.002	0.00025	0.000249	0.000361	<0.002	<0.002	<0.002	<0.002	0.000124 J	8.42e-005 J	<0.000102
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	0.000636 J
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

				В	Y-AP-MW-20	ЭН					В	Y-AP-MW-22	н					В	Y-AP-MW-23	н		
Analyte	Units	07/31/2019	10/01/2019	04/01/2020	09/01/2020	05/19/2021	10/26/2021	05/23/2022	07/31/2019	10/01/2019	05/12/2020	09/01/2020	05/25/2021	10/26/2021	05/24/2022	07/31/2019	10/01/2019	04/01/2020	09/01/2020	05/24/2021	10/26/2021	05/25/202
Appendix III																						
Boron	mg/L	0.0707 J	0.101	0.046 J	0.106	0.0909 J	0.0784 J	0.0647 J	0.0643 J	0.105	0.0807 J	0.115	0.0889 J	0.0725 J	0.0562 J	0.0531 J	0.0856 J	<0.03	0.0943 J	0.0785 J	0.0709 J	0.0467 J
Calcium	mg/L	30.3	29.4	26	28.8	30.9	30.2	28.4	15	15.5	15	14.8	15.2	15.1	14.5	25.8	27.2	15.8	35.8	27.1	29.4	24.5
Chloride	mg/L	33.4	44.7	23.1	34.6	36.2	34	44.1	60.3	70	58.3	59.9	65.4	54.5	57.1	8.03	6.7	4.46	6.96	6.33	5.64	6.63
Fluoride	mg/L	0.0934 J	0.0838 J	0.0793 J	0.0954 J	0.0852 J	0.114	0.124 J	0.257	0.268	0.323	0.301	0.282	0.323	0.318	0.0766 J	0.0804 J	0.0607 J	0.0919 J	0.0734 J	0.0709 J	<0.06
pH_Field	SU	6.22	6.24	6.45	6.15	6.17	6.49	6.15	6.54	6.6	6.55	6.48	6.44	6.86	6.57	6.08	6.03	6.44	6.14	6.19	6.54	5.92
Sulfate	mg/L	83.2	28.9	18.7	43.5	59.5	73.2	95.1	171	17.2	59.5	93.2	72.3	140	103	18.4	4.89	18.1	24.5	3.99	29.5	4.01
TDS	mg/L	481	470	319	479	479	493	462	345	346	337	362	378	362	372	241	261	105	271	244	252	236
Appendix IV																						
Antimony	mg/L	0.00113 J	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508	0.00117 J	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508	0.000964 J	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.0112	0.013	0.00508	0.0172	0.0132	0.0133	0.0134	0.0225	0.0225	0.0199	0.0217	0.0191	0.0202	0.0185	0.0132	0.013	0.00689	0.0226	0.0133	0.00807	0.00478
Barium	mg/L	0.0928	0.0913	0.119	0.11	0.111	0.0936	0.0963	0.185	0.213	0.222	0.234	0.261	0.202	0.215	0.162	0.175	0.0629	0.182	0.208	0.188	0.174
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	0.00209 J	0.0025 J	<0.002	0.00283 J	0.00284	0.00261	0.00233	<0.002	<0.002	<0.002	<0.002	0.000667 J	0.000618 J	0.000516 J	<0.002	<0.002	<0.002	<0.002	0.000814 J	0.000696 J	0.000514 J
Cobalt	mg/L	0.00433 J	0.00431 J	0.00541	0.0046 J	0.00426	0.00447	0.00426	0.00233 J	0.00268 J	0.00281 J	0.00294 J	0.00264	0.00285	0.00276	0.0031 J	0.00201 J	0.0206	0.0273	0.00682	0.00495	0.002
Combined Radium 226 + 228	pCi/L	0.268 U	1.22	0.968	0.39 U	1.03 U	1.28 U	0.657 U	0.448	0.508	0.61	0.419 U	1.26	1.52	0.656 U	0.331 U	1.05	0.618	0.224 U	1.1 U	1.13 U	0.674 U
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	0.000224	<6.8e-005	<6.8e-005	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105	<0.01	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	0.000503	0.000482	0.000399	0.00426 J	<0.002	<0.002	<0.002	0.00137	0.00136	0.00145	<0.002	<0.002	<0.002	<0.002	0.00069	0.00035	0.000157 J
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	0.000538 J	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

				В	Y-AP-MW-24	н				В	Y-AP-MW-25	Н	
Analyte	Units	01/08/2019	10/02/2019	03/31/2020	09/02/2020	05/25/2021	10/26/2021	05/24/2022	06/17/2020	09/02/2020	05/24/2021	11/02/2021	05/25/2022
Appendix III	,												
Boron	mg/L	0.213	0.344	0.325	0.382	0.37	0.354	0.347	<0.03	<0.03	<0.03	<0.03	<0.03
Calcium	mg/L	38	18.4	18.1	17.6	18.6	18.4	17.5	0.793	0.875	0.905	1.05	0.949
Chloride	mg/L	44.6	53	47.5	43.7	46	41.6	50.8	4.81	4.62	4.72	5.07	5.32
Fluoride	mg/L	0.147	0.183	0.148	0.158	0.156	0.158	0.149	<0.06	<0.06	<0.06	<0.06	<0.06
pH_Field	SU	6.51	6.21	6.23	6.01	6.16	6.2	6.22	5.27	5.39	4.12	5.01	5.23
Sulfate	mg/L	31.2	92.3	84.5	59.7	17	122	92.3	6.1	4.39	4.94	4.28	4.24
TDS	mg/L	504	430	418	471	420	448	383	44	36	39.3	34.7	37.3
Appendix IV	•												
Antimony	mg/L	0.00116 J	<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508	<0.0008	<0.0008	<0.000507	<0.000508	<0.000508
Arsenic	mg/L	0.0306	0.0673	0.0729	0.0783	0.0693	0.0752	0.0712	<0.001	<0.001	8.73e-005 J	0.000162 J	0.000157 J
Barium	mg/L	0.294	0.229	0.243	0.26	0.26	0.238	0.245	0.0189	0.0204	0.0206	0.0203	0.0178
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	0.000878 J	0.00104	0.000809 J	<0.002	<0.002	0.00117	0.000976 J	0.00103
Cobalt	mg/L	0.00243 J	0.00513	0.00528	0.0061	0.00542	0.00591	0.00571	<0.002	0.00246 J	0.00156	0.00146	0.00132
Combined Radium 226 + 228	pCi/L	1.49	1.24	0.577	1.5 U	0.695 U	0.987 U	1.08 U	0.554	0.0187 U	0.545 U	0.707 U	0.682 U
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005	<0.001	<0.001	<6.8e-005	<6.8e-005	<6.8e-005
Lithium	mg/L	0.0183 J	<0.01	<0.01	<0.01	<0.007105	<0.007105	<0.007105	<0.01	<0.01	<0.007105	<0.007105	<0.007105
Mercury	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	0.00399 J	<0.002	<0.002	<0.002	0.000869	0.000964	0.00118	<0.002	<0.002	0.000102 J	0.00014 J	<0.000102
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.000507	<0.000508	<0.000508	<0.002	<0.002	<0.000507	<0.000508	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005

Appendix B

Appendix B. Historical Groundwater Elevations Summary

						Groui	ndwater Ele	vation				
Well Name	Top of Casing						(ft AMSL)					
	Elevation	2/29/2016	4/18/2016	6/7/2016	8/30/2016	10/17/2016	1/31/2017	3/20/2017	5/1/2017	6/5/2017	9/12/2017	1/22/2018
BY-AP-MW-1	25.80	8.19	7.23	4.52	4.12	2.86	6.90	4.27	4.49	5.11	3.46	3.67
BY-AP-MW-2	23.89	7.59	6.58	3.51	3.03	2.61	5.79	2.99	3.95	4.13	2.49	2.47
BY-AP-MW-3	26.61	7.53	6.53	3.35	2.84	2.43	5.73	2.85	3.81	4.00	2.31	2.31
BY-AP-MW-4	26.97	7.41	6.36	3.12	2.68	2.10	5.56	2.62	3.54	3.73	2.88	2.58
BY-AP-MW-5	28.93	7.39	6.24	2.78	2.46	1.80	5.35	2.44	3.27	3.43	1.58	1.78
BY-AP-MW-6	26.69	7.48	6.34	2.87	2.46	1.66	5.36	2.33	3.20	3.36	1.36	1.63
BY-AP-MW-7	25.94	7.86	6.51	2.74	2.52	1.52	5.52	2.28	3.15	3.40	1.25	1.81
BY-AP-MW-8	28.45	7.90	6.36	2.48	2.34	1.19	5.35	2.06	2.91	3.16	0.92	1.32
BY-AP-MW-9	24.39	7.64	6.16	2.54	2.17	1.08	5.09	1.85	2.77	3.00	0.74	1.09
BY-AP-MW-10	26.89	7.77	6.29	2.74	1.35	1.19	5.19	2.01	2.88	3.14	0.88	1.26
BY-AP-MW-11	26.08	7.82	6.36	2.89	2.48	1.34	5.28	2.23	3.00	3.25	1.04	1.52
BY-AP-MW-12	23.88	7.43	6.00	2.56	2.16	1.07	4.93	1.91	2.67	2.93	0.73	1.19
BY-AP-MW-13	24.22	7.49	6.06	2.67	2.28	1.14	4.98	1.99	2.74	3.01	0.81	1.17
BY-AP-MW-14	11.74	6.89	5.49	2.66	1.72	0.73	4.49	1.44	2.29	2.54	0.36	0.61
BY-AP-MW-15	23.89	7.21	5.88	2.61	2.20	1.34	4.94	1.93	2.82	3.04	0.99	1.72
BY-AP-MW-16	25.01	7.344	6.174	2.944	2.524	2.044	5.31	2.38	3.4	3.52	1.76	1.93
BY-AP-MW-1V	26.23											
BY-AP-MW-5V	28.94		1			1			1			1
BY-AP-MW-7V	25.54		1			1			1			1
BY-AP-MW-8V	28.25											
BY-AP-MW-10V	25.39											
BY-AP-MW-12V	25.51											
BY-AP-MW-13V	24.65											
BY-AP-MW-14V	24.72											
BY-AP-MW-15V	7.03											
BY-AP-MW-15VM	23.51											
BY-AP-MW-16V	23.65											
BY-AP-MW-17H	19.83											
BY-AP-MW-17V	20.40											
BY-AP-MW-18H	10.30											
BY-AP-MW-19H	9.40											
BY-AP-MW-20H	9.40											
BY-AP-MW-20V	24.91											
BY-AP-MW-22H	7.85											
BY-AP-MW-23H	10.63											
BY-AP-MW-23V	15.33											
BY-AP-MW-24H	26.28											
BY-AP-MW-25H	23.82											
BY-AP-MW-25VM	23.81											

Notes:

2. -- Not Measured

^{1.} ft. AMSL - feet above mean sea level

Appendix B. Historical Groundwater Elevations Summary

Well Name	Top of Casing Elevation						ndwater Ele (ft AMSL)	vation				
	Elevation	2/22/2016	4/18/2016	6/7/2016	8/29/2016	10/17/2016	1/30/2017	3/20/2017	5/1/2017	6/5/2017	9/12/2017	1/21/2018
BY-GSA-MW-1 ³	20.66	7.73	7.92	5.81	5.13	4.59	6.94	5.42	5.51	6.64	5.45	4.75
BY-GSA-MW-2 ³	19.95	7.55	7.77	5.75	5.04	4.50	6.82	5.30	5.48	6.45	5.30	4.68
BY-GSA-MW-3 ³	23.24	8.19	8.45	6.52	5.78	5.19	7.55	6.04	6.16	7.39	6.16	5.46
BY-GSA-MW-4 ³	29.12	7.83	8.13	6.21	5.47	4.93	7.25	5.71	5.98	6.87	5.74	5.18

Notes:

- 1. ft. AMSL feet above mean sea level
- 2. -- Not Measured
- 3. BY-GSA-MW-1 BY-GSA-MW-4 designated as upgradient Ash Pond well locations.

Appendix B. Historical Groundwater Elevations Summary

	Top of Casing						Grou	ındwater El						
Well Name	Elevation	1/20/2010	0/27/2010	44/95/9949	2/20/20/20		0.000.0000	(ft AMSL)	1	- 14 - 14 0 0 0	0/24/2020	5/24/2024	10/10/2021	
BY-AP-MW-1	25.80	4/30/2018 6.52	8/27/2018 4.19	11/26/2018 5.1	3/20/2019 7.53	5/28/2019 4.33	9/30/2019 3.4	3/30/2020 6.97	5/12/2020 4.38	6/15/2020 5.02	8/31/2020 5.02	5/24/2021 5.28	10/18/2021 5.06	5/23/2022 4.57
BY-AP-MW-2	23.89	5.84	2.95	4.26	6.99	3.55	2.74	6.53	3.55	3.81	3.84	3.96	3.63	3.57
BY-AP-MW-3	26.61	5.78	2.83	4.20	6.86	3.41	2.74	6.46	3.39	3.70	3.84	3.84	3.47	3.59
BY-AP-MW-4	26.97	5.62	2.62	3.84	6.63	3.14	2.33	6.21	3.06	3.39	3.60	3.57	3.15	3.31
BY-AP-MW-5	28.93	5.49	2.48	3.53	6.43	2.89	2.33	5.9	2.66	3.00	3.29	3.57	2.81	2.84
BY-AP-MW-6	26.69	5.58	2.33	3.55	6.45	2.66	1.91	6.1	2.51	2.85	3.30	3.04	2.64	2.60
BY-AP-MW-7	25.94	5.82	2.29	3.51	6.60	2.47	1.69	6.25	2.31	2.83	3.35	2.53	2.04	2.35
BY-AP-MW-8	28.45	5.56	2.14	3.17	6.37	2.47	1.32	5.89	1.53	2.41	3.21	2.35	4.96	2.16
BY-AP-MW-9	24.39	5.33	1.90	3.17	6.17	1.96	1.32	5.83	1.33	2.36	2.97	-7.64	2.05	2.24
BY-AP-MW-10	26.89	5.47	2.07	3.13	6.26	2.12	1.34	4.96	1.58	2.46	3.11	2.17	1.89	1.95
BY-AP-MW-11	26.08	5.60	2.26	3.09	6.41	2.12	1.54	5.94	1.64	2.50	3.16	2.17	2.06	2.69
BY-AP-MW-12	23.88	5.23	1.99	2.86	5.98	1.97	1.34	6.02	1.52	2.30	2.95	2.48	2.13	2.63
BY-AP-MW-13	24.22	5.28	2.10	2.80	6.09	2.11	1.42	5.83	1.52	2.43	3.11	2.46	2.13	2.84
BY-AP-MW-14	11.74	4.66	1.49	2.51	5.49	1.6	0.89	5.04	0.97	1.77	1.96	1.89	1.56	1.71
BY-AP-MW-15	23.89	5.14	1.98	3.07	6.13	2.23	1.58	5.77	1.93	2.57	3.12	2.74	2.45	2.57
BY-AP-MW-16	25.01	5.4	2.4	3.7	6.47	2.82	2.2	6.08	2.35	3.83	3.45	3.22	2.92	3.06
BY-AP-MW-1V	26.23		2.4	5.7	6.90		2.65	7.34	3.69	3.61	3.72	3.72	3.43	3.40
BY-AP-MW-5V	28.94				6.43		2.03	5.88	2.63	3.00	3.32	3.72	2.79	2.83
BY-AP-MW-7V	25.54				6.54		1.66	6.03	2.03	2.68	3.13	2.51	2.21	2.34
BY-AP-MW-8V	28.25				6.18		1.23	5.74	1.44	2.23	2.82	2.41	2.07	2.38
BY-AP-MW-10V	25.39				6.09		1.21	5.65	1.23	2.17	2.78	2.21	1.93	2.20
BY-AP-MW-12V	25.51				8.15		3.46	7.83	3.53	4.33	5.00	4.53	4.19	4.63
BY-AP-MW-13V	24.65								1.48	2.23	2.93	2.47	2.57	2.62
BY-AP-MW-14V	24.72								2.13	2.26	2.88	2.41	2.09	2.22
BY-AP-MW-15V	7.03						1.97		2.17	2.71	3.23	2.83	2.52	2.55
BY-AP-MW-15VM	23.51								4.15	3.95	3.90	3.98	3.45	4.36
BY-AP-MW-16V	23.65								2.97	3.15	3.47	3.26	2.94	2.94
BY-AP-MW-17H	19.83						1.51	5.88	1.47	2.36	2.93	2.37	2.14	2.02
BY-AP-MW-17V	20.40								1.51	2.11	3.01	2.44	2.20	2.09
BY-AP-MW-18H	10.30				6.33		1.34	5.88	1.87	2.03	3.00	2.40	2.05	2.61
BY-AP-MW-19H	9.40						1.42	5.85	2.02	2.07	3.04	2.45	2.14	2.50
BY-AP-MW-20H	9.40						1.55	5.79	1.55	2.31	2.97	2.51	2.13	2.57
BY-AP-MW-20V	24.91								1.4	2.19	2.87	2.39	2.04	2.56
BY-AP-MW-22H	7.85						1.85		2.17	2.75	3.09	2.80	2.46	2.40
BY-AP-MW-23H	10.63						1.67	5.98	1.55	2.48	3.07	2.44	2.14	2.75
BY-AP-MW-23V	15.33								1.5	2.09	2.98	2.34	2.15	2.65
BY-AP-MW-24H	26.28				6.31		1.86	5.82	1.4	2.74	3.16	2.92	2.60	2.60
BY-AP-MW-25H	23.82								3.49	3.53	3.37	3.63	3.29	2.31
BY-AP-MW-25VM	23.81								3.22	3.42	3.38	3.58	3.19	3.22

Notes:

1. ft. AMSL - feet above mean sea level

2. -- Not Measured

Appendix B. Historical Groundwater Elevations Summary

Well Name	Top of Casing Elevation						Grou	indwater Ele (ft AMSL)					
	Elevation	4/30/2018	8/27/2018	11/26/2018	3/20/2019	5/28/2019	10/2/2019	3/30/2020	9/8/2020	5/24/2021	10/18/2021	5/23/2022	
BY-GSA-MW-1 ³	20.66	6.83	5.22	5.84		6.60	4.78	8.38	5.31	7.13	6.64	6.17	
BY-GSA-MW-2 ³	19.95	6.66	5.06	5.73		6.32	4.71	8.05	5.16	6.80	6.4	6.03	
BY-GSA-MW-3 ³	23.24	7.19	5.76	6.40		7.02	5.37	8.54	5.83	7.49	7.19	6.75	
BY-GSA-MW-4 ³	29.12	6.99	5.47	6.13		6.57	5.16	8.20	5.53	6.99	6.68	6.37	

Notes:

1. ft. AMSL - feet above mean sea level

2. -- Not Measured

3. BY-GSA-MW-1 - BY-GSA-MW-4 designated as upgradient Ash Pond well locations.

Appendix C

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171

FAX (205) 257-1654

Plant Barry Pooled Upgradient

2022 Compliance Event 1

All samples were collected using methods defined in Alabama Power's Water Field Group Low-Flow Groundwater Sampling Procedure and the associated site-specific Sampling and Analysis Plan (SAP).

Field readings for pH were qualified for wells MW-1, MW-2, MW-3 and MW-4 due to pH readings falling outside of the bracketed calibration range. The below qualifier was used:

• E – Estimated reported value exceeded calibration range

Rainy conditions were present when pumping and sampling well MW-4.

Field quality control procedures were performed as follows:

- Blanks and Sample Duplicates were collected as described in the SAP.
- Calibration verification for all required field parameters were performed daily, before and after sample collection.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Field Case Narrative

Plant Barry Ash Pond

2022 Compliance Event 1

All samples were collected using methods defined in Alabama Power's Water Field Group Low-Flow Groundwater Sampling Procedure and the associated site-specific Sampling and Analysis Plan (SAP).

Strong winds caused dusty conditions when sampling well MW-3.

Rain was present when pumping and sampling wells MW-19H, MW-15V, MW-7, MW-7V, MW-9, MW-14, MW-14V, MW-15 and MW-23V.

Field quality control procedures were performed as follows:

- Blanks and Sample Duplicates were collected as described in the SAP.
- Calibration verification for all required field parameters were performed daily, before and after sample collection.

Date	Weather	
Location		
Collector		

	Coll	ector						
				In Go	od Co	ndition		
		Water				Protective	Name	
Well	Time	Level (ft)	Locks	Bollards	Pad	Casing	Plate	Comment
	<u> </u>							
	<u> </u>							
	<u> </u>							
	<u> </u>							
	<u> </u>							
	<u> </u>							
	<u> </u>							
	<u> </u>							

Date	Weather	
Location		
Collector		

	Coll	ector						
				In Go	od Co	ndition		
		Water				Protective	Name	
Well	Time	Level (ft)	Locks	Bollards	Pad	Casing	Plate	Comment
	<u> </u>							
	<u> </u>							
	<u> </u>							
	<u> </u>							
	<u> </u>							
	<u> </u>							
	<u> </u>							

Date	Weather	
Location		
Collector		

	Coll	ector						
				In Go	od Co	ndition		
		Water				Protective	Name	
Well	Time	Level (ft)	Locks	Bollards	Pad	Casing	Plate	Comment
	<u> </u>							
	<u> </u>							
	<u> </u>							
	<u> </u>							
	<u> </u>							
	<u> </u>							

Groundwater Field Parameters Plant Barry Pooled Upgradient Wells

WELL ID	DESCRIPTION	TIME OF READING	VALUE	UNIT
MW-1	Conductivity	5/31/2022 13:01	58.03	uS/cm
MW-1	DO	5/31/2022 13:01	0.44	mg/L
MW-1	Depth to Water Detail	5/31/2022 13:01	13.92	ft
MW-1	Oxidation Reduction Potention	5/31/2022 13:01	181.73	mv
MW-1	pН	5/31/2022 13:01	4.26	SU
MW-1	Temperature	5/31/2022 13:01	20.95	С
MW-1	Turbidity	5/31/2022 13:01	2.43	NTU
MW-1	Conductivity	5/31/2022 13:06	57.52	uS/cm
MW-1	DO	5/31/2022 13:06	0.38	mg/L
MW-1	Depth to Water Detail	5/31/2022 13:06	13.92	ft
MW-1	Oxidation Reduction Potention	5/31/2022 13:06	186.18	mv
MW-1	pН	5/31/2022 13:06	4.12	SU
MW-1	Temperature	5/31/2022 13:06	20.84	С
MW-1	Turbidity	5/31/2022 13:06	1.33	NTU
MW-1	Conductivity	5/31/2022 13:11	56.99	uS/cm
MW-1	DO	5/31/2022 13:11	0.37	mg/L
MW-1	Depth to Water Detail	5/31/2022 13:11	13.92	ft
MW-1	Oxidation Reduction Potention	5/31/2022 13:11	195.4	mv
MW-1	pН	5/31/2022 13:11	3.86	SU
MW-1	Temperature	5/31/2022 13:11	20.98	С
MW-1	Turbidity	5/31/2022 13:11	1.27	NTU
MW-1	Conductivity	5/31/2022 13:16	57	uS/cm
MW-1	DO	5/31/2022 13:16	0.35	mg/L
MW-1	Depth to Water Detail	5/31/2022 13:16	13.92	ft
MW-1	Oxidation Reduction Potention	5/31/2022 13:16	193.75	mv
MW-1	pН	5/31/2022 13:16	3.88	SU
MW-1	Temperature	5/31/2022 13:16	20.79	C
MW-1	Turbidity	5/31/2022 13:16	1.64	NTU
MW-1	Conductivity	5/31/2022 13:21	57.06	uS/cm
MW-1	DO	5/31/2022 13:21	0.34	mg/L
MW-1	Depth to Water Detail	5/31/2022 13:21	13.92	ft
MW-1	Oxidation Reduction Potention	5/31/2022 13:21	193.96	mv
MW-1	рН	5/31/2022 13:21	3.89	SU
MW-1	Sulfide	5/31/2022 13:21	0	mg/L
MW-1	Temperature	5/31/2022 13:21	20.77	С
MW-1	Turbidity	5/31/2022 13:21	2	NTU

MW-2	Conductivity	5/31/2022 14:00	51.15	uS/cm
MW-2	DO	5/31/2022 14:00	6.6	mg/L
MW-2	Depth to Water Detail	5/31/2022 14:00	13.35	ft
MW-2	Oxidation Reduction Potention	5/31/2022 14:00	183.27	mv
MW-2	pН	5/31/2022 14:00	3.95	SU
MW-2	Temperature	5/31/2022 14:00	20.02	С
MW-2	Turbidity	5/31/2022 14:00	9.16	NTU
MW-2	Conductivity	5/31/2022 14:05	50.67	uS/cm
MW-2	DO	5/31/2022 14:05	6.45	mg/L
MW-2	Depth to Water Detail	5/31/2022 14:05	13.35	ft
MW-2	Oxidation Reduction Potention	5/31/2022 14:05	202.11	mv
MW-2	pН	5/31/2022 14:05	3.67	SU
MW-2	Temperature	5/31/2022 14:05	20.01	С
MW-2	Turbidity	5/31/2022 14:05	11.13	NTU
MW-2	Conductivity	5/31/2022 14:10	50.35	uS/cm
MW-2	DO	5/31/2022 14:10	6.29	mg/L
MW-2	Depth to Water Detail	5/31/2022 14:10	13.35	ft
MW-2	Oxidation Reduction Potention	5/31/2022 14:10	215.94	mv
MW-2	pН	5/31/2022 14:10	3.48	SU
MW-2	Temperature	5/31/2022 14:10	20.16	С
MW-2	Turbidity	5/31/2022 14:10	6.79	NTU
MW-2	Conductivity	5/31/2022 14:15	50.27	uS/cm
MW-2	DO	5/31/2022 14:15	6.29	mg/L
MW-2	Depth to Water Detail	5/31/2022 14:15	13.35	ft
MW-2	Oxidation Reduction Potention	5/31/2022 14:15	222.65	mv
MW-2	pН	5/31/2022 14:15	3.39	SU
MW-2	Temperature	5/31/2022 14:15	20.24	С
MW-2	Turbidity	5/31/2022 14:15	6.82	NTU
MW-2	Conductivity	5/31/2022 14:20	50.14	uS/cm
MW-2	DO	5/31/2022 14:20	6.28	mg/L
MW-2	Depth to Water Detail	5/31/2022 14:20	13.35	ft
MW-2	Oxidation Reduction Potention	5/31/2022 14:20	225.28	mv
MW-2	рН	5/31/2022 14:20	3.32	SU
MW-2	Temperature	5/31/2022 14:20	20.23	С
MW-2	Turbidity	5/31/2022 14:20	5.15	NTU
MW-2	Conductivity	5/31/2022 14:25	50.04	uS/cm
MW-2	DO	5/31/2022 14:25	6.27	mg/L
MW-2	Depth to Water Detail	5/31/2022 14:25	13.35	ft
MW-2	Oxidation Reduction Potention	5/31/2022 14:25	226.41	mv
MW-2	pH	5/31/2022 14:25	3.31	SU
MW-2	Sulfide	5/31/2022 14:25	0	mg/L
MW-2	Temperature	5/31/2022 14:25	20	C
MW-2	Turbidity	5/31/2022 14:25	4.82	NTU

	Tarana and an analysis and analysis and an ana	T -,,		/
MW-3	Conductivity	5/31/2022 15:04	49.81	uS/cm
MW-3	DO	5/31/2022 15:04	5.89	mg/L
MW-3	Depth to Water Detail	5/31/2022 15:04	15.93	ft
MW-3	Oxidation Reduction Potention	5/31/2022 15:04	180.26	mv
MW-3	рН	5/31/2022 15:04	4.04	SU
MW-3	Temperature	5/31/2022 15:04	20.62	С
MW-3	Turbidity	5/31/2022 15:04	5.91	NTU
MW-3	Conductivity	5/31/2022 15:09	49.95	uS/cm
MW-3	DO	5/31/2022 15:09	5.79	mg/L
MW-3	Depth to Water Detail	5/31/2022 15:09	15.93	ft
MW-3	Oxidation Reduction Potention	5/31/2022 15:09	206.7	mv
MW-3	рН	5/31/2022 15:09	3.67	SU
MW-3	Temperature	5/31/2022 15:09	20.24	С
MW-3	Turbidity	5/31/2022 15:09	5.43	NTU
MW-3	Conductivity	5/31/2022 15:14	49.71	uS/cm
MW-3	DO	5/31/2022 15:14	5.84	mg/L
MW-3	Depth to Water Detail	5/31/2022 15:14	15.93	ft
MW-3	Oxidation Reduction Potention	5/31/2022 15:14	216.27	mv
MW-3	рН	5/31/2022 15:14	3.6	SU
MW-3	Temperature	5/31/2022 15:14	20.11	С
MW-3	Turbidity	5/31/2022 15:14	3.35	NTU
MW-3	Conductivity	5/31/2022 15:19	49.57	uS/cm
MW-3	DO	5/31/2022 15:19	5.82	mg/L
MW-3	Depth to Water Detail	5/31/2022 15:19	15.93	ft
MW-3	Oxidation Reduction Potention	5/31/2022 15:19	223.76	mv
MW-3	рН	5/31/2022 15:19	3.54	SU
MW-3	Sulfide	5/31/2022 15:19	0	mg/L
MW-3	Temperature	5/31/2022 15:19	20.09	C
MW-3	Turbidity	5/31/2022 15:19	3.1	NTU
	•	•	•	

MW-4	Conductivity	5/31/2022 16:01	53.79	uS/cm
MW-4	DO	5/31/2022 16:01	6.49	mg/L
MW-4	Depth to Water Detail	5/31/2022 16:01	22.08	ft
MW-4	Oxidation Reduction Potention	5/31/2022 16:01	189.08	mv
MW-4	pН	5/31/2022 16:01	4.38	SU
MW-4	Temperature	5/31/2022 16:01	23.14	С
MW-4	Turbidity	5/31/2022 16:01	10.27	NTU
MW-4	Conductivity	5/31/2022 16:06	53.31	uS/cm
MW-4	DO	5/31/2022 16:06	6.48	mg/L
MW-4	Depth to Water Detail	5/31/2022 16:06	22.08	ft
MW-4	Oxidation Reduction Potention	5/31/2022 16:06	200.15	mv
MW-4	pН	5/31/2022 16:06	4.24	SU
MW-4	Temperature	5/31/2022 16:06	22.79	С
MW-4	Turbidity	5/31/2022 16:06	7.81	NTU
MW-4	Conductivity	5/31/2022 16:11	52.86	uS/cm
MW-4	DO	5/31/2022 16:11	6.5	mg/L
MW-4	Depth to Water Detail	5/31/2022 16:11	22.08	ft
MW-4	Oxidation Reduction Potention	5/31/2022 16:11	209.5	mv
MW-4	pН	5/31/2022 16:11	4.11	SU
MW-4	Temperature	5/31/2022 16:11	22.47	С
MW-4	Turbidity	5/31/2022 16:11	7.58	NTU
MW-4	Conductivity	5/31/2022 16:16	53.05	uS/cm
MW-4	DO	5/31/2022 16:16	6.49	mg/L
MW-4	Depth to Water Detail	5/31/2022 16:16	22.08	ft
MW-4	Oxidation Reduction Potention	5/31/2022 16:16	216.73	mv
MW-4	pH	5/31/2022 16:16	4.03	SU
MW-4	Temperature	5/31/2022 16:16	22.41	С
MW-4	Turbidity	5/31/2022 16:16	7.68	NTU
MW-4	Conductivity	5/31/2022 16:21	52.45	uS/cm
MW-4	DO	5/31/2022 16:21	6.48	mg/L
MW-4	Depth to Water Detail	5/31/2022 16:21	22.08	ft
MW-4	Oxidation Reduction Potention	5/31/2022 16:21	223.18	mv
MW-4	pН	5/31/2022 16:21	3.97	SU
MW-4	Sulfide	5/31/2022 16:21	0	mg/L
MW-4	Temperature	5/31/2022 16:21	22.67	С
MW-4	Turbidity	5/31/2022 16:21	8.23	NTU
	-	· · · · · · · · · · · · · · · · · · ·		

Groundwater Field Parameters Plant Barry Ash Pond

WELL ID	DESCRIPTION	TIME OF READING	VALUE	UNIT
BY-AP-MW-3	Conductivity	5/25/2022 14:37	49.5	uS/cm
BY-AP-MW-3	DO	5/25/2022 14:37	1.38	mg/L
BY-AP-MW-3	Depth to Water Detail	5/25/2022 14:37	22.39	ft
BY-AP-MW-3	Oxidation Reduction Potention	5/25/2022 14:37	128.56	mv
BY-AP-MW-3	рН	5/25/2022 14:37	4.37	SU
BY-AP-MW-3	Temperature	5/25/2022 14:37	21.64	С
BY-AP-MW-3	Turbidity	5/25/2022 14:37	1.32	NTU
BY-AP-MW-3	Conductivity	5/25/2022 14:42	56.82	uS/cm
BY-AP-MW-3	DO	5/25/2022 14:42	1.43	mg/L
BY-AP-MW-3	Depth to Water Detail	5/25/2022 14:42	22.39	ft
BY-AP-MW-3	Oxidation Reduction Potention	5/25/2022 14:42	127.2	mv
BY-AP-MW-3	pН	5/25/2022 14:42	4.49	SU
BY-AP-MW-3	Temperature	5/25/2022 14:42	21.67	С
BY-AP-MW-3	Turbidity	5/25/2022 14:42	1.16	NTU
BY-AP-MW-3	Conductivity	5/25/2022 14:47	60.25	uS/cm
BY-AP-MW-3	DO	5/25/2022 14:47	1.51	mg/L
BY-AP-MW-3	Depth to Water Detail	5/25/2022 14:47	22.39	ft
BY-AP-MW-3	Oxidation Reduction Potention	5/25/2022 14:47	124.66	mv
BY-AP-MW-3	pН	5/25/2022 14:47	4.61	SU
BY-AP-MW-3	Temperature	5/25/2022 14:47	21.59	С
BY-AP-MW-3	Turbidity	5/25/2022 14:47	0.94	NTU
BY-AP-MW-3	Conductivity	5/25/2022 14:52	62.71	uS/cm
BY-AP-MW-3	DO	5/25/2022 14:52	1.54	mg/L
BY-AP-MW-3	Depth to Water Detail	5/25/2022 14:52	22.39	ft
BY-AP-MW-3	Oxidation Reduction Potention	5/25/2022 14:52	127.33	mv
BY-AP-MW-3	pH	5/25/2022 14:52	4.6	SU
BY-AP-MW-3	Temperature	5/25/2022 14:52	21.61	С
BY-AP-MW-3	Turbidity	5/25/2022 14:52	0.69	NTU
BY-AP-MW-3	Conductivity	5/25/2022 14:57	64.35	uS/cm
BY-AP-MW-3	DO	5/25/2022 14:57	1.58	mg/L
BY-AP-MW-3	Depth to Water Detail	5/25/2022 14:57	22.39	ft
BY-AP-MW-3	Oxidation Reduction Potention	5/25/2022 14:57	127.37	mv
BY-AP-MW-3	pН	5/25/2022 14:57	4.63	SU
BY-AP-MW-3	Temperature	5/25/2022 14:57	21.6	С
BY-AP-MW-3	Turbidity	5/25/2022 14:57	0.58	NTU
BY-AP-MW-3	Conductivity	5/25/2022 15:02	65.47	uS/cm
BY-AP-MW-3	DO	5/25/2022 15:02	1.61	mg/L
BY-AP-MW-3	Depth to Water Detail	5/25/2022 15:02	22.39	ft
BY-AP-MW-3	Oxidation Reduction Potention	5/25/2022 15:02	129.55	mv
BY-AP-MW-3	рН	5/25/2022 15:02	4.64	SU
BY-AP-MW-3	Sulfide	5/25/2022 15:02	0	mg/L
BY-AP-MW-3	Temperature	5/25/2022 15:02	21.52	С
BY-AP-MW-3	Turbidity	5/25/2022 15:02	0.66	NTU

BY-AP-MW-8	Conductivity	5/24/2022 10:31	507.15	uS/cm
BY-AP-MW-8	DO	5/24/2022 10:31	0.25	mg/L
BY-AP-MW-8	Depth to Water Detail	5/24/2022 10:31	23.18	ft
BY-AP-MW-8	Oxidation Reduction Potention	5/24/2022 10:31	0.57	mv
BY-AP-MW-8	pH	5/24/2022 10:31	5.54	SU
BY-AP-MW-8	Temperature	5/24/2022 10:31	21.66	C
BY-AP-MW-8	Turbidity	5/24/2022 10:31	2.81	NTU
BY-AP-MW-8	Conductivity	5/24/2022 10:36	507.6	uS/cm
BY-AP-MW-8	DO	5/24/2022 10:36	0.21	mg/L
BY-AP-MW-8	Depth to Water Detail	5/24/2022 10:36	23.18	ft
BY-AP-MW-8	Oxidation Reduction Potention	5/24/2022 10:36	-6.42	mv
BY-AP-MW-8	pH	5/24/2022 10:36	5.54	SU
BY-AP-MW-8	Temperature	5/24/2022 10:36	21.62	C
BY-AP-MW-8	Turbidity	5/24/2022 10:36	3.21	NTU
BY-AP-MW-8	Conductivity	5/24/2022 10:41	508.22	uS/cm
BY-AP-MW-8	DO	5/24/2022 10:41	0.2	mg/L
BY-AP-MW-8	Depth to Water Detail	5/24/2022 10:41	23.18	ft
BY-AP-MW-8	Oxidation Reduction Potention	5/24/2022 10:41	-11.69	mv
BY-AP-MW-8	pH	5/24/2022 10:41	5.56	SU
BY-AP-MW-8	Temperature	5/24/2022 10:41	21.6	C
BY-AP-MW-8	Turbidity	5/24/2022 10:41	3.06	NTU
BY-AP-MW-8	Conductivity	5/24/2022 10:46	508.1	uS/cm
BY-AP-MW-8	DO	5/24/2022 10:46	0.19	mg/L
BY-AP-MW-8	Depth to Water Detail	5/24/2022 10:46	23.18	ft
BY-AP-MW-8	Oxidation Reduction Potention	5/24/2022 10:46	-16.23	mv
BY-AP-MW-8	pН	5/24/2022 10:46	5.6	SU
BY-AP-MW-8	Sulfide	5/24/2022 10:46	0	mg/L
BY-AP-MW-8	Temperature	5/24/2022 10:46	21.81	C
BY-AP-MW-8	Turbidity	5/24/2022 10:46	3.51	NTU

BY-AP-MW-8V	Conductivity	5/23/2022 17:08	560.66	uS/cm
BY-AP-MW-8V	DO	5/23/2022 17:08	0.28	mg/L
BY-AP-MW-8V	Depth to Water Detail	5/23/2022 17:08	22.36	ft
BY-AP-MW-8V	Oxidation Reduction Potention	5/23/2022 17:08	-23.87	mv
BY-AP-MW-8V	рН	5/23/2022 17:08	5.95	SU
BY-AP-MW-8V	Temperature	5/23/2022 17:08	20.85	С
BY-AP-MW-8V	Turbidity	5/23/2022 17:08	1.07	NTU
BY-AP-MW-8V	Conductivity	5/23/2022 17:13	557.28	uS/cm
BY-AP-MW-8V	DO	5/23/2022 17:13	0.25	mg/L
BY-AP-MW-8V	Depth to Water Detail	5/23/2022 17:13	22.36	ft
BY-AP-MW-8V	Oxidation Reduction Potention	5/23/2022 17:13	-19.98	mv
BY-AP-MW-8V	рН	5/23/2022 17:13	5.96	SU
BY-AP-MW-8V	Temperature	5/23/2022 17:13	20.85	С
BY-AP-MW-8V	Turbidity	5/23/2022 17:13	1.21	NTU
BY-AP-MW-8V	Conductivity	5/23/2022 17:18	556.98	uS/cm
BY-AP-MW-8V	DO	5/23/2022 17:18	0.24	mg/L
BY-AP-MW-8V	Depth to Water Detail	5/23/2022 17:18	22.36	ft
BY-AP-MW-8V	Oxidation Reduction Potention	5/23/2022 17:18	-22.12	mv
BY-AP-MW-8V	рН	5/23/2022 17:18	6.02	SU
BY-AP-MW-8V	Temperature	5/23/2022 17:18	20.88	С
BY-AP-MW-8V	Turbidity	5/23/2022 17:18	1.37	NTU
BY-AP-MW-8V	Conductivity	5/23/2022 17:23	557.51	uS/cm
BY-AP-MW-8V	DO	5/23/2022 17:23	0.24	mg/L
BY-AP-MW-8V	Depth to Water Detail	5/23/2022 17:23	22.36	ft
BY-AP-MW-8V	Oxidation Reduction Potention	5/23/2022 17:23	-24.72	mv
BY-AP-MW-8V	рН	5/23/2022 17:23	6.08	SU
BY-AP-MW-8V	Sulfide	5/23/2022 17:23	0	mg/L
BY-AP-MW-8V	Temperature	5/23/2022 17:23	20.86	С
BY-AP-MW-8V	Turbidity	5/23/2022 17:23	1.61	NTU

BY-AP-MW-10	Conductivity	5/24/2022 12:28	682.36	uS/cm
BY-AP-MW-10	DO	5/24/2022 12:28	0.38	mg/L
BY-AP-MW-10	Depth to Water Detail	5/24/2022 12:28	22.1	ft
BY-AP-MW-10	Oxidation Reduction Potention	5/24/2022 12:28	0.34	mv
BY-AP-MW-10	рН	5/24/2022 12:28	5.7	SU
BY-AP-MW-10	Temperature	5/24/2022 12:28	21.45	С
BY-AP-MW-10	Turbidity	5/24/2022 12:28	6.35	NTU
BY-AP-MW-10	Conductivity	5/24/2022 12:33	680.88	uS/cm
BY-AP-MW-10	DO	5/24/2022 12:33	0.34	mg/L
BY-AP-MW-10	Depth to Water Detail	5/24/2022 12:33	22.1	ft
BY-AP-MW-10	Oxidation Reduction Potention	5/24/2022 12:33	-8.82	mv
BY-AP-MW-10	рН	5/24/2022 12:33	5.74	SU
BY-AP-MW-10	Temperature	5/24/2022 12:33	21.44	C
BY-AP-MW-10	Turbidity	5/24/2022 12:33	0.21	NTU
BY-AP-MW-10	Conductivity	5/24/2022 12:38	680.76	uS/cm
BY-AP-MW-10	DO	5/24/2022 12:38	0.33	mg/L
BY-AP-MW-10	Depth to Water Detail	5/24/2022 12:38	22.1	ft
BY-AP-MW-10	Oxidation Reduction Potention	5/24/2022 12:38	-13.61	mv
BY-AP-MW-10	рН	5/24/2022 12:38	5.78	SU
BY-AP-MW-10	Temperature	5/24/2022 12:38	21.34	C
BY-AP-MW-10	Turbidity	5/24/2022 12:38	0.85	NTU
BY-AP-MW-10	Conductivity	5/24/2022 12:43	680.19	uS/cm
BY-AP-MW-10	DO	5/24/2022 12:43	0.32	mg/L
BY-AP-MW-10	Depth to Water Detail	5/24/2022 12:43	22.1	ft
BY-AP-MW-10	Oxidation Reduction Potention	5/24/2022 12:43	-17.07	mv
BY-AP-MW-10	рН	5/24/2022 12:43	5.81	SU
BY-AP-MW-10	Sulfide	5/24/2022 12:43	0	mg/L
BY-AP-MW-10	Temperature	5/24/2022 12:43	21.37	С
BY-AP-MW-10	Turbidity	5/24/2022 12:43	0.2	NTU

BY-AP-MW-10V	Conductivity	5/24/2022 14:24	733.27	uS/cm
BY-AP-MW-10V	DO	5/24/2022 14:24	0.22	mg/L
BY-AP-MW-10V	Depth to Water Detail	5/24/2022 14:24	23.06	ft
BY-AP-MW-10V	Oxidation Reduction Potention	5/24/2022 14:24	-14.11	mv
BY-AP-MW-10V	рН	5/24/2022 14:24	5.71	SU
BY-AP-MW-10V	Temperature	5/24/2022 14:24	21.42	С
BY-AP-MW-10V	Turbidity	5/24/2022 14:24	2.01	NTU
BY-AP-MW-10V	Conductivity	5/24/2022 14:26	733.38	uS/cm
BY-AP-MW-10V	DO	5/24/2022 14:26	0.2	mg/L
BY-AP-MW-10V	Depth to Water Detail	5/24/2022 14:26	23.06	ft
BY-AP-MW-10V	Oxidation Reduction Potention	5/24/2022 14:26	-19.81	mv
BY-AP-MW-10V	pН	5/24/2022 14:26	5.7	SU
BY-AP-MW-10V	Temperature	5/24/2022 14:26	21.49	С
BY-AP-MW-10V	Turbidity	5/24/2022 14:26	1.96	NTU
BY-AP-MW-10V	Conductivity	5/24/2022 14:31	728.42	uS/cm
BY-AP-MW-10V	DO	5/24/2022 14:31	0.19	mg/L
BY-AP-MW-10V	Depth to Water Detail	5/24/2022 14:31	23.06	ft
BY-AP-MW-10V	Oxidation Reduction Potention	5/24/2022 14:31	-28.53	mv
BY-AP-MW-10V	рН	5/24/2022 14:31	5.69	SU
BY-AP-MW-10V	Temperature	5/24/2022 14:31	21.48	C
BY-AP-MW-10V	Turbidity	5/24/2022 14:31	2.22	NTU
BY-AP-MW-10V	Conductivity	5/24/2022 14:36	727.36	uS/cm
BY-AP-MW-10V	DO	5/24/2022 14:36	0.18	mg/L
BY-AP-MW-10V	Depth to Water Detail	5/24/2022 14:36	23.06	ft
BY-AP-MW-10V	Oxidation Reduction Potention	5/24/2022 14:36	-35.68	mv
BY-AP-MW-10V	рН	5/24/2022 14:36	5.72	SU
BY-AP-MW-10V	Temperature	5/24/2022 14:36	21.45	C
BY-AP-MW-10V	Turbidity	5/24/2022 14:36	1.6	NTU
BY-AP-MW-10V	Conductivity	5/24/2022 14:41	726.04	uS/cm
BY-AP-MW-10V	DO	5/24/2022 14:41	0.19	mg/L
BY-AP-MW-10V	Depth to Water Detail	5/24/2022 14:41	23.06	ft
BY-AP-MW-10V	Oxidation Reduction Potention	5/24/2022 14:41	-41.2	mv
BY-AP-MW-10V	рН	5/24/2022 14:41	5.77	SU
BY-AP-MW-10V	Sulfide	5/24/2022 14:41	0	mg/L
BY-AP-MW-10V	Temperature	5/24/2022 14:41	21.44	С
BY-AP-MW-10V	Turbidity	5/24/2022 14:41	1.76	NTU

BY-AP-MW-13	Conductivity	5/24/2022 15:22	461.36	uS/cm
BY-AP-MW-13	DO	5/24/2022 15:22	0.26	mg/L
BY-AP-MW-13	Depth to Water Detail	5/24/2022 15:22	21.39	ft
BY-AP-MW-13	Oxidation Reduction Potention	5/24/2022 15:22	43.58	mv
BY-AP-MW-13	pH	5/24/2022 15:22	5.24	SU
BY-AP-MW-13	Temperature	5/24/2022 15:22	20.99	С
BY-AP-MW-13	Turbidity	5/24/2022 15:22	10.95	NTU
BY-AP-MW-13	Conductivity	5/24/2022 15:27	454.89	uS/cm
BY-AP-MW-13	DO	5/24/2022 15:27	0.23	mg/L
BY-AP-MW-13	Depth to Water Detail	5/24/2022 15:27	21.39	ft
BY-AP-MW-13	Oxidation Reduction Potention	5/24/2022 15:27	44.97	mv
BY-AP-MW-13	рН	5/24/2022 15:27	5.28	SU
BY-AP-MW-13	Temperature	5/24/2022 15:27	21.01	С
BY-AP-MW-13	Turbidity	5/24/2022 15:27	9.02	NTU
BY-AP-MW-13	Conductivity	5/24/2022 15:32	451.86	uS/cm
BY-AP-MW-13	DO	5/24/2022 15:32	0.24	mg/L
BY-AP-MW-13	Depth to Water Detail	5/24/2022 15:32	21.39	ft
BY-AP-MW-13	Oxidation Reduction Potention	5/24/2022 15:32	43.53	mv
BY-AP-MW-13	рН	5/24/2022 15:32	5.33	SU
BY-AP-MW-13	Temperature	5/24/2022 15:32	20.88	С
BY-AP-MW-13	Turbidity	5/24/2022 15:32	7.94	NTU
BY-AP-MW-13	Conductivity	5/24/2022 15:37	449.3	uS/cm
BY-AP-MW-13	DO	5/24/2022 15:37	0.23	mg/L
BY-AP-MW-13	Depth to Water Detail	5/24/2022 15:37	21.39	ft
BY-AP-MW-13	Oxidation Reduction Potention	5/24/2022 15:37	41.91	mv
BY-AP-MW-13	рН	5/24/2022 15:37	5.39	SU
BY-AP-MW-13	Temperature	5/24/2022 15:37	20.76	С
BY-AP-MW-13	Turbidity	5/24/2022 15:37	6.45	NTU
BY-AP-MW-13	Conductivity	5/24/2022 15:42	447.43	uS/cm
BY-AP-MW-13	DO	5/24/2022 15:42	0.23	mg/L
BY-AP-MW-13	Depth to Water Detail	5/24/2022 15:42	21.39	ft
BY-AP-MW-13	Oxidation Reduction Potention	5/24/2022 15:42	40.11	mv
BY-AP-MW-13	рН	5/24/2022 15:42	5.44	SU
BY-AP-MW-13	Temperature	5/24/2022 15:42	20.82	С
BY-AP-MW-13	Turbidity	5/24/2022 15:42	5.51	NTU
BY-AP-MW-13	Conductivity	5/24/2022 15:47	446.28	uS/cm
BY-AP-MW-13	DO	5/24/2022 15:47	0.22	mg/L
BY-AP-MW-13	Depth to Water Detail	5/24/2022 15:47	21.39	ft
BY-AP-MW-13	Oxidation Reduction Potention	5/24/2022 15:47	38.41	mv
BY-AP-MW-13	рН	5/24/2022 15:47	5.48	SU
BY-AP-MW-13	Temperature	5/24/2022 15:47	20.83	С
BY-AP-MW-13	Turbidity	5/24/2022 15:47	5.15	NTU
BY-AP-MW-13	Conductivity	5/24/2022 15:52	445.45	uS/cm
BY-AP-MW-13	DO	5/24/2022 15:52	0.23	mg/L
BY-AP-MW-13	Depth to Water Detail	5/24/2022 15:52	21.39	ft
BY-AP-MW-13	Oxidation Reduction Potention	5/24/2022 15:52	36.78	mv
BY-AP-MW-13	pH	5/24/2022 15:52	5.5	SU
BY-AP-MW-13	Sulfide	5/24/2022 15:52	0	mg/L
BY-AP-MW-13	Temperature	5/24/2022 15:52	20.79	C
BY-AP-MW-13	Turbidity	5/24/2022 15:52	4.94	NTU
21 111 1111 13	1	3.2 1.2022 13.32	1 11/1	1,10

BY-AP-MW-17H	Conductivity	5/25/2022 11:05	390.74	uS/cm
BY-AP-MW-17H	DO	5/25/2022 11:05	0.34	mg/L
BY-AP-MW-17H	Depth to Water Detail	5/25/2022 11:05	17.14	ft
BY-AP-MW-17H	Oxidation Reduction Potention	5/25/2022 11:05	46.02	mv
BY-AP-MW-17H	pН	5/25/2022 11:05	6.02	SU
BY-AP-MW-17H	Temperature	5/25/2022 11:05	21.64	С
BY-AP-MW-17H	Turbidity	5/25/2022 11:05	3.85	NTU
BY-AP-MW-17H	Conductivity	5/25/2022 11:10	390.86	uS/cm
BY-AP-MW-17H	DO	5/25/2022 11:10	0.31	mg/L
BY-AP-MW-17H	Depth to Water Detail	5/25/2022 11:10	17.14	ft
BY-AP-MW-17H	Oxidation Reduction Potention	5/25/2022 11:10	15.83	mv
BY-AP-MW-17H	pН	5/25/2022 11:10	6.11	SU
BY-AP-MW-17H	Temperature	5/25/2022 11:10	21.62	C
BY-AP-MW-17H	Turbidity	5/25/2022 11:10	3.11	NTU
BY-AP-MW-17H	Conductivity	5/25/2022 11:15	389.74	uS/cm
BY-AP-MW-17H	DO	5/25/2022 11:15	0.3	mg/L
BY-AP-MW-17H	Depth to Water Detail	5/25/2022 11:15	17.14	ft
BY-AP-MW-17H	Oxidation Reduction Potention	5/25/2022 11:15	-4.07	mv
BY-AP-MW-17H	pH	5/25/2022 11:15	6.16	SU
BY-AP-MW-17H	Temperature	5/25/2022 11:15	21.67	C
BY-AP-MW-17H	Turbidity	5/25/2022 11:15	2.91	NTU
BY-AP-MW-17H	Conductivity	5/25/2022 11:20	388.95	uS/cm
BY-AP-MW-17H	DO	5/25/2022 11:20	0.29	mg/L
BY-AP-MW-17H	Depth to Water Detail	5/25/2022 11:20	17.14	ft
BY-AP-MW-17H	Oxidation Reduction Potention	5/25/2022 11:20	-16.59	mv
BY-AP-MW-17H	pН	5/25/2022 11:20	6.21	SU
BY-AP-MW-17H	Sulfide	5/25/2022 11:20	0	mg/L
BY-AP-MW-17H	Temperature	5/25/2022 11:20	21.46	C
BY-AP-MW-17H	Turbidity	5/25/2022 11:20	2.84	NTU

BY-AP-MW-17V	Conductivity	5/25/2022 10:16	2097.06	uS/cm
BY-AP-MW-17V	DO	5/25/2022 10:16	0.45	mg/L
BY-AP-MW-17V	Depth to Water Detail	5/25/2022 10:16	17.53	ft
BY-AP-MW-17V	Oxidation Reduction Potention	5/25/2022 10:16	132.02	mv
BY-AP-MW-17V	рН	5/25/2022 10:16	6.4	SU
BY-AP-MW-17V	Temperature	5/25/2022 10:16	21.63	С
BY-AP-MW-17V	Turbidity	5/25/2022 10:16	7.57	NTU
BY-AP-MW-17V	Conductivity	5/25/2022 10:21	2160.09	uS/cm
BY-AP-MW-17V	DO	5/25/2022 10:21	0.42	mg/L
BY-AP-MW-17V	Depth to Water Detail	5/25/2022 10:21	17.53	ft
BY-AP-MW-17V	Oxidation Reduction Potention	5/25/2022 10:21	128.17	mv
BY-AP-MW-17V	рН	5/25/2022 10:21	6.38	SU
BY-AP-MW-17V	Temperature	5/25/2022 10:21	21.69	С
BY-AP-MW-17V	Turbidity	5/25/2022 10:21	1.61	NTU
BY-AP-MW-17V	Conductivity	5/25/2022 10:26	2222.08	uS/cm
BY-AP-MW-17V	DO	5/25/2022 10:26	0.4	mg/L
BY-AP-MW-17V	Depth to Water Detail	5/25/2022 10:26	17.53	ft
BY-AP-MW-17V	Oxidation Reduction Potention	5/25/2022 10:26	124.38	mv
BY-AP-MW-17V	pН	5/25/2022 10:26	6.37	SU
BY-AP-MW-17V	Temperature	5/25/2022 10:26	21.73	С
BY-AP-MW-17V	Turbidity	5/25/2022 10:26	1.49	NTU
BY-AP-MW-17V	Conductivity	5/25/2022 10:31	2293.2	uS/cm
BY-AP-MW-17V	DO	5/25/2022 10:31	0.39	mg/L
BY-AP-MW-17V	Depth to Water Detail	5/25/2022 10:31	17.53	ft
BY-AP-MW-17V	Oxidation Reduction Potention	5/25/2022 10:31	120.38	mv
BY-AP-MW-17V	pН	5/25/2022 10:31	6.36	SU
BY-AP-MW-17V	Temperature	5/25/2022 10:31	21.81	С
BY-AP-MW-17V	Turbidity	5/25/2022 10:31	1.58	NTU
BY-AP-MW-17V	Conductivity	5/25/2022 10:36	2332.61	uS/cm
BY-AP-MW-17V	DO	5/25/2022 10:36	0.39	mg/L
BY-AP-MW-17V	Depth to Water Detail	5/25/2022 10:36	17.53	ft
BY-AP-MW-17V	Oxidation Reduction Potention	5/25/2022 10:36	116.46	mv
BY-AP-MW-17V	рН	5/25/2022 10:36	6.34	SU
BY-AP-MW-17V	Sulfide	5/25/2022 10:36	0	mg/L
BY-AP-MW-17V	Temperature	5/25/2022 10:36	21.85	С
BY-AP-MW-17V	Turbidity	5/25/2022 10:36	1.38	NTU

BY-AP-MW-20H	Conductivity	5/23/2022 15:30	777.18	uS/cm
BY-AP-MW-20H	DO	5/23/2022 15:30	0.16	mg/L
BY-AP-MW-20H	Depth to Water Detail	5/23/2022 15:30	6.9	ft
BY-AP-MW-20H	Oxidation Reduction Potention	5/23/2022 15:30	-50.64	mv
BY-AP-MW-20H	pН	5/23/2022 15:30	6.01	SU
BY-AP-MW-20H	Temperature	5/23/2022 15:30	20	С
BY-AP-MW-20H	Turbidity	5/23/2022 15:30	4.81	NTU
BY-AP-MW-20H	Conductivity	5/23/2022 15:35	780.55	uS/cm
BY-AP-MW-20H	DO	5/23/2022 15:35	0.14	mg/L
BY-AP-MW-20H	Depth to Water Detail	5/23/2022 15:35	6.9	ft
BY-AP-MW-20H	Oxidation Reduction Potention	5/23/2022 15:35	-50.56	mv
BY-AP-MW-20H	pН	5/23/2022 15:35	6.03	SU
BY-AP-MW-20H	Temperature	5/23/2022 15:35	19.98	C
BY-AP-MW-20H	Turbidity	5/23/2022 15:35	2.17	NTU
BY-AP-MW-20H	Conductivity	5/23/2022 15:40	781.72	uS/cm
BY-AP-MW-20H	DO	5/23/2022 15:40	0.12	mg/L
BY-AP-MW-20H	Depth to Water Detail	5/23/2022 15:40	6.9	ft
BY-AP-MW-20H	Oxidation Reduction Potention	5/23/2022 15:40	-54.17	mv
BY-AP-MW-20H	pН	5/23/2022 15:40	6.11	SU
BY-AP-MW-20H	Temperature	5/23/2022 15:40	19.97	C
BY-AP-MW-20H	Turbidity	5/23/2022 15:40	1.88	NTU
BY-AP-MW-20H	Conductivity	5/23/2022 15:45	784.43	uS/cm
BY-AP-MW-20H	DO	5/23/2022 15:45	0.12	mg/L
BY-AP-MW-20H	Depth to Water Detail	5/23/2022 15:45	6.9	ft
BY-AP-MW-20H	Oxidation Reduction Potention	5/23/2022 15:45	-56.87	mv
BY-AP-MW-20H	pН	5/23/2022 15:45	6.15	SU
BY-AP-MW-20H	Sulfide	5/23/2022 15:45	0	mg/L
BY-AP-MW-20H	Temperature	5/23/2022 15:45	19.98	С
BY-AP-MW-20H	Turbidity	5/23/2022 15:45	1.75	NTU

	T		T	
BY-AP-MW-22H	Conductivity	5/24/2022 8:56	658.54	uS/cm
BY-AP-MW-22H	DO	5/24/2022 8:56	0.23	mg/L
BY-AP-MW-22H	Depth to Water Detail	5/24/2022 8:56	6.04	ft
BY-AP-MW-22H	Oxidation Reduction Potention	5/24/2022 8:56	-57.07	mv
BY-AP-MW-22H	рН	5/24/2022 8:56	6.4	SU
BY-AP-MW-22H	Temperature	5/24/2022 8:56	20.27	С
BY-AP-MW-22H	Turbidity	5/24/2022 8:56	8.4	NTU
BY-AP-MW-22H	Conductivity	5/24/2022 9:01	661.62	uS/cm
BY-AP-MW-22H	DO	5/24/2022 9:01	0.19	mg/L
BY-AP-MW-22H	Depth to Water Detail	5/24/2022 9:01	6.04	ft
BY-AP-MW-22H	Oxidation Reduction Potention	5/24/2022 9:01	-60.21	mv
BY-AP-MW-22H	рН	5/24/2022 9:01	6.45	SU
BY-AP-MW-22H	Temperature	5/24/2022 9:01	20.27	С
BY-AP-MW-22H	Turbidity	5/24/2022 9:01	3.29	NTU
BY-AP-MW-22H	Conductivity	5/24/2022 9:06	669.21	uS/cm
BY-AP-MW-22H	DO	5/24/2022 9:06	0.17	mg/L
BY-AP-MW-22H	Depth to Water Detail	5/24/2022 9:06	6.04	ft
BY-AP-MW-22H	Oxidation Reduction Potention	5/24/2022 9:06	-67.03	mv
BY-AP-MW-22H	рН	5/24/2022 9:06	6.54	SU
BY-AP-MW-22H	Temperature	5/24/2022 9:06	20.28	С
BY-AP-MW-22H	Turbidity	5/24/2022 9:06	2.96	NTU
BY-AP-MW-22H	Conductivity	5/24/2022 9:11	669.92	uS/cm
BY-AP-MW-22H	DO	5/24/2022 9:11	0.17	mg/L
BY-AP-MW-22H	Depth to Water Detail	5/24/2022 9:11	6.04	ft
BY-AP-MW-22H	Oxidation Reduction Potention	5/24/2022 9:11	-70.67	mv
BY-AP-MW-22H	рН	5/24/2022 9:11	6.57	SU
BY-AP-MW-22H	Sulfide	5/24/2022 9:11	0	mg/L
BY-AP-MW-22H	Temperature	5/24/2022 9:11	20.28	C
BY-AP-MW-22H	Turbidity	5/24/2022 9:11	2.32	NTU

BY-AP-MW-23H	Conductivity	5/25/2022 13:25	469.22	uS/cm
BY-AP-MW-23H	DO	5/25/2022 13:25	0.31	mg/L
BY-AP-MW-23H	Depth to Water Detail	5/25/2022 13:25	7.91	ft
BY-AP-MW-23H	Oxidation Reduction Potention	5/25/2022 13:25	21.15	mv
BY-AP-MW-23H	рН	5/25/2022 13:25	5.78	SU
BY-AP-MW-23H	Temperature	5/25/2022 13:25	20.08	C
BY-AP-MW-23H	Turbidity	5/25/2022 13:25	2.58	NTU
BY-AP-MW-23H	Conductivity	5/25/2022 13:30	460.99	uS/cm
BY-AP-MW-23H	DO	5/25/2022 13:30	0.26	mg/L
BY-AP-MW-23H	Depth to Water Detail	5/25/2022 13:30	7.91	ft
BY-AP-MW-23H	Oxidation Reduction Potention	5/25/2022 13:30	18.83	mv
BY-AP-MW-23H	рН	5/25/2022 13:30	5.74	SU
BY-AP-MW-23H	Temperature	5/25/2022 13:30	20.07	С
BY-AP-MW-23H	Turbidity	5/25/2022 13:30	2.66	NTU
BY-AP-MW-23H	Conductivity	5/25/2022 13:35	446.96	uS/cm
BY-AP-MW-23H	DO	5/25/2022 13:35	0.24	mg/L
BY-AP-MW-23H	Depth to Water Detail	5/25/2022 13:35	7.91	ft
BY-AP-MW-23H	Oxidation Reduction Potention	5/25/2022 13:35	12.76	mv
BY-AP-MW-23H	pН	5/25/2022 13:35	5.78	SU
BY-AP-MW-23H	Temperature	5/25/2022 13:35	20.09	С
BY-AP-MW-23H	Turbidity	5/25/2022 13:35	1.95	NTU
BY-AP-MW-23H	Conductivity	5/25/2022 13:40	425.4	uS/cm
BY-AP-MW-23H	DO	5/25/2022 13:40	0.23	mg/L
BY-AP-MW-23H	Depth to Water Detail	5/25/2022 13:40	7.91	ft
BY-AP-MW-23H	Oxidation Reduction Potention	5/25/2022 13:40	6.78	mv
BY-AP-MW-23H	pН	5/25/2022 13:40	5.81	SU
BY-AP-MW-23H	Temperature	5/25/2022 13:40	20.15	С
BY-AP-MW-23H	Turbidity	5/25/2022 13:40	2.72	NTU
BY-AP-MW-23H	Conductivity	5/25/2022 13:45	429.7	uS/cm
BY-AP-MW-23H	DO	5/25/2022 13:45	0.22	mg/L
BY-AP-MW-23H	Depth to Water Detail	5/25/2022 13:45	7.91	ft
BY-AP-MW-23H	Oxidation Reduction Potention	5/25/2022 13:45	2.27	mv
BY-AP-MW-23H	pН	5/25/2022 13:45	5.87	SU
BY-AP-MW-23H	Temperature	5/25/2022 13:45	20.15	C
BY-AP-MW-23H	Turbidity	5/25/2022 13:45	2.36	NTU
BY-AP-MW-23H	Conductivity	5/25/2022 13:50	411.87	uS/cm
BY-AP-MW-23H	DO	5/25/2022 13:50	0.22	mg/L
BY-AP-MW-23H	Depth to Water Detail	5/25/2022 13:50	7.91	ft
BY-AP-MW-23H	Oxidation Reduction Potention	5/25/2022 13:50	-1.91	mv
BY-AP-MW-23H	рН	5/25/2022 13:50	5.92	SU
BY-AP-MW-23H	Sulfide	5/25/2022 13:50	0	mg/L
BY-AP-MW-23H	Temperature	5/25/2022 13:50	20.16	С
BY-AP-MW-23H	Turbidity	5/25/2022 13:50	1.45	NTU

BY-AP-MW-23V	Conductivity	5/25/2022 12:27	625.35	uS/cm
BY-AP-MW-23V	DO	5/25/2022 12:27	0.52	mg/L
BY-AP-MW-23V	Depth to Water Detail	5/25/2022 12:27	12.47	ft
BY-AP-MW-23V	Oxidation Reduction Potention	5/25/2022 12:27	42.94	mv
BY-AP-MW-23V	рН	5/25/2022 12:27	6.85	SU
BY-AP-MW-23V	Temperature	5/25/2022 12:27	20.61	С
BY-AP-MW-23V	Turbidity	5/25/2022 12:27	4.93	NTU
BY-AP-MW-23V	Conductivity	5/25/2022 12:32	633.32	uS/cm
BY-AP-MW-23V	DO	5/25/2022 12:32	0.47	mg/L
BY-AP-MW-23V	Depth to Water Detail	5/25/2022 12:32	12.47	ft
BY-AP-MW-23V	Oxidation Reduction Potention	5/25/2022 12:32	20.6	mv
BY-AP-MW-23V	pН	5/25/2022 12:32	7.11	SU
BY-AP-MW-23V	Temperature	5/25/2022 12:32	20.63	С
BY-AP-MW-23V	Turbidity	5/25/2022 12:32	1.91	NTU
BY-AP-MW-23V	Conductivity	5/25/2022 12:37	635.02	uS/cm
BY-AP-MW-23V	DO	5/25/2022 12:37	0.46	mg/L
BY-AP-MW-23V	Depth to Water Detail	5/25/2022 12:37	12.47	ft
BY-AP-MW-23V	Oxidation Reduction Potention	5/25/2022 12:37	-1.37	mv
BY-AP-MW-23V	рН	5/25/2022 12:37	7.25	SU
BY-AP-MW-23V	Temperature	5/25/2022 12:37	20.61	C
BY-AP-MW-23V	Turbidity	5/25/2022 12:37	2.06	NTU
BY-AP-MW-23V	Conductivity	5/25/2022 12:42	635.81	uS/cm
BY-AP-MW-23V	DO	5/25/2022 12:42	0.45	mg/L
BY-AP-MW-23V	Depth to Water Detail	5/25/2022 12:42	12.47	ft
BY-AP-MW-23V	Oxidation Reduction Potention	5/25/2022 12:42	-20.8	mv
BY-AP-MW-23V	рН	5/25/2022 12:42	7.36	SU
BY-AP-MW-23V	Temperature	5/25/2022 12:42	20.56	С
BY-AP-MW-23V	Turbidity	5/25/2022 12:42	2.15	NTU
BY-AP-MW-23V	Conductivity	5/25/2022 12:47	636.87	uS/cm
BY-AP-MW-23V	DO	5/25/2022 12:47	0.44	mg/L
BY-AP-MW-23V	Depth to Water Detail	5/25/2022 12:47	12.47	ft
BY-AP-MW-23V	Oxidation Reduction Potention	5/25/2022 12:47	-36.42	mv
BY-AP-MW-23V	рН	5/25/2022 12:47	7.44	SU
BY-AP-MW-23V	Sulfide	5/25/2022 12:47	0	mg/L
BY-AP-MW-23V	Temperature	5/25/2022 12:47	20.55	С
BY-AP-MW-23V	Turbidity	5/25/2022 12:47	2.11	NTU

BY-AP-MW-4	Conductivity	5/25/2022 15:18	73.31	uS/cm
BY-AP-MW-4	DO	5/25/2022 15:18	1.39	mg/L
BY-AP-MW-4	Depth to Water Detail	5/25/2022 15:18	23.06	ft
BY-AP-MW-4	Oxidation Reduction Potention	5/25/2022 15:18	192.54	mv
BY-AP-MW-4	pH	5/25/2022 15:18	4.45	SU
BY-AP-MW-4	Temperature	5/25/2022 15:18	22.62	С
BY-AP-MW-4	Turbidity	5/25/2022 15:18	1.54	NTU
BY-AP-MW-4	Conductivity	5/25/2022 15:23	72.88	uS/cm
BY-AP-MW-4	DO	5/25/2022 15:23	1.3	mg/L
BY-AP-MW-4	Depth to Water Detail	5/25/2022 15:23	23.06	ft
BY-AP-MW-4	Oxidation Reduction Potention	5/25/2022 15:23	206.52	mv
BY-AP-MW-4	pH	5/25/2022 15:23	4.53	SU
BY-AP-MW-4	Temperature	5/25/2022 15:23	22.51	С
BY-AP-MW-4	Turbidity	5/25/2022 15:23	1.52	NTU
BY-AP-MW-4	Conductivity	5/25/2022 15:28	73.22	uS/cm
BY-AP-MW-4	DO	5/25/2022 15:28	1.32	mg/L
BY-AP-MW-4	Depth to Water Detail	5/25/2022 15:28	23.06	ft
BY-AP-MW-4	Oxidation Reduction Potention	5/25/2022 15:28	218.48	mv
BY-AP-MW-4	pH	5/25/2022 15:28	4.56	SU
BY-AP-MW-4	Temperature	5/25/2022 15:28	22.64	С
BY-AP-MW-4	Turbidity	5/25/2022 15:28	1.48	NTU
BY-AP-MW-4	Conductivity	5/25/2022 15:33	72.52	uS/cm
BY-AP-MW-4	DO	5/25/2022 15:33	1.3	mg/L
BY-AP-MW-4	Depth to Water Detail	5/25/2022 15:33	23.06	ft
BY-AP-MW-4	Oxidation Reduction Potention	5/25/2022 15:33	226.63	mv
BY-AP-MW-4	pН	5/25/2022 15:33	4.6	SU
BY-AP-MW-4	Sulfide	5/25/2022 15:33	0	mg/L
BY-AP-MW-4	Temperature	5/25/2022 15:33	22.57	С
BY-AP-MW-4	Turbidity	5/25/2022 15:33	1.54	NTU

BY-AP-MW-16	Conductivity	5/25/2022 14:36	469.13	uS/cm
BY-AP-MW-16	DO	5/25/2022 14:36	0.08	mg/L
BY-AP-MW-16	Depth to Water Detail	5/25/2022 14:36	21.32	ft
BY-AP-MW-16	Oxidation Reduction Potention	5/25/2022 14:36	5.15	mv
BY-AP-MW-16	рН	5/25/2022 14:36	5.7	SU
BY-AP-MW-16	Temperature	5/25/2022 14:36	22.17	С
BY-AP-MW-16	Turbidity	5/25/2022 14:36	2.82	NTU
BY-AP-MW-16	Conductivity	5/25/2022 14:41	475.8	uS/cm
BY-AP-MW-16	DO	5/25/2022 14:41	0.09	mg/L
BY-AP-MW-16	Depth to Water Detail	5/25/2022 14:41	21.32	ft
BY-AP-MW-16	Oxidation Reduction Potention	5/25/2022 14:41	0.78	mv
BY-AP-MW-16	рН	5/25/2022 14:41	5.73	SU
BY-AP-MW-16	Temperature	5/25/2022 14:41	22.23	С
BY-AP-MW-16	Turbidity	5/25/2022 14:41	1.75	NTU
BY-AP-MW-16	Conductivity	5/25/2022 14:46	478.13	uS/cm
BY-AP-MW-16	DO	5/25/2022 14:46	0.09	mg/L
BY-AP-MW-16	Depth to Water Detail	5/25/2022 14:46	21.32	ft
BY-AP-MW-16	Oxidation Reduction Potention	5/25/2022 14:46	-1.73	mv
BY-AP-MW-16	рН	5/25/2022 14:46	5.73	SU
BY-AP-MW-16	Temperature	5/25/2022 14:46	22.15	С
BY-AP-MW-16	Turbidity	5/25/2022 14:46	1.63	NTU
BY-AP-MW-16	Conductivity	5/25/2022 14:51	474.44	uS/cm
BY-AP-MW-16	DO	5/25/2022 14:51	0.09	mg/L
BY-AP-MW-16	Depth to Water Detail	5/25/2022 14:51	21.32	ft
BY-AP-MW-16	Oxidation Reduction Potention	5/25/2022 14:51	-3.49	mv
BY-AP-MW-16	рН	5/25/2022 14:51	5.74	SU
BY-AP-MW-16	Sulfide	5/25/2022 14:51	0	mg/L
BY-AP-MW-16	Temperature	5/25/2022 14:51	22.27	C
BY-AP-MW-16	Turbidity	5/25/2022 14:51	1.8	NTU

BY-AP-MW-16V	Conductivity	5/25/2022 13:48	316.69	uS/cm
BY-AP-MW-16V	DO	5/25/2022 13:48	0.45	mg/L
BY-AP-MW-16V	Depth to Water Detail	5/25/2022 13:48	19.98	ft
BY-AP-MW-16V	Oxidation Reduction Potention	5/25/2022 13:48	115.47	mv
BY-AP-MW-16V	pН	5/25/2022 13:48	5.18	SU
BY-AP-MW-16V	Temperature	5/25/2022 13:48	22.11	С
BY-AP-MW-16V	Turbidity	5/25/2022 13:48	3.45	NTU
BY-AP-MW-16V	Conductivity	5/25/2022 13:53	308.91	uS/cm
BY-AP-MW-16V	DO	5/25/2022 13:53	0.4	mg/L
BY-AP-MW-16V	Depth to Water Detail	5/25/2022 13:53	19.98	ft
BY-AP-MW-16V	Oxidation Reduction Potention	5/25/2022 13:53	116.69	mv
BY-AP-MW-16V	pН	5/25/2022 13:53	5.22	SU
BY-AP-MW-16V	Temperature	5/25/2022 13:53	22.24	C
BY-AP-MW-16V	Turbidity	5/25/2022 13:53	1.83	NTU
BY-AP-MW-16V	Conductivity	5/25/2022 13:58	317.04	uS/cm
BY-AP-MW-16V	DO	5/25/2022 13:58	0.39	mg/L
BY-AP-MW-16V	Depth to Water Detail	5/25/2022 13:58	19.98	ft
BY-AP-MW-16V	Oxidation Reduction Potention	5/25/2022 13:58	116.86	mv
BY-AP-MW-16V	рН	5/25/2022 13:58	5.25	SU
BY-AP-MW-16V	Temperature	5/25/2022 13:58	22.33	C
BY-AP-MW-16V	Turbidity	5/25/2022 13:58	1.6	NTU
BY-AP-MW-16V	Conductivity	5/25/2022 14:03	318.16	uS/cm
BY-AP-MW-16V	DO	5/25/2022 14:03	0.39	mg/L
BY-AP-MW-16V	Depth to Water Detail	5/25/2022 14:03	19.98	ft
BY-AP-MW-16V	Oxidation Reduction Potention	5/25/2022 14:03	117.25	mv
BY-AP-MW-16V	рН	5/25/2022 14:03	5.26	SU
BY-AP-MW-16V	Sulfide	5/25/2022 14:03	0	mg/L
BY-AP-MW-16V	Temperature	5/25/2022 14:03	22.23	C
BY-AP-MW-16V	Turbidity	5/25/2022 14:03	1.38	NTU

BY-AP-MW-15	Conductivity	5/25/2022 12:50	596.28	uS/cm
BY-AP-MW-15	DO	5/25/2022 12:50	0.11	mg/L
BY-AP-MW-15	Depth to Water Detail	5/25/2022 12:50	20.63	ft
BY-AP-MW-15	Oxidation Reduction Potention	5/25/2022 12:50	-118.55	mv
BY-AP-MW-15	рН	5/25/2022 12:50	6.7	SU
BY-AP-MW-15	Temperature	5/25/2022 12:50	21.73	С
BY-AP-MW-15	Turbidity	5/25/2022 12:50	11.4	NTU
BY-AP-MW-15	Conductivity	5/25/2022 12:55	573.11	uS/cm
BY-AP-MW-15	DO	5/25/2022 12:55	0.1	mg/L
BY-AP-MW-15	Depth to Water Detail	5/25/2022 12:55	20.63	ft
BY-AP-MW-15	Oxidation Reduction Potention	5/25/2022 12:55	-119.96	mv
BY-AP-MW-15	рН	5/25/2022 12:55	6.69	SU
BY-AP-MW-15	Temperature	5/25/2022 12:55	21.74	С
BY-AP-MW-15	Turbidity	5/25/2022 12:55	4.68	NTU
BY-AP-MW-15	Conductivity	5/25/2022 13:00	564.7	uS/cm
BY-AP-MW-15	DO	5/25/2022 13:00	0.09	mg/L
BY-AP-MW-15	Depth to Water Detail	5/25/2022 13:00	20.63	ft
BY-AP-MW-15	Oxidation Reduction Potention	5/25/2022 13:00	-120.56	mv
BY-AP-MW-15	рН	5/25/2022 13:00	6.7	SU
BY-AP-MW-15	Temperature	5/25/2022 13:00	21.8	C
BY-AP-MW-15	Turbidity	5/25/2022 13:00	5.02	NTU
BY-AP-MW-15	Conductivity	5/25/2022 13:05	564.84	uS/cm
BY-AP-MW-15	DO	5/25/2022 13:05	0.09	mg/L
BY-AP-MW-15	Depth to Water Detail	5/25/2022 13:05	20.63	ft
BY-AP-MW-15	Oxidation Reduction Potention	5/25/2022 13:05	-119.75	mv
BY-AP-MW-15	рН	5/25/2022 13:05	6.68	SU
BY-AP-MW-15	Sulfide	5/25/2022 13:05	0	mg/L
BY-AP-MW-15	Temperature	5/25/2022 13:05	21.92	C
BY-AP-MW-15	Turbidity	5/25/2022 13:05	3.64	NTU

BY-AP-MW-14	Conductivity	5/25/2022 11:38	525.4	uS/cm
BY-AP-MW-14	DO	5/25/2022 11:38	0.4	mg/L
BY-AP-MW-14	Depth to Water Detail	5/25/2022 11:38	9.42	ft
BY-AP-MW-14	Oxidation Reduction Potention	5/25/2022 11:38	-32.15	mv
BY-AP-MW-14	рН	5/25/2022 11:38	6.1	SU
BY-AP-MW-14	Temperature	5/25/2022 11:38	20.92	С
BY-AP-MW-14	Turbidity	5/25/2022 11:38	3.14	NTU
BY-AP-MW-14	Conductivity	5/25/2022 11:43	519.96	uS/cm
BY-AP-MW-14	DO	5/25/2022 11:43	0.36	mg/L
BY-AP-MW-14	Depth to Water Detail	5/25/2022 11:43	9.42	ft
BY-AP-MW-14	Oxidation Reduction Potention	5/25/2022 11:43	-34.08	mv
BY-AP-MW-14	рН	5/25/2022 11:43	6.13	SU
BY-AP-MW-14	Temperature	5/25/2022 11:43	20.61	С
BY-AP-MW-14	Turbidity	5/25/2022 11:43	3.47	NTU
BY-AP-MW-14	Conductivity	5/25/2022 11:48	515.57	uS/cm
BY-AP-MW-14	DO	5/25/2022 11:48	0.34	mg/L
BY-AP-MW-14	Depth to Water Detail	5/25/2022 11:48	9.42	ft
BY-AP-MW-14	Oxidation Reduction Potention	5/25/2022 11:48	-34.19	mv
BY-AP-MW-14	рН	5/25/2022 11:48	6.13	SU
BY-AP-MW-14	Temperature	5/25/2022 11:48	20.6	С
BY-AP-MW-14	Turbidity	5/25/2022 11:48	3.42	NTU
BY-AP-MW-14	Conductivity	5/25/2022 11:53	512.57	uS/cm
BY-AP-MW-14	DO	5/25/2022 11:53	0.33	mg/L
BY-AP-MW-14	Depth to Water Detail	5/25/2022 11:53	9.42	ft
BY-AP-MW-14	Oxidation Reduction Potention	5/25/2022 11:53	-33.94	mv
BY-AP-MW-14	рН	5/25/2022 11:53	6.14	SU
BY-AP-MW-14	Sulfide	5/25/2022 11:53	0	mg/L
BY-AP-MW-14	Temperature	5/25/2022 11:53	20.59	С
BY-AP-MW-14	Turbidity	5/25/2022 11:53	3.06	NTU

DI	la	T /2.5/2022 10.05	7.60.11	Q./
BY-AP-MW-13V	Conductivity	5/25/2022 10:05	562.11	uS/cm
BY-AP-MW-13V	DO DO TO	5/25/2022 10:05	0.2	mg/L
BY-AP-MW-13V	Depth to Water Detail	5/25/2022 10:05	21.68	ft
BY-AP-MW-13V	Oxidation Reduction Potention	5/25/2022 10:05	-65.04	mv
BY-AP-MW-13V	pH	5/25/2022 10:05	6.38	SU
BY-AP-MW-13V	Temperature	5/25/2022 10:05	20.77	С
BY-AP-MW-13V	Turbidity	5/25/2022 10:05	11.1	NTU
BY-AP-MW-13V	Conductivity	5/25/2022 10:10	521.84	uS/cm
BY-AP-MW-13V	DO	5/25/2022 10:10	0.17	mg/L
BY-AP-MW-13V	Depth to Water Detail	5/25/2022 10:10	21.68	ft
BY-AP-MW-13V	Oxidation Reduction Potention	5/25/2022 10:10	-62.95	mv
BY-AP-MW-13V	рН	5/25/2022 10:10	6.35	SU
BY-AP-MW-13V	Temperature	5/25/2022 10:10	20.76	С
BY-AP-MW-13V	Turbidity	5/25/2022 10:10	4.45	NTU
BY-AP-MW-13V	Conductivity	5/25/2022 10:15	491.75	uS/cm
BY-AP-MW-13V	DO	5/25/2022 10:15	0.17	mg/L
BY-AP-MW-13V	Depth to Water Detail	5/25/2022 10:15	21.68	ft
BY-AP-MW-13V	Oxidation Reduction Potention	5/25/2022 10:15	-60.87	mv
BY-AP-MW-13V	рН	5/25/2022 10:15	6.33	SU
BY-AP-MW-13V	Temperature	5/25/2022 10:15	20.72	С
BY-AP-MW-13V	Turbidity	5/25/2022 10:15	2.72	NTU
BY-AP-MW-13V	Conductivity	5/25/2022 10:20	474.84	uS/cm
BY-AP-MW-13V	DO	5/25/2022 10:20	0.17	mg/L
BY-AP-MW-13V	Depth to Water Detail	5/25/2022 10:20	21.68	ft
BY-AP-MW-13V	Oxidation Reduction Potention	5/25/2022 10:20	-59.41	mv
BY-AP-MW-13V	рН	5/25/2022 10:20	6.33	SU
BY-AP-MW-13V	Temperature	5/25/2022 10:20	20.72	С
BY-AP-MW-13V	Turbidity	5/25/2022 10:20	2.55	NTU
BY-AP-MW-13V	Conductivity	5/25/2022 10:25	458.91	uS/cm
BY-AP-MW-13V	DO	5/25/2022 10:25	0.17	mg/L
BY-AP-MW-13V	Depth to Water Detail	5/25/2022 10:25	21.68	ft
BY-AP-MW-13V	Oxidation Reduction Potention	5/25/2022 10:25	-57.81	mv
BY-AP-MW-13V	pН	5/25/2022 10:25	6.32	SU
BY-AP-MW-13V	Temperature	5/25/2022 10:25	20.88	С
BY-AP-MW-13V	Turbidity	5/25/2022 10:25	2.95	NTU
BY-AP-MW-13V	Conductivity	5/25/2022 10:30	446.58	uS/cm
BY-AP-MW-13V	DO	5/25/2022 10:30	0.17	mg/L
BY-AP-MW-13V	Depth to Water Detail	5/25/2022 10:30	21.68	ft
BY-AP-MW-13V	Oxidation Reduction Potention	5/25/2022 10:30	-56.57	mv
BY-AP-MW-13V	рН	5/25/2022 10:30	6.32	SU
BY-AP-MW-13V	Temperature	5/25/2022 10:30	21	C
BY-AP-MW-13V	Turbidity	5/25/2022 10:30	2.12	NTU
BY-AP-MW-13V	Conductivity	5/25/2022 10:35	527.9	uS/cm
BY-AP-MW-13V	DO	5/25/2022 10:35	0.17	mg/L
BY-AP-MW-13V	Depth to Water Detail	5/25/2022 10:35	21.68	ft
BY-AP-MW-13V	Oxidation Reduction Potention	5/25/2022 10:35	-54.04	mv
BY-AP-MW-13V	рН	5/25/2022 10:35	6.29	SU
BY-AP-MW-13V	Temperature	5/25/2022 10:35	20.93	С
BY-AP-MW-13V	Turbidity	5/25/2022 10:35	2.76	NTU
BY-AP-MW-13V	Conductivity	5/25/2022 10:40	564.08	uS/cm
BY-AP-MW-13V	DO	5/25/2022 10:40	0.17	mg/L
BY-AP-MW-13V	Depth to Water Detail	5/25/2022 10:40	21.68	ft
BY-AP-MW-13V	Oxidation Reduction Potention	5/25/2022 10:40	-52.86	mv
BY-AP-MW-13V	рН	5/25/2022 10:40	6.28	SU
BY-AP-MW-13V	Temperature	5/25/2022 10:40	20.96	С
-	· -			

BY-AP-MW-13V	Turbidity	5/25/2022 10:40	1.88	NTU
BY-AP-MW-13V	Conductivity	5/25/2022 10:45	564.18	uS/cm
BY-AP-MW-13V	DO	5/25/2022 10:45	0.17	mg/L
BY-AP-MW-13V	Depth to Water Detail	5/25/2022 10:45	21.68	ft
BY-AP-MW-13V	Oxidation Reduction Potention	5/25/2022 10:45	-52.3	mv
BY-AP-MW-13V	рН	5/25/2022 10:45	6.29	SU
BY-AP-MW-13V	Temperature	5/25/2022 10:45	20.92	C
BY-AP-MW-13V	Turbidity	5/25/2022 10:45	1.66	NTU
BY-AP-MW-13V	Conductivity	5/25/2022 10:50	561.68	uS/cm
BY-AP-MW-13V	DO	5/25/2022 10:50	0.17	mg/L
BY-AP-MW-13V	Depth to Water Detail	5/25/2022 10:50	21.68	ft
BY-AP-MW-13V	Oxidation Reduction Potention	5/25/2022 10:50	-52.01	mv
BY-AP-MW-13V	pН	5/25/2022 10:50	6.3	SU
BY-AP-MW-13V	Sulfide	5/25/2022 10:50	0	mg/L
BY-AP-MW-13V	Temperature	5/25/2022 10:50	20.8	С
BY-AP-MW-13V	Turbidity	5/25/2022 10:50	2.04	NTU

BY-AP-MW-14V	Conductivity	5/24/2022 16:06	1066.31	uS/cm
BY-AP-MW-14V	DO	5/24/2022 16:06	0.54	mg/L
BY-AP-MW-14V	Depth to Water Detail	5/24/2022 16:06	22.15	ft
BY-AP-MW-14V	Oxidation Reduction Potention	5/24/2022 16:06	-124.62	mv
BY-AP-MW-14V	pН	5/24/2022 16:06	6.96	SU
BY-AP-MW-14V	Temperature	5/24/2022 16:06	21.81	С
BY-AP-MW-14V	Turbidity	5/24/2022 16:06	3.23	NTU
BY-AP-MW-14V	Conductivity	5/24/2022 16:11	982.38	uS/cm
BY-AP-MW-14V	DO	5/24/2022 16:11	0.45	mg/L
BY-AP-MW-14V	Depth to Water Detail	5/24/2022 16:11	22.15	ft
BY-AP-MW-14V	Oxidation Reduction Potention	5/24/2022 16:11	-104.88	mv
BY-AP-MW-14V	pН	5/24/2022 16:11	6.69	SU
BY-AP-MW-14V	Temperature	5/24/2022 16:11	21.7	C
BY-AP-MW-14V	Turbidity	5/24/2022 16:11	1.06	NTU
BY-AP-MW-14V	Conductivity	5/24/2022 16:16	982.39	uS/cm
BY-AP-MW-14V	DO	5/24/2022 16:16	0.43	mg/L
BY-AP-MW-14V	Depth to Water Detail	5/24/2022 16:16	22.15	ft
BY-AP-MW-14V	Oxidation Reduction Potention	5/24/2022 16:16	-104.29	mv
BY-AP-MW-14V	pH	5/24/2022 16:16	6.69	SU
BY-AP-MW-14V	Temperature	5/24/2022 16:16	21.52	C
BY-AP-MW-14V	Turbidity	5/24/2022 16:16	1.26	NTU
BY-AP-MW-14V	Conductivity	5/24/2022 16:21	969.26	uS/cm
BY-AP-MW-14V	DO	5/24/2022 16:21	0.42	mg/L
BY-AP-MW-14V	Depth to Water Detail	5/24/2022 16:21	22.15	ft
BY-AP-MW-14V	Oxidation Reduction Potention	5/24/2022 16:21	-104.33	mv
BY-AP-MW-14V	pН	5/24/2022 16:21	6.71	SU
BY-AP-MW-14V	Sulfide	5/24/2022 16:21	0	mg/L
BY-AP-MW-14V	Temperature	5/24/2022 16:21	21.42	C
BY-AP-MW-14V	Turbidity	5/24/2022 16:21	1.07	NTU

BY-AP-MW-9	Conductivity	5/24/2022 14:57	542.4	uS/cm
BY-AP-MW-9	DO	5/24/2022 14:57	0.31	mg/L
BY-AP-MW-9	Depth to Water Detail	5/24/2022 14:57	21.92	ft
BY-AP-MW-9	Oxidation Reduction Potention	5/24/2022 14:57	-75.39	mv
BY-AP-MW-9	pH	5/24/2022 14:57	6.01	SU
BY-AP-MW-9	Temperature	5/24/2022 14:57	22.25	С
BY-AP-MW-9	Turbidity	5/24/2022 14:57	1.96	NTU
BY-AP-MW-9	Conductivity	5/24/2022 15:02	549.58	uS/cm
BY-AP-MW-9	DO	5/24/2022 15:02	0.27	mg/L
BY-AP-MW-9	Depth to Water Detail	5/24/2022 15:02	21.92	ft
BY-AP-MW-9	Oxidation Reduction Potention	5/24/2022 15:02	-74.27	mv
BY-AP-MW-9	pH	5/24/2022 15:02	6	SU
BY-AP-MW-9	Temperature	5/24/2022 15:02	22.17	С
BY-AP-MW-9	Turbidity	5/24/2022 15:02	1.79	NTU
BY-AP-MW-9	Conductivity	5/24/2022 15:07	546.56	uS/cm
BY-AP-MW-9	DO	5/24/2022 15:07	0.25	mg/L
BY-AP-MW-9	Depth to Water Detail	5/24/2022 15:07	21.92	ft
BY-AP-MW-9	Oxidation Reduction Potention	5/24/2022 15:07	-73.61	mv
BY-AP-MW-9	pH	5/24/2022 15:07	6.01	SU
BY-AP-MW-9	Temperature	5/24/2022 15:07	22.21	С
BY-AP-MW-9	Turbidity	5/24/2022 15:07	0.91	NTU
BY-AP-MW-9	Conductivity	5/24/2022 15:12	543.47	uS/cm
BY-AP-MW-9	DO	5/24/2022 15:12	0.25	mg/L
BY-AP-MW-9	Depth to Water Detail	5/24/2022 15:12	21.92	ft
BY-AP-MW-9	Oxidation Reduction Potention	5/24/2022 15:12	-73.75	mv
BY-AP-MW-9	pН	5/24/2022 15:12	6.03	SU
BY-AP-MW-9	Sulfide	5/24/2022 15:12	0	mg/L
BY-AP-MW-9	Temperature	5/24/2022 15:12	22.35	С
BY-AP-MW-9	Turbidity	5/24/2022 15:12	1.63	NTU

BY-AP-MW-7V	Conductivity	5/24/2022 13:54	440.25	uS/cm
BY-AP-MW-7V	DO	5/24/2022 13:54	0.48	mg/L
BY-AP-MW-7V	Depth to Water Detail	5/24/2022 13:54	22.42	ft
BY-AP-MW-7V	Oxidation Reduction Potention	5/24/2022 13:54	-124.39	mv
BY-AP-MW-7V	рН	5/24/2022 13:54	6.88	SU
BY-AP-MW-7V	Temperature	5/24/2022 13:54	22.23	С
BY-AP-MW-7V	Turbidity	5/24/2022 13:54	1.9	NTU
BY-AP-MW-7V	Conductivity	5/24/2022 13:59	423.31	uS/cm
BY-AP-MW-7V	DO	5/24/2022 13:59	0.41	mg/L
BY-AP-MW-7V	Depth to Water Detail	5/24/2022 13:59	22.42	ft
BY-AP-MW-7V	Oxidation Reduction Potention	5/24/2022 13:59	-122.99	mv
BY-AP-MW-7V	рН	5/24/2022 13:59	6.89	SU
BY-AP-MW-7V	Temperature	5/24/2022 13:59	22.5	C
BY-AP-MW-7V	Turbidity	5/24/2022 13:59	1.52	NTU
BY-AP-MW-7V	Conductivity	5/24/2022 14:04	425.36	uS/cm
BY-AP-MW-7V	DO	5/24/2022 14:04	0.38	mg/L
BY-AP-MW-7V	Depth to Water Detail	5/24/2022 14:04	22.42	ft
BY-AP-MW-7V	Oxidation Reduction Potention	5/24/2022 14:04	-124.85	mv
BY-AP-MW-7V	рН	5/24/2022 14:04	6.92	SU
BY-AP-MW-7V	Temperature	5/24/2022 14:04	22.42	C
BY-AP-MW-7V	Turbidity	5/24/2022 14:04	1.85	NTU
BY-AP-MW-7V	Conductivity	5/24/2022 14:09	424.17	uS/cm
BY-AP-MW-7V	DO	5/24/2022 14:09	0.37	mg/L
BY-AP-MW-7V	Depth to Water Detail	5/24/2022 14:09	22.42	ft
BY-AP-MW-7V	Oxidation Reduction Potention	5/24/2022 14:09	-124.32	mv
BY-AP-MW-7V	рН	5/24/2022 14:09	6.92	SU
BY-AP-MW-7V	Sulfide	5/24/2022 14:09	0	mg/L
BY-AP-MW-7V	Temperature	5/24/2022 14:09	22.25	С
BY-AP-MW-7V	Turbidity	5/24/2022 14:09	1.73	NTU

		1		
BY-AP-MW-7	Conductivity	5/24/2022 12:53	254.18	uS/cm
BY-AP-MW-7	DO	5/24/2022 12:53	0.31	mg/L
BY-AP-MW-7	Depth to Water Detail	5/24/2022 12:53	23	ft
BY-AP-MW-7	Oxidation Reduction Potention	5/24/2022 12:53	-18.71	mv
BY-AP-MW-7	рН	5/24/2022 12:53	6.27	SU
BY-AP-MW-7	Temperature	5/24/2022 12:53	21.64	C
BY-AP-MW-7	Turbidity	5/24/2022 12:53	8.77	NTU
BY-AP-MW-7	Conductivity	5/24/2022 12:58	247.33	uS/cm
BY-AP-MW-7	DO	5/24/2022 12:58	0.29	mg/L
BY-AP-MW-7	Depth to Water Detail	5/24/2022 12:58	23	ft
BY-AP-MW-7	Oxidation Reduction Potention	5/24/2022 12:58	-21.78	mv
BY-AP-MW-7	pH	5/24/2022 12:58	6.29	SU
BY-AP-MW-7	Temperature	5/24/2022 12:58	21.64	С
BY-AP-MW-7	Turbidity	5/24/2022 12:58	4.13	NTU
BY-AP-MW-7	Conductivity	5/24/2022 13:03	248.82	uS/cm
BY-AP-MW-7	DO	5/24/2022 13:03	0.3	mg/L
BY-AP-MW-7	Depth to Water Detail	5/24/2022 13:03	23	ft
BY-AP-MW-7	Oxidation Reduction Potention	5/24/2022 13:03	-24.15	mv
BY-AP-MW-7	рН	5/24/2022 13:03	6.3	SU
BY-AP-MW-7	Temperature	5/24/2022 13:03	21.57	С
BY-AP-MW-7	Turbidity	5/24/2022 13:03	3.14	NTU
BY-AP-MW-7	Conductivity	5/24/2022 13:08	243.46	uS/cm
BY-AP-MW-7	DO	5/24/2022 13:08	0.3	mg/L
BY-AP-MW-7	Depth to Water Detail	5/24/2022 13:08	23	ft
BY-AP-MW-7	Oxidation Reduction Potention	5/24/2022 13:08	-25	mv
BY-AP-MW-7	рН	5/24/2022 13:08	6.32	SU
BY-AP-MW-7	Sulfide	5/24/2022 13:08	0	mg/L
BY-AP-MW-7	Temperature	5/24/2022 13:08	21.47	С
BY-AP-MW-7	Turbidity	5/24/2022 13:08	3.47	NTU

BY-AP-MW-15V	Conductivity	5/24/2022 10:39	618.48	uS/cm
BY-AP-MW-15V	DO	5/24/2022 10:39	0.32	mg/L
BY-AP-MW-15V	Depth to Water Detail	5/24/2022 10:39	4.59	ft
BY-AP-MW-15V	Oxidation Reduction Potention	5/24/2022 10:39	68.29	mv
BY-AP-MW-15V	pН	5/24/2022 10:39	5.56	SU
BY-AP-MW-15V	Temperature	5/24/2022 10:39	21.11	С
BY-AP-MW-15V	Turbidity	5/24/2022 10:39	3.56	NTU
BY-AP-MW-15V	Conductivity	5/24/2022 10:44	585.28	uS/cm
BY-AP-MW-15V	DO	5/24/2022 10:44	0.26	mg/L
BY-AP-MW-15V	Depth to Water Detail	5/24/2022 10:44	4.59	ft
BY-AP-MW-15V	Oxidation Reduction Potention	5/24/2022 10:44	52.2	mv
BY-AP-MW-15V	pН	5/24/2022 10:44	5.67	SU
BY-AP-MW-15V	Temperature	5/24/2022 10:44	21.13	C
BY-AP-MW-15V	Turbidity	5/24/2022 10:44	3.67	NTU
BY-AP-MW-15V	Conductivity	5/24/2022 10:49	591.8	uS/cm
BY-AP-MW-15V	DO	5/24/2022 10:49	0.26	mg/L
BY-AP-MW-15V	Depth to Water Detail	5/24/2022 10:49	4.59	ft
BY-AP-MW-15V	Oxidation Reduction Potention	5/24/2022 10:49	45.86	mv
BY-AP-MW-15V	pH	5/24/2022 10:49	5.7	SU
BY-AP-MW-15V	Temperature	5/24/2022 10:49	21.13	C
BY-AP-MW-15V	Turbidity	5/24/2022 10:49	10.61	NTU
BY-AP-MW-15V	Conductivity	5/24/2022 10:54	594.35	uS/cm
BY-AP-MW-15V	DO	5/24/2022 10:54	0.26	mg/L
BY-AP-MW-15V	Depth to Water Detail	5/24/2022 10:54	4.59	ft
BY-AP-MW-15V	Oxidation Reduction Potention	5/24/2022 10:54	44.5	mv
BY-AP-MW-15V	pН	5/24/2022 10:54	5.7	SU
BY-AP-MW-15V	Sulfide	5/24/2022 10:54	0	mg/L
BY-AP-MW-15V	Temperature	5/24/2022 10:54	21.14	C
BY-AP-MW-15V	Turbidity	5/24/2022 10:54	6.89	NTU

	I	T -//		
BY-AP-MW-19H	•	5/24/2022 8:39	163.33	uS/cm
BY-AP-MW-19H	DO DO TO	5/24/2022 8:39	0.29	mg/L
BY-AP-MW-19H	Depth to Water Detail	5/24/2022 8:39	7.48	ft
BY-AP-MW-19H	Oxidation Reduction Potention	5/24/2022 8:39	8.46	mv
BY-AP-MW-19H	pH	5/24/2022 8:39	5.46	SU
BY-AP-MW-19H	Temperature	5/24/2022 8:39	20.07	C
BY-AP-MW-19H	Turbidity	5/24/2022 8:39	2.86	NTU
BY-AP-MW-19H	Conductivity	5/24/2022 8:44	163.32	uS/cm
BY-AP-MW-19H	DO	5/24/2022 8:44	0.25	mg/L
BY-AP-MW-19H	Depth to Water Detail	5/24/2022 8:44	7.48	ft
BY-AP-MW-19H	Oxidation Reduction Potention	5/24/2022 8:44	6.93	mv
BY-AP-MW-19H	рН	5/24/2022 8:44	5.47	SU
BY-AP-MW-19H	Temperature	5/24/2022 8:44	20.1	С
BY-AP-MW-19H	Turbidity	5/24/2022 8:44	2.52	NTU
BY-AP-MW-19H	Conductivity	5/24/2022 8:49	167.54	uS/cm
BY-AP-MW-19H	DO	5/24/2022 8:49	0.23	mg/L
BY-AP-MW-19H		5/24/2022 8:49	7.48	ft
BY-AP-MW-19H	Oxidation Reduction Potention	5/24/2022 8:49	-1.5	mv
BY-AP-MW-19H	pН	5/24/2022 8:49	5.53	SU
BY-AP-MW-19H	Temperature	5/24/2022 8:49	20.11	С
BY-AP-MW-19H	Turbidity	5/24/2022 8:49	1.92	NTU
BY-AP-MW-19H	Conductivity	5/24/2022 8:54	174	uS/cm
BY-AP-MW-19H	DO	5/24/2022 8:54	0.22	mg/L
BY-AP-MW-19H	Depth to Water Detail	5/24/2022 8:54	7.48	ft
BY-AP-MW-19H	Oxidation Reduction Potention	5/24/2022 8:54	-9.66	mv
BY-AP-MW-19H	рН	5/24/2022 8:54	5.6	SU
BY-AP-MW-19H	Temperature	5/24/2022 8:54	20.13	С
BY-AP-MW-19H	Turbidity	5/24/2022 8:54	2.5	NTU
BY-AP-MW-19H	Conductivity	5/24/2022 8:59	179.18	uS/cm
BY-AP-MW-19H	DO	5/24/2022 8:59	0.22	mg/L
BY-AP-MW-19H	Depth to Water Detail	5/24/2022 8:59	7.48	ft
BY-AP-MW-19H	Oxidation Reduction Potention	5/24/2022 8:59	-20.24	mv
BY-AP-MW-19H	рН	5/24/2022 8:59	5.64	SU
BY-AP-MW-19H	Temperature	5/24/2022 8:59	20.15	С
BY-AP-MW-19H	Turbidity	5/24/2022 8:59	1.88	NTU
BY-AP-MW-19H	Conductivity	5/24/2022 9:04	185.76	uS/cm
BY-AP-MW-19H	DO	5/24/2022 9:04	0.22	mg/L
BY-AP-MW-19H	Depth to Water Detail	5/24/2022 9:04	7.48	ft
BY-AP-MW-19H	Oxidation Reduction Potention	5/24/2022 9:04	-28.34	mv
BY-AP-MW-19H	pH	5/24/2022 9:04	5.68	SU
BY-AP-MW-19H	Temperature	5/24/2022 9:04	20.16	C
BY-AP-MW-19H	Turbidity	5/24/2022 9:04	1.85	NTU
BY-AP-MW-19H	Conductivity	5/24/2022 9:09	191.64	uS/cm
BY-AP-MW-19H	DO	5/24/2022 9:09	0.21	mg/L
BY-AP-MW-19H	Depth to Water Detail	5/24/2022 9:09	7.48	ft
BY-AP-MW-19H	Oxidation Reduction Potention	5/24/2022 9:09	-36.57	mv
BY-AP-MW-19H	pH	5/24/2022 9:09	5.72	SU
BY-AP-MW-19H	Temperature	5/24/2022 9:09	20.18	C
BY-AP-MW-19H	Turbidity	5/24/2022 9:09	1.54	NTU
BY-AP-MW-19H	Conductivity	5/24/2022 9:14	199.9	
DI-AF-MW-19H	Conductivity	3/24/2022 9:14	177.7	uS/cm

BY-AP-MW-19H	DO	5/24/2022 9:14	0.21	mg/L
BY-AP-MW-19H	Depth to Water Detail	5/24/2022 9:14	7.48	ft
BY-AP-MW-19H	Oxidation Reduction Potention	5/24/2022 9:14	-45.48	mv
BY-AP-MW-19H	pH	5/24/2022 9:14	5.75	SU
BY-AP-MW-19H	Temperature	5/24/2022 9:14	20.18	С
BY-AP-MW-19H	Turbidity	5/24/2022 9:14	1.54	NTU
BY-AP-MW-19H	Conductivity	5/24/2022 9:19	207.65	uS/cm
BY-AP-MW-19H	DO	5/24/2022 9:19	0.21	mg/L
BY-AP-MW-19H	Depth to Water Detail	5/24/2022 9:19	7.48	ft
BY-AP-MW-19H	Oxidation Reduction Potention	5/24/2022 9:19	-52.36	mv
BY-AP-MW-19H	pH	5/24/2022 9:19	5.79	SU
BY-AP-MW-19H	Temperature	5/24/2022 9:19	20.19	C
BY-AP-MW-19H	Turbidity	5/24/2022 9:19	1.48	NTU
BY-AP-MW-19H	Conductivity	5/24/2022 9:24	206.31	uS/cm
BY-AP-MW-19H	DO	5/24/2022 9:24	0.21	mg/L
BY-AP-MW-19H	Depth to Water Detail	5/24/2022 9:24	7.48	ft
BY-AP-MW-19H	Oxidation Reduction Potention	5/24/2022 9:24	-59.87	mv
BY-AP-MW-19H	pН	5/24/2022 9:24	5.8	SU
BY-AP-MW-19H	Sulfide	5/24/2022 9:24	0	mg/L
BY-AP-MW-19H	Temperature	5/24/2022 9:24	20.19	С
BY-AP-MW-19H	Turbidity	5/24/2022 9:24	1.65	NTU

BY-AP-MW-11	Conductivity	5/23/2022 17:02	594.71	uS/cm
BY-AP-MW-11	DO	5/23/2022 17:02	0.35	mg/L
BY-AP-MW-11	Depth to Water Detail	5/23/2022 17:02	20.42	ft
BY-AP-MW-11	Oxidation Reduction Potention	5/23/2022 17:02	-95.39	mv
BY-AP-MW-11	pH	5/23/2022 17:02	6.34	SU
BY-AP-MW-11	Temperature	5/23/2022 17:02	21.22	С
BY-AP-MW-11	Turbidity	5/23/2022 17:02	5.9	NTU
BY-AP-MW-11	Conductivity	5/23/2022 17:07	576.2	uS/cm
BY-AP-MW-11	DO	5/23/2022 17:07	0.31	mg/L
BY-AP-MW-11	Depth to Water Detail	5/23/2022 17:07	20.42	ft
BY-AP-MW-11	Oxidation Reduction Potention	5/23/2022 17:07	-96.13	mv
BY-AP-MW-11	рН	5/23/2022 17:07	6.32	SU
BY-AP-MW-11	Temperature	5/23/2022 17:07	21.17	С
BY-AP-MW-11	Turbidity	5/23/2022 17:07	5.24	NTU
BY-AP-MW-11	Conductivity	5/23/2022 17:12	565.73	uS/cm
BY-AP-MW-11	DO	5/23/2022 17:12	0.28	mg/L
BY-AP-MW-11	Depth to Water Detail	5/23/2022 17:12	20.42	ft
BY-AP-MW-11	Oxidation Reduction Potention	5/23/2022 17:12	-96.48	mv
BY-AP-MW-11	pH	5/23/2022 17:12	6.32	SU
BY-AP-MW-11	Temperature	5/23/2022 17:12	21.17	С
BY-AP-MW-11	Turbidity	5/23/2022 17:12	4.3	NTU
BY-AP-MW-11	Conductivity	5/23/2022 17:17	555.51	uS/cm
BY-AP-MW-11	DO	5/23/2022 17:17	0.27	mg/L
BY-AP-MW-11	Depth to Water Detail	5/23/2022 17:17	20.42	ft
BY-AP-MW-11	Oxidation Reduction Potention	5/23/2022 17:17	-96.88	mv
BY-AP-MW-11	рН	5/23/2022 17:17	6.32	SU
BY-AP-MW-11	Sulfide	5/23/2022 17:17	0	mg/L
BY-AP-MW-11	Temperature	5/23/2022 17:17	21.18	С
BY-AP-MW-11	Turbidity	5/23/2022 17:17	3.74	NTU

BY-AP-MW-18H	Conductivity	5/23/2022 15:42	355	uS/cm
BY-AP-MW-18H	DO	5/23/2022 15:42	0.26	mg/L
BY-AP-MW-18H	Depth to Water Detail	5/23/2022 15:42	7.69	ft
BY-AP-MW-18H	Oxidation Reduction Potention	5/23/2022 15:42	-66.84	mv
BY-AP-MW-18H	pH	5/23/2022 15:42	6.01	SU
BY-AP-MW-18H	Temperature	5/23/2022 15:42	20.38	С
BY-AP-MW-18H	Turbidity	5/23/2022 15:42	4.43	NTU
BY-AP-MW-18H	Conductivity	5/23/2022 15:47	378.06	uS/cm
BY-AP-MW-18H	DO	5/23/2022 15:47	0.23	mg/L
BY-AP-MW-18H	Depth to Water Detail	5/23/2022 15:47	7.69	ft
BY-AP-MW-18H	Oxidation Reduction Potention	5/23/2022 15:47	-63.53	mv
BY-AP-MW-18H	pH	5/23/2022 15:47	6	SU
BY-AP-MW-18H	Temperature	5/23/2022 15:47	20.34	С
BY-AP-MW-18H	Turbidity	5/23/2022 15:47	4.13	NTU
BY-AP-MW-18H	Conductivity	5/23/2022 15:52	399	uS/cm
BY-AP-MW-18H	DO	5/23/2022 15:52	0.21	mg/L
BY-AP-MW-18H	Depth to Water Detail	5/23/2022 15:52	7.69	ft
BY-AP-MW-18H	Oxidation Reduction Potention	5/23/2022 15:52	-65.63	mv
BY-AP-MW-18H	pН	5/23/2022 15:52	6.04	SU
BY-AP-MW-18H	Temperature	5/23/2022 15:52	20.32	С
BY-AP-MW-18H	Turbidity	5/23/2022 15:52	3.13	NTU
BY-AP-MW-18H	Conductivity	5/23/2022 15:57	406.3	uS/cm
BY-AP-MW-18H	DO	5/23/2022 15:57	0.23	mg/L
BY-AP-MW-18H	Depth to Water Detail	5/23/2022 15:57	7.69	ft
BY-AP-MW-18H	Oxidation Reduction Potention	5/23/2022 15:57	-68.64	mv
BY-AP-MW-18H	pН	5/23/2022 15:57	6.1	SU
BY-AP-MW-18H	Temperature	5/23/2022 15:57	20.3	С
BY-AP-MW-18H	Turbidity	5/23/2022 15:57	3.23	NTU
BY-AP-MW-18H	Conductivity	5/23/2022 16:02	496.21	uS/cm
BY-AP-MW-18H	DO	5/23/2022 16:02	0.19	mg/L
BY-AP-MW-18H	Depth to Water Detail	5/23/2022 16:02	7.69	ft
BY-AP-MW-18H	Oxidation Reduction Potention	5/23/2022 16:02	-70.79	mv
BY-AP-MW-18H	pН	5/23/2022 16:02	6.14	SU
BY-AP-MW-18H	Temperature	5/23/2022 16:02	20.26	С
BY-AP-MW-18H	Turbidity	5/23/2022 16:02	3.18	NTU
BY-AP-MW-18H	Conductivity	5/23/2022 16:07	495.39	uS/cm
BY-AP-MW-18H	DO	5/23/2022 16:07	0.2	mg/L
BY-AP-MW-18H	Depth to Water Detail	5/23/2022 16:07	7.69	ft
BY-AP-MW-18H	Oxidation Reduction Potention	5/23/2022 16:07	-71.86	mv
BY-AP-MW-18H	рН	5/23/2022 16:07	6.21	SU
BY-AP-MW-18H	Temperature	5/23/2022 16:07	20.29	С
BY-AP-MW-18H	Turbidity	5/23/2022 16:07	4.55	NTU
BY-AP-MW-18H	Conductivity	5/23/2022 16:12	495.93	uS/cm
BY-AP-MW-18H	DO	5/23/2022 16:12	0.2	mg/L
BY-AP-MW-18H	Depth to Water Detail	5/23/2022 16:12	7.69	ft
BY-AP-MW-18H	Oxidation Reduction Potention	5/23/2022 16:12	-70.12	mv
BY-AP-MW-18H	рН	5/23/2022 16:12	6.24	SU
BY-AP-MW-18H	Sulfide	5/23/2022 16:12	0	mg/L
BY-AP-MW-18H	Temperature	5/23/2022 16:12	20.29	C
BY-AP-MW-18H	Turbidity	5/23/2022 16:12	1.58	NTU
	1	5/25/2022 10.12	1.50	1,10

BY-AP-MW-1	Conductivity	5/24/2022 12:40	714.92	uS/cm
BY-AP-MW-1	DO	5/24/2022 12:40	0.13	mg/L
BY-AP-MW-1	Depth to Water Detail	5/24/2022 12:40	21.54	ft
BY-AP-MW-1	Oxidation Reduction Potention	5/24/2022 12:40	-11.15	mv
BY-AP-MW-1	pH	5/24/2022 12:40	5.61	SU
BY-AP-MW-1	Temperature	5/24/2022 12:40	21.75	С
BY-AP-MW-1	Turbidity	5/24/2022 12:40	11.2	NTU
BY-AP-MW-1	Conductivity	5/24/2022 12:45	726.52	uS/cm
BY-AP-MW-1	DO	5/24/2022 12:45	0.12	mg/L
BY-AP-MW-1	Depth to Water Detail	5/24/2022 12:45	21.61	ft
BY-AP-MW-1	Oxidation Reduction Potention	5/24/2022 12:45	-11.01	mv
BY-AP-MW-1	pH	5/24/2022 12:45	5.55	SU
BY-AP-MW-1	Temperature	5/24/2022 12:45	21.76	С
BY-AP-MW-1	Turbidity	5/24/2022 12:45	4.94	NTU
BY-AP-MW-1	Conductivity	5/24/2022 12:50	743.7	uS/cm
BY-AP-MW-1	DO	5/24/2022 12:50	0.12	mg/L
BY-AP-MW-1	Depth to Water Detail	5/24/2022 12:50	21.63	ft
BY-AP-MW-1	Oxidation Reduction Potention	5/24/2022 12:50	-8.68	mv
BY-AP-MW-1	pH	5/24/2022 12:50	5.48	SU
BY-AP-MW-1	Temperature	5/24/2022 12:50	21.66	C
BY-AP-MW-1	Turbidity	5/24/2022 12:50	3.5	NTU
BY-AP-MW-1	Conductivity	5/24/2022 12:55	758.26	uS/cm
BY-AP-MW-1	DO	5/24/2022 12:55	0.12	mg/L
BY-AP-MW-1	Depth to Water Detail	5/24/2022 12:55	21.66	ft
BY-AP-MW-1	Oxidation Reduction Potention	5/24/2022 12:55	-8.45	mv
BY-AP-MW-1	pН	5/24/2022 12:55	5.44	SU
BY-AP-MW-1	Sulfide	5/24/2022 12:55	0	mg/L
BY-AP-MW-1	Temperature	5/24/2022 12:55	21.65	С
BY-AP-MW-1	Turbidity	5/24/2022 12:55	2.83	NTU

	T			
BY-AP-MW-1V	Conductivity	5/24/2022 14:22	384.69	uS/cm
BY-AP-MW-1V	DO	5/24/2022 14:22	0.22	mg/L
BY-AP-MW-1V	Depth to Water Detail	5/24/2022 14:22	22.74	ft
BY-AP-MW-1V	Oxidation Reduction Potention	5/24/2022 14:22	104.49	mv
BY-AP-MW-1V	рН	5/24/2022 14:22	5.37	SU
BY-AP-MW-1V	Temperature	5/24/2022 14:22	22.52	С
BY-AP-MW-1V	Turbidity	5/24/2022 14:22	7.45	NTU
BY-AP-MW-1V	Conductivity	5/24/2022 14:27	380.78	uS/cm
BY-AP-MW-1V	DO	5/24/2022 14:27	0.18	mg/L
BY-AP-MW-1V	Depth to Water Detail	5/24/2022 14:27	22.74	ft
BY-AP-MW-1V	Oxidation Reduction Potention	5/24/2022 14:27	112.72	mv
BY-AP-MW-1V	pH	5/24/2022 14:27	5.32	SU
BY-AP-MW-1V	Temperature	5/24/2022 14:27	22.59	С
BY-AP-MW-1V	Turbidity	5/24/2022 14:27	1.52	NTU
BY-AP-MW-1V	Conductivity	5/24/2022 14:32	379.23	uS/cm
BY-AP-MW-1V	DO	5/24/2022 14:32	0.16	mg/L
BY-AP-MW-1V	Depth to Water Detail	5/24/2022 14:32	22.74	ft
BY-AP-MW-1V	Oxidation Reduction Potention	5/24/2022 14:32	134.46	mv
BY-AP-MW-1V	рН	5/24/2022 14:32	4.96	SU
BY-AP-MW-1V	Temperature	5/24/2022 14:32	22.62	С
BY-AP-MW-1V	Turbidity	5/24/2022 14:32	0.86	NTU
BY-AP-MW-1V	Conductivity	5/24/2022 14:37	378.37	uS/cm
BY-AP-MW-1V	DO	5/24/2022 14:37	0.16	mg/L
BY-AP-MW-1V	Depth to Water Detail	5/24/2022 14:37	22.74	ft
BY-AP-MW-1V	Oxidation Reduction Potention	5/24/2022 14:37	134.36	mv
BY-AP-MW-1V	pH	5/24/2022 14:37	5	SU
BY-AP-MW-1V	Temperature	5/24/2022 14:37	22.25	C
BY-AP-MW-1V	Turbidity	5/24/2022 14:37	0.83	NTU
BY-AP-MW-1V	Conductivity	5/24/2022 14:42	377.94	uS/cm
BY-AP-MW-1V	DO	5/24/2022 14:42	0.15	mg/L
BY-AP-MW-1V	Depth to Water Detail	5/24/2022 14:42	22.74	ft
BY-AP-MW-1V	Oxidation Reduction Potention	5/24/2022 14:42	122.46	
BY-AP-MW-1V	pH	5/24/2022 14:42	5.18	mv SU
BY-AP-MW-1V	Temperature	5/24/2022 14:42	22.11	C
	Turbidity		0.77	NTU
BY-AP-MW-1V	<u> </u>	5/24/2022 14:42		
BY-AP-MW-1V	· ·	5/24/2022 14:47	375.94	uS/cm
BY-AP-MW-1V	DO	5/24/2022 14:47	0.15	mg/L
BY-AP-MW-1V	Depth to Water Detail	5/24/2022 14:47	22.74	ft
BY-AP-MW-1V	Oxidation Reduction Potention	5/24/2022 14:47	119.85	mv
BY-AP-MW-1V	рН	5/24/2022 14:47	5.21	SU
BY-AP-MW-1V	Temperature	5/24/2022 14:47	22.21	C
BY-AP-MW-1V	Turbidity	5/24/2022 14:47	0.53	NTU
BY-AP-MW-1V	Conductivity	5/24/2022 14:52	374.94	uS/cm
BY-AP-MW-1V	DO	5/24/2022 14:52	0.15	mg/L
BY-AP-MW-1V	Depth to Water Detail	5/24/2022 14:52	22.74	ft
BY-AP-MW-1V	Oxidation Reduction Potention	5/24/2022 14:52	143.9	mv
BY-AP-MW-1V	рН	5/24/2022 14:52	4.76	SU
BY-AP-MW-1V	Temperature	5/24/2022 14:52	22.26	С
BY-AP-MW-1V	Turbidity	5/24/2022 14:52	0.78	NTU
BY-AP-MW-1V	Conductivity	5/24/2022 14:57	375.16	uS/cm
BY-AP-MW-1V	DO	5/24/2022 14:57	0.15	mg/L
BY-AP-MW-1V	Depth to Water Detail	5/24/2022 14:57	22.74	ft
BY-AP-MW-1V	Oxidation Reduction Potention	5/24/2022 14:57	146.98	mv
BY-AP-MW-1V	pH	5/24/2022 14:57	4.72	SU
BY-AP-MW-1V	Temperature	5/24/2022 14:57	22.37	С

BY-AP-MW-1V	Turbidity	5/24/2022 14:57	0.79	NTU
BY-AP-MW-1V	Conductivity	5/24/2022 15:02	374.66	uS/cm
BY-AP-MW-1V	DO	5/24/2022 15:02	0.15	mg/L
BY-AP-MW-1V	Depth to Water Detail	5/24/2022 15:02	22.74	ft
BY-AP-MW-1V	Oxidation Reduction Potention	5/24/2022 15:02	128.94	mv
BY-AP-MW-1V	рН	5/24/2022 15:02	5.01	SU
BY-AP-MW-1V	Temperature	5/24/2022 15:02	22.24	С
BY-AP-MW-1V	Turbidity	5/24/2022 15:02	0.65	NTU
BY-AP-MW-1V	Conductivity	5/24/2022 15:07	375.42	uS/cm
BY-AP-MW-1V	DO	5/24/2022 15:07	0.14	mg/L
BY-AP-MW-1V	Depth to Water Detail	5/24/2022 15:07	22.74	ft
BY-AP-MW-1V	Oxidation Reduction Potention	5/24/2022 15:07	130.48	mv
BY-AP-MW-1V	рН	5/24/2022 15:07	4.96	SU
BY-AP-MW-1V	Temperature	5/24/2022 15:07	22.08	С
BY-AP-MW-1V	Turbidity	5/24/2022 15:07	0.58	NTU
BY-AP-MW-1V	Conductivity	5/24/2022 15:12	375.09	uS/cm
BY-AP-MW-1V	DO	5/24/2022 15:12	0.14	mg/L
BY-AP-MW-1V	Depth to Water Detail	5/24/2022 15:12	22.74	ft
BY-AP-MW-1V	Oxidation Reduction Potention	5/24/2022 15:12	133.41	mv
BY-AP-MW-1V	рН	5/24/2022 15:12	4.9	SU
BY-AP-MW-1V	Sulfide	5/24/2022 15:12	0	mg/L
BY-AP-MW-1V	Temperature	5/24/2022 15:12	22.07	С
BY-AP-MW-1V	Turbidity	5/24/2022 15:12	0.51	NTU

BY-AP-MW-2	Conductivity	5/24/2022 16:20	53.06	uS/cm
BY-AP-MW-2	DO	5/24/2022 16:20	0.44	mg/L
BY-AP-MW-2	Depth to Water Detail	5/24/2022 16:20	20.11	ft
BY-AP-MW-2	Oxidation Reduction Potention	5/24/2022 16:20	161.58	mv
BY-AP-MW-2	рН	5/24/2022 16:20	4.82	SU
BY-AP-MW-2	Temperature	5/24/2022 16:20	21.89	С
BY-AP-MW-2	Turbidity	5/24/2022 16:20	0.84	NTU
BY-AP-MW-2	Conductivity	5/24/2022 16:25	53.05	uS/cm
BY-AP-MW-2	DO	5/24/2022 16:25	0.31	mg/L
BY-AP-MW-2	Depth to Water Detail	5/24/2022 16:25	20.11	ft
BY-AP-MW-2	Oxidation Reduction Potention	5/24/2022 16:25	160.93	mv
BY-AP-MW-2	рН	5/24/2022 16:25	4.84	SU
BY-AP-MW-2	Temperature	5/24/2022 16:25	22.04	С
BY-AP-MW-2	Turbidity	5/24/2022 16:25	0.75	NTU
BY-AP-MW-2	Conductivity	5/24/2022 16:30	52.99	uS/cm
BY-AP-MW-2	DO	5/24/2022 16:30	0.29	mg/L
BY-AP-MW-2	Depth to Water Detail	5/24/2022 16:30	20.11	ft
BY-AP-MW-2	Oxidation Reduction Potention	5/24/2022 16:30	160.5	mv
BY-AP-MW-2	pН	5/24/2022 16:30	4.87	SU
BY-AP-MW-2	Temperature	5/24/2022 16:30	22.07	С
BY-AP-MW-2	Turbidity	5/24/2022 16:30	0.86	NTU
BY-AP-MW-2	Conductivity	5/24/2022 16:35	52.98	uS/cm
BY-AP-MW-2	DO	5/24/2022 16:35	0.27	mg/L
BY-AP-MW-2	Depth to Water Detail	5/24/2022 16:35	20.11	ft
BY-AP-MW-2	Oxidation Reduction Potention	5/24/2022 16:35	186.52	mv
BY-AP-MW-2	рН	5/24/2022 16:35	4.44	SU
BY-AP-MW-2	Temperature	5/24/2022 16:35	22.18	С
BY-AP-MW-2	Turbidity	5/24/2022 16:35	0.83	NTU
BY-AP-MW-2	Conductivity	5/24/2022 16:40	53.14	uS/cm
BY-AP-MW-2	DO	5/24/2022 16:40	0.27	mg/L
BY-AP-MW-2	Depth to Water Detail	5/24/2022 16:40	20.11	ft
BY-AP-MW-2	Oxidation Reduction Potention	5/24/2022 16:40	181.53	mv
BY-AP-MW-2	рН	5/24/2022 16:40	4.54	SU
BY-AP-MW-2	Temperature	5/24/2022 16:40	22.03	С
BY-AP-MW-2	Turbidity	5/24/2022 16:40	0.87	NTU
BY-AP-MW-2	Conductivity	5/24/2022 16:45	53.12	uS/cm
BY-AP-MW-2	DO	5/24/2022 16:45	0.27	mg/L
BY-AP-MW-2	Depth to Water Detail	5/24/2022 16:45	20.11	ft
BY-AP-MW-2	Oxidation Reduction Potention	5/24/2022 16:45	170.42	mv
BY-AP-MW-2	pH	5/24/2022 16:45	4.73	SU
BY-AP-MW-2	Temperature	5/24/2022 16:45	21.99	С
BY-AP-MW-2	Turbidity	5/24/2022 16:45	0.86	NTU
BY-AP-MW-2	Conductivity	5/24/2022 16:50	53.14	uS/cm
BY-AP-MW-2	DO	5/24/2022 16:50	0.26	mg/L
BY-AP-MW-2	Depth to Water Detail	5/24/2022 16:50	20.11	ft
BY-AP-MW-2	Oxidation Reduction Potention	5/24/2022 16:50	166.36	mv
BY-AP-MW-2	pH	5/24/2022 16:50	4.82	SU
BY-AP-MW-2	Temperature	5/24/2022 16:50	22.05	С
BY-AP-MW-2	Turbidity	5/24/2022 16:50	0.86	NTU
BY-AP-MW-2	Conductivity	5/24/2022 16:55	53.16	uS/cm
BY-AP-MW-2	DO	5/24/2022 16:55	0.26	mg/L
BY-AP-MW-2	Depth to Water Detail	5/24/2022 16:55	20.11	ft
BY-AP-MW-2	Oxidation Reduction Potention	5/24/2022 16:55	168.85	mv
BY-AP-MW-2	pH	5/24/2022 16:55	4.78	SU
BY-AP-MW-2	Sulfide	5/24/2022 16:55	0	mg/L
	1	0.2 2022 10.33	ı v	₅ , L

BY-AP-MW-2	Temperature	5/24/2022 16:55	22.12	С
BY-AP-MW-2	Turbidity	5/24/2022 16:55	0.78	NTU

BY-AP-MW-5	Conductivity	5/25/2022 12:47	440.89	uS/cm
BY-AP-MW-5	DO	5/25/2022 12:47	0.15	mg/L
BY-AP-MW-5	Depth to Water Detail	5/25/2022 12:47	25.43	ft
BY-AP-MW-5	Oxidation Reduction Potention	5/25/2022 12:47	-63.26	mv
BY-AP-MW-5	pH	5/25/2022 12:47	5.98	SU
BY-AP-MW-5	Temperature	5/25/2022 12:47	22.13	С
BY-AP-MW-5	Turbidity	5/25/2022 12:47	0.85	NTU
BY-AP-MW-5	Conductivity	5/25/2022 12:52	438.54	uS/cm
BY-AP-MW-5	DO	5/25/2022 12:52	0.14	mg/L
BY-AP-MW-5	Depth to Water Detail	5/25/2022 12:52	25.43	ft
BY-AP-MW-5	Oxidation Reduction Potention	5/25/2022 12:52	-68.28	mv
BY-AP-MW-5	pH	5/25/2022 12:52	5.99	SU
BY-AP-MW-5	Temperature	5/25/2022 12:52	22.17	С
BY-AP-MW-5	Turbidity	5/25/2022 12:52	2.14	NTU
BY-AP-MW-5	Conductivity	5/25/2022 12:57	431.18	uS/cm
BY-AP-MW-5	DO	5/25/2022 12:57	0.13	mg/L
BY-AP-MW-5	Depth to Water Detail	5/25/2022 12:57	25.43	ft
BY-AP-MW-5	Oxidation Reduction Potention	5/25/2022 12:57	-71.47	mv
BY-AP-MW-5	pH	5/25/2022 12:57	6	SU
BY-AP-MW-5	Temperature	5/25/2022 12:57	22.19	С
BY-AP-MW-5	Turbidity	5/25/2022 12:57	1.72	NTU
BY-AP-MW-5	Conductivity	5/25/2022 13:02	426.36	uS/cm
BY-AP-MW-5	DO	5/25/2022 13:02	0.13	mg/L
BY-AP-MW-5	Depth to Water Detail	5/25/2022 13:02	25.43	ft
BY-AP-MW-5	Oxidation Reduction Potention	5/25/2022 13:02	-73.02	mv
BY-AP-MW-5	pН	5/25/2022 13:02	5.99	SU
BY-AP-MW-5	Sulfide	5/25/2022 13:02	0	mg/L
BY-AP-MW-5	Temperature	5/25/2022 13:02	22.21	С
BY-AP-MW-5	Turbidity	5/25/2022 13:02	1.77	NTU

BY-AP-MW-5V Do	BY-AP-MW-5V	Conductivity	5/25/2022 13:35	107.72	uS/cm
BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:35 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:35 59.85 mv BY-AP-MW-5V pH 5/25/2022 13:35 5.75 SU BY-AP-MW-5V Temperature 5/25/2022 13:35 22.56 C BY-AP-MW-5V Turbidity 5/25/2022 13:35 11.6 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:40 109.37 us/cm BY-AP-MW-5V DO 5/25/2022 13:40 0.81 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:40 75.4 mv BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:40 75.4 mv BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:40 5.8 SU BY-AP-MW-5V Turbidity 5/25/2022 13:40 6.74 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:40 6.74 NTU BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 5.81 SU		·			
BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:35 59.85 mv BY-AP-MW-5V pH 5/25/2022 13:35 5.75 SU BY-AP-MW-5V Temperature 5/25/2022 13:35 22.56 C BY-AP-MW-5V Turbidity 5/25/2022 13:35 11.6 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:40 109.37 us/cm BY-AP-MW-5V Do 5/25/2022 13:40 109.37 us/cm BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:40 25.44 ft BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:40 25.44 ft BY-AP-MW-5V pH 5/25/2022 13:40 25.8 C BY-AP-MW-5V pH 5/25/2022 13:40 5.8 SU BY-AP-MW-5V pH 5/25/2022 13:40 5.8 SU BY-AP-MW-5V Turbidity 5/25/2022 13:40 6.74 NTU BY-AP-MW-5V Do 5/25/2022 13:45 10.83 us/cm BY-AP-MW-5V Depth to Water Detail					
BY-AP-MW-5V pH 5/25/2022 13:35 5.75 SU BY-AP-MW-5V Temperature 5/25/2022 13:35 22.56 C BY-AP-MW-5V Turbidity 5/25/2022 13:30 11.6 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:40 109.37 us/cm BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:40 0.81 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:40 25.44 ft BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:40 25.44 ft BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:40 5.8 SU BY-AP-MW-5V Temperature 5/25/2022 13:40 22.58 C BY-AP-MW-5V Conductivity 5/25/2022 13:40 22.58 C BY-AP-MW-5V Conductivity 5/25/2022 13:45 110.83 us/cm BY-AP-MW-5V Do 5/25/2022 13:45 110.83 us/cm BY-AP-MW-5V pH 5/25/2022 13:45 25.44 ft BY-AP-MW-5V </td <td></td> <td>_</td> <td></td> <td></td> <td></td>		_			
BY-AP-MW-5V Temperature 5/25/2022 13:35 22.56 C BY-AP-MW-5V Turbidity 5/25/2022 13:35 11.6 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:40 109.37 us/cm BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:40 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:40 75.4 mv BY-AP-MW-5V DPH 5/25/2022 13:40 5.8 SU BY-AP-MW-5V PH 5/25/2022 13:40 5.8 SU BY-AP-MW-5V Turbidity 5/25/2022 13:40 6.74 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:40 6.74 NTU BY-AP-MW-5V Do 5/25/2022 13:45 110.83 us/cm BY-AP-MW-5V Do the to Water Detail 5/25/2022 13:45 25.44 ft BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 25.44 ft BY-AP-MW-5V pH 5/25/2022 13:45 25.44 ft BY-AP-MW-5V					
BY-AP-MW-5V Turbidity 5/25/2022 13:35 11.6 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:40 109.37 uS/cm BY-AP-MW-5V Do 5/25/2022 13:40 0.81 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:40 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:40 5.8 SU BY-AP-MW-5V Temperature 5/25/2022 13:40 5.8 SU BY-AP-MW-5V Turbidity 5/25/2022 13:40 6.74 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:45 110.83 uS/cm BY-AP-MW-5V Conductivity 5/25/2022 13:45 0.96 mg/L BY-AP-MW-5V Do 5/25/2022 13:45 0.96 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 25.44 ft BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 85.54 mv BY-AP-MW-5V Temperature 5/25/2022 13:45 5.45 NTU <t< td=""><td></td><td>1^</td><td></td><td></td><td></td></t<>		1^			
BY-AP-MW-5V Conductivity 5/25/2022 13:40 109.37 uS/cm BY-AP-MW-5V DO 5/25/2022 13:40 0.81 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:40 25.44 ft BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:40 25.44 ft BY-AP-MW-5V Temperature 5/25/2022 13:40 22.58 C BY-AP-MW-5V Temperature 5/25/2022 13:40 6.74 NTU BY-AP-MW-5V Turbidity 5/25/2022 13:45 110.83 usS/cm BY-AP-MW-5V Conductivity 5/25/2022 13:45 110.83 usS/cm BY-AP-MW-5V DO 5/25/2022 13:45 110.83 usS/cm BY-AP-MW-5V Dopth to Water Detail 5/25/2022 13:45 25.44 ft BY-AP-MW-5V pH 5/25/2022 13:45 85.54 mv BY-AP-MW-5V pTemperature 5/25/2022 13:45 5.81 SU BY-AP-MW-5V Turbidity 5/25/2022 13:50 112.36 us/cm BY-AP-MW-5					
BY-AP-MW-5V DO 5/25/2022 13:40 0.81 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:40 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:40 75.4 mv BY-AP-MW-5V pH 5/25/2022 13:40 75.4 mv BY-AP-MW-5V Temperature 5/25/2022 13:40 6.74 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:45 110.83 uS/cm BY-AP-MW-5V Donductivity 5/25/2022 13:45 0.96 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 0.96 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 85.54 mv BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 5.81 SU BY-AP-MW-5V Temperature 5/25/2022 13:45 5.81 SU BY-AP-MW-5V Turbidity 5/25/2022 13:50 1.08 mg/L BY-AP-MW-5V Do 5/25/2022 13:50 12.4 ft		-			
BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:40 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:40 75.4 mv BY-AP-MW-5V PH 5/25/2022 13:40 5.8 SU BY-AP-MW-5V Temperature 5/25/2022 13:40 22.58 C BY-AP-MW-5V Turbidity 5/25/2022 13:40 6.74 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:45 110.83 uS/cm BY-AP-MW-5V DO 5/25/2022 13:45 0.96 mg/L BY-AP-MW-5V Dopth to Water Detail 5/25/2022 13:45 25.44 ft BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 85.54 mv BY-AP-MW-5V PH 5/25/2022 13:45 85.54 mv BY-AP-MW-5V Temperature 5/25/2022 13:45 5.81 SU BY-AP-MW-5V Turbidity 5/25/2022 13:45 5.45 NTU BY-AP-MW-5V Don 5/25/2022 13:50 112.36 uS/cm BY-AP-MW-5V		·			
BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:40 75.4 mv BY-AP-MW-5V pH 5/25/2022 13:40 5.8 SU BY-AP-MW-5V Temperature 5/25/2022 13:40 22.58 C BY-AP-MW-5V Turbidity 5/25/2022 13:40 6.74 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:45 110.83 uS/cm BY-AP-MW-5V DO 5/25/2022 13:45 0.96 mg/L BY-AP-MW-5V Doph to Water Detail 5/25/2022 13:45 25.44 ft BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 85.54 my BY-AP-MW-5V PH 5/25/2022 13:45 5.81 SU BY-AP-MW-5V Temperature 5/25/2022 13:45 5.81 SU BY-AP-MW-5V Turbidity 5/25/2022 13:45 5.81 NTU BY-AP-MW-5V Turbidity 5/25/2022 13:50 112.36 uS/cm BY-AP-MW-5V Dopth to Water Detail 5/25/2022 13:50 125.44 ft BY-AP-MW-5V <td></td> <td></td> <td></td> <td></td> <td></td>					
BY-AP-MW-5V pH 5/25/2022 13:40 5.8 SU BY-AP-MW-5V Temperature 5/25/2022 13:40 22.58 C BY-AP-MW-5V Turbidity 5/25/2022 13:40 6.74 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:45 110.83 us/cm BY-AP-MW-5V DO 5/25/2022 13:45 0.96 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 25.44 ft BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 85.54 mv BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 5.81 SU BY-AP-MW-5V Turbidity 5/25/2022 13:45 5.81 SU BY-AP-MW-5V Turbidity 5/25/2022 13:45 5.45 NTU BY-AP-MW-5V Turbidity 5/25/2022 13:45 5.45 NTU BY-AP-MW-5V Do 5/25/2022 13:50 11.08 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:50 25.44 ft BY-AP-MW-5V <					
BY-AP-MW-5V Temperature 5/25/2022 13:40 22.58 C BY-AP-MW-5V Turbidity 5/25/2022 13:40 6.74 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:45 110.83 uS/cm BY-AP-MW-5V Dop 5/25/2022 13:45 0.96 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 25.44 ft BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:45 85.54 mv BY-AP-MW-5V pH 5/25/2022 13:45 25.77 C BY-AP-MW-5V Turbidity 5/25/2022 13:45 5.45 NTU BY-AP-MW-5V Turbidity 5/25/2022 13:50 112.36 uS/cm BY-AP-MW-5V Do 5/25/2022 13:50 10.8 mg/L BY-AP-MW-5V Doxidation Reduction Potention 5/25/2022 13:50 25.44 ft BY-AP-MW-5V Turbidity 5/25/2022 13:50 5.82 SU BY-					
BY-AP-MW-5V Turbidity 5/25/2022 13:40 6.74 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:45 110.83 uS/cm BY-AP-MW-5V DO 5/25/2022 13:45 0.96 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:45 5.81 SU BY-AP-MW-5V pH 5/25/2022 13:45 5.81 SU BY-AP-MW-5V Temperature 5/25/2022 13:45 5.81 SU BY-AP-MW-5V Turbidity 5/25/2022 13:45 5.81 NTU BY-AP-MW-5V Turbidity 5/25/2022 13:45 5.45 NTU BY-AP-MW-5V Do 5/25/2022 13:50 112.36 uS/cm BY-AP-MW-5V Dopth to Water Detail 5/25/2022 13:50 10.8 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:50 92.82 mv BY-AP-MW-5V Temperature 5/25/2022 13:50 5.82 SU BY-AP-MW-5V<		*			
BY-AP-MW-5V Conductivity 5/25/2022 13:45 110.83 uS/cm BY-AP-MW-5V DO 5/25/2022 13:45 0.96 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:45 85.54 mv BY-AP-MW-5V PH 5/25/2022 13:45 5.81 SU BY-AP-MW-5V Temperature 5/25/2022 13:45 5.27 C BY-AP-MW-5V Turbidity 5/25/2022 13:45 5.45 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:45 5.45 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:50 112.36 uS/cm BY-AP-MW-5V Do 5/25/2022 13:50 1.08 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:50 25.44 ft BY-AP-MW-5V PH 5/25/2022 13:50 5.82 SU BY-AP-MW-5V Turbidity 5/25/2022 13:50 5.87 NTU BY-AP-MW-5V <t< td=""><td></td><td>-</td><td></td><td></td><td></td></t<>		-			
BY-AP-MW-5V DO 5/25/2022 13:45 0.96 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:45 85.54 mv BY-AP-MW-5V pH 5/25/2022 13:45 5.81 SU BY-AP-MW-5V Temperature 5/25/2022 13:45 5.81 SU BY-AP-MW-5V Turbidity 5/25/2022 13:45 5.81 NTU BY-AP-MW-5V Turbidity 5/25/2022 13:45 5.45 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:50 112.36 us/cm BY-AP-MW-5V DO 5/25/2022 13:50 112.36 us/cm BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:50 25.44 ft BY-AP-MW-5V pH 5/25/2022 13:50 5.82 SU BY-AP-MW-5V pTurbidity 5/25/2022 13:50 5.82 SU BY-AP-MW-5V Turbidity 5/25/2022 13:55 5.87 NTU BY-AP-MW-5V Do </td <td></td> <td>·</td> <td></td> <td>.</td> <td></td>		·		.	
BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:45 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:45 85.54 mv BY-AP-MW-5V pH 5/25/2022 13:45 85.54 mv BY-AP-MW-5V Temperature 5/25/2022 13:45 5.81 SU BY-AP-MW-5V Turbidity 5/25/2022 13:45 5.45 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:50 112.36 us/cm BY-AP-MW-5V DO 5/25/2022 13:50 1.08 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:50 22.44 ft BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:50 22.82 mv BY-AP-MW-5V pH 5/25/2022 13:50 5.82 SU BY-AP-MW-5V Temperature 5/25/2022 13:50 5.87 NTU BY-AP-MW-5V Turbidity 5/25/2022 13:55 113.12 us/cm BY-AP-MW-5V Do 5/25/2022 13:55 113.12 us/cm BY-AP-MW-5V <td></td> <td></td> <td></td> <td></td> <td></td>					
BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:45 85.54 mv BY-AP-MW-5V pH 5/25/2022 13:45 5.81 SU BY-AP-MW-5V Temperature 5/25/2022 13:45 22.77 C BY-AP-MW-5V Turbidity 5/25/2022 13:45 5.45 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:50 112.36 uS/cm BY-AP-MW-5V DO 5/25/2022 13:50 1.08 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:50 25.44 ft BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:50 92.82 mv BY-AP-MW-5V Temperature 5/25/2022 13:50 92.82 mv BY-AP-MW-5V Temperature 5/25/2022 13:50 25.82 SU BY-AP-MW-5V Temperature 5/25/2022 13:50 25.82 SU BY-AP-MW-5V Turbidity 5/25/2022 13:50 5.87 NTU BY-AP-MW-5V Do 5/25/2022 13:55 113.12 uS/cm BY-AP-MW-5V			_		
BY-AP-MW-5V pH 5/25/2022 13:45 5.81 SU BY-AP-MW-5V Temperature 5/25/2022 13:45 22.77 C BY-AP-MW-5V Turbidity 5/25/2022 13:45 5.45 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:50 112.36 uS/cm BY-AP-MW-5V DO 5/25/2022 13:50 1.08 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:50 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:50 92.82 mv BY-AP-MW-5V pH 5/25/2022 13:50 5.82 SU BY-AP-MW-5V Temperature 5/25/2022 13:50 5.82 SU BY-AP-MW-5V Turbidity 5/25/2022 13:50 5.87 NTU BY-AP-MW-5V Do 5/25/2022 13:55 113.12 uS/cm BY-AP-MW-5V Do bepth to Water Detail 5/25/2022 13:55 25.44 ft BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:55 25.44 ft BY-AP-MW-5V		*			
BY-AP-MW-5V Temperature 5/25/2022 13:45 22.77 C BY-AP-MW-5V Turbidity 5/25/2022 13:45 5.45 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:50 112.36 uS/cm BY-AP-MW-5V DO 5/25/2022 13:50 1.08 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:50 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:50 92.82 mv BY-AP-MW-5V pH 5/25/2022 13:50 5.82 SU BY-AP-MW-5V Temperature 5/25/2022 13:50 5.87 NTU BY-AP-MW-5V Turbidity 5/25/2022 13:55 113.12 uS/cm BY-AP-MW-5V Do 5/25/2022 13:55 113.12 uS/cm BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:55 25.44 ft BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:55 5.86 SU BY-AP-MW-5V Temperature 5/25/2022 13:55 5.86 SU BY-AP-M			+		
BY-AP-MW-5V Turbidity 5/25/2022 13:45 5.45 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:50 112.36 uS/cm BY-AP-MW-5V DO 5/25/2022 13:50 1.08 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:50 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:50 92.82 mv BY-AP-MW-5V pH 5/25/2022 13:50 5.82 SU BY-AP-MW-5V Temperature 5/25/2022 13:50 5.87 NTU BY-AP-MW-5V Turbidity 5/25/2022 13:50 5.87 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:55 113.12 uS/cm BY-AP-MW-5V DO 5/25/2022 13:55 1.17 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:55 25.44 ft BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:55 26.93 mv BY-AP-MW-5V Temperature 5/25/2022 13:55 5.86 SU BY-AP-M		17		.	
BY-AP-MW-5V Conductivity 5/25/2022 13:50 112.36 uS/cm BY-AP-MW-5V DO 5/25/2022 13:50 1.08 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:50 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:50 92.82 mv BY-AP-MW-5V pH 5/25/2022 13:50 5.82 SU BY-AP-MW-5V Temperature 5/25/2022 13:50 22.68 C BY-AP-MW-5V Turbidity 5/25/2022 13:50 5.87 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:55 113.12 uS/cm BY-AP-MW-5V Do 5/25/2022 13:55 1.17 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:55 25.44 ft BY-AP-MW-5V pH 5/25/2022 13:55 5.86 SU BY-AP-MW-5V pH 5/25/2022 13:55 5.86 SU BY-AP-MW-5V Temperature 5/25/2022 13:55 2.44 NTU BY-AP-MW-5V Do <td></td> <td></td> <td></td> <td></td> <td></td>					
BY-AP-MW-5V DO 5/25/2022 13:50 1.08 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:50 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:50 92.82 mv BY-AP-MW-5V pH 5/25/2022 13:50 5.82 SU BY-AP-MW-5V Temperature 5/25/2022 13:50 5.87 NTU BY-AP-MW-5V Turbidity 5/25/2022 13:50 5.87 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:55 113.12 uS/cm BY-AP-MW-5V DO 5/25/2022 13:55 1.17 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:55 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:55 96.93 mv BY-AP-MW-5V pH 5/25/2022 13:55 5.86 SU BY-AP-MW-5V Temperature 5/25/2022 13:55 2.44 NTU BY-AP-MW-5V Turbidity 5/25/2022 14:00 114.39 uS/cm BY-AP-MW-		-	_	 	
BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:50 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:50 92.82 mv BY-AP-MW-5V pH 5/25/2022 13:50 5.82 SU BY-AP-MW-5V Temperature 5/25/2022 13:50 22.68 C BY-AP-MW-5V Turbidity 5/25/2022 13:50 5.87 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:55 113.12 us/cm BY-AP-MW-5V DO 5/25/2022 13:55 1.17 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:55 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:55 96.93 mv BY-AP-MW-5V pH 5/25/2022 13:55 5.86 SU BY-AP-MW-5V Temperature 5/25/2022 13:55 2.44 NTU BY-AP-MW-5V Turbidity 5/25/2022 14:00 114.39 us/cm BY-AP-MW-5V Do 5/25/2022 14:00 1.23 mg/L BY-AP-MW-5					
BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:50 92.82 mv BY-AP-MW-5V pH 5/25/2022 13:50 5.82 SU BY-AP-MW-5V Temperature 5/25/2022 13:50 22.68 C BY-AP-MW-5V Turbidity 5/25/2022 13:50 5.87 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:55 113.12 uS/cm BY-AP-MW-5V DO 5/25/2022 13:55 1.17 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:55 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:55 96.93 mv BY-AP-MW-5V pH 5/25/2022 13:55 5.86 SU BY-AP-MW-5V Temperature 5/25/2022 13:55 2.44 NTU BY-AP-MW-5V Turbidity 5/25/2022 13:55 2.44 NTU BY-AP-MW-5V Conductivity 5/25/2022 14:00 114.39 uS/cm BY-AP-MW-5V Do 5/25/2022 14:00 123 mg/L BY-AP-MW-5V					
BY-AP-MW-5V pH 5/25/2022 13:50 5.82 SU BY-AP-MW-5V Temperature 5/25/2022 13:50 22.68 C BY-AP-MW-5V Turbidity 5/25/2022 13:50 5.87 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:55 113.12 uS/cm BY-AP-MW-5V DO 5/25/2022 13:55 1.17 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:55 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:55 96.93 mv BY-AP-MW-5V pH 5/25/2022 13:55 5.86 SU BY-AP-MW-5V Temperature 5/25/2022 13:55 22.46 C BY-AP-MW-5V Turbidity 5/25/2022 13:55 2.44 NTU BY-AP-MW-5V Turbidity 5/25/2022 14:00 114.39 uS/cm BY-AP-MW-5V Do 5/25/2022 14:00 1.23 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 14:00 99.33 mv BY-AP-MW-5V PH		•			ft
BY-AP-MW-5V Temperature 5/25/2022 13:50 22.68 C BY-AP-MW-5V Turbidity 5/25/2022 13:50 5.87 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:55 113.12 uS/cm BY-AP-MW-5V DO 5/25/2022 13:55 1.17 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:55 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:55 96.93 mv BY-AP-MW-5V pH 5/25/2022 13:55 5.86 SU BY-AP-MW-5V Temperature 5/25/2022 13:55 22.46 C BY-AP-MW-5V Turbidity 5/25/2022 13:55 2.44 NTU BY-AP-MW-5V Conductivity 5/25/2022 14:00 114.39 uS/cm BY-AP-MW-5V Depth to Water Detail 5/25/2022 14:00 1.23 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 14:00 99.33 mv BY-AP-MW-5V Depth to Water Detail 5/25/2022 14:00 5.88 SU					
BY-AP-MW-5V Turbidity 5/25/2022 13:50 5.87 NTU BY-AP-MW-5V Conductivity 5/25/2022 13:55 113.12 uS/cm BY-AP-MW-5V DO 5/25/2022 13:55 1.17 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:55 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:55 96.93 mv BY-AP-MW-5V pH 5/25/2022 13:55 5.86 SU BY-AP-MW-5V Temperature 5/25/2022 13:55 22.46 C BY-AP-MW-5V Turbidity 5/25/2022 13:55 2.44 NTU BY-AP-MW-5V Conductivity 5/25/2022 14:00 114.39 uS/cm BY-AP-MW-5V DO 5/25/2022 14:00 1.23 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 14:00 25.44 ft BY-AP-MW-5V Depth to Water Detail 5/25/2022 14:00 99.33 mv BY-AP-MW-5V Sulfide 5/25/2022 14:00 5.88 SU BY-AP-MW-5V<	BY-AP-MW-5V	-			
BY-AP-MW-5V Conductivity 5/25/2022 13:55 113.12 uS/cm BY-AP-MW-5V DO 5/25/2022 13:55 1.17 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:55 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:55 96.93 mv BY-AP-MW-5V pH 5/25/2022 13:55 5.86 SU BY-AP-MW-5V Temperature 5/25/2022 13:55 22.46 C BY-AP-MW-5V Turbidity 5/25/2022 13:55 2.44 NTU BY-AP-MW-5V Conductivity 5/25/2022 14:00 114.39 uS/cm BY-AP-MW-5V Do 5/25/2022 14:00 1.23 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 14:00 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 14:00 99.33 mv BY-AP-MW-5V Sulfide 5/25/2022 14:00 0 mg/L BY-AP-MW-5V Temperature 5/25/2022 14:00 22.54 C	BY-AP-MW-5V	•		22.68	
BY-AP-MW-5V DO 5/25/2022 13:55 1.17 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:55 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:55 96.93 mv BY-AP-MW-5V pH 5/25/2022 13:55 5.86 SU BY-AP-MW-5V Temperature 5/25/2022 13:55 22.46 C BY-AP-MW-5V Turbidity 5/25/2022 13:55 2.44 NTU BY-AP-MW-5V Conductivity 5/25/2022 14:00 114.39 uS/cm BY-AP-MW-5V DO 5/25/2022 14:00 1.23 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 14:00 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 14:00 99.33 mv BY-AP-MW-5V Sulfide 5/25/2022 14:00 5.88 SU BY-AP-MW-5V Temperature 5/25/2022 14:00 0 mg/L BY-AP-MW-5V Temperature 5/25/2022 14:00 22.54 C	BY-AP-MW-5V	· · · · · · · · · · · · · · · · · · ·	5/25/2022 13:50	5.87	NTU
BY-AP-MW-5V Depth to Water Detail 5/25/2022 13:55 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:55 96.93 mv BY-AP-MW-5V pH 5/25/2022 13:55 5.86 SU BY-AP-MW-5V Temperature 5/25/2022 13:55 22.46 C BY-AP-MW-5V Turbidity 5/25/2022 13:55 2.44 NTU BY-AP-MW-5V Conductivity 5/25/2022 14:00 114.39 uS/cm BY-AP-MW-5V DO 5/25/2022 14:00 1.23 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 14:00 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 14:00 99.33 mv BY-AP-MW-5V Sulfide 5/25/2022 14:00 5.88 SU BY-AP-MW-5V Temperature 5/25/2022 14:00 0 mg/L BY-AP-MW-5V Temperature 5/25/2022 14:00 22.54 C	BY-AP-MW-5V	Conductivity	5/25/2022 13:55		uS/cm
BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 13:55 96.93 mv BY-AP-MW-5V pH 5/25/2022 13:55 5.86 SU BY-AP-MW-5V Temperature 5/25/2022 13:55 22.46 C BY-AP-MW-5V Turbidity 5/25/2022 13:55 2.44 NTU BY-AP-MW-5V Conductivity 5/25/2022 14:00 114.39 uS/cm BY-AP-MW-5V DO 5/25/2022 14:00 1.23 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 14:00 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 14:00 99.33 mv BY-AP-MW-5V pH 5/25/2022 14:00 5.88 SU BY-AP-MW-5V Sulfide 5/25/2022 14:00 0 mg/L BY-AP-MW-5V Temperature 5/25/2022 14:00 22.54 C	BY-AP-MW-5V		5/25/2022 13:55	1.17	mg/L
BY-AP-MW-5V pH 5/25/2022 13:55 5.86 SU BY-AP-MW-5V Temperature 5/25/2022 13:55 22.46 C BY-AP-MW-5V Turbidity 5/25/2022 13:55 2.44 NTU BY-AP-MW-5V Conductivity 5/25/2022 14:00 114.39 uS/cm BY-AP-MW-5V DO 5/25/2022 14:00 1.23 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 14:00 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 14:00 99.33 mv BY-AP-MW-5V pH 5/25/2022 14:00 5.88 SU BY-AP-MW-5V Sulfide 5/25/2022 14:00 0 mg/L BY-AP-MW-5V Temperature 5/25/2022 14:00 22.54 C			5/25/2022 13:55	25.44	ft
BY-AP-MW-5V Temperature 5/25/2022 13:55 22.46 C BY-AP-MW-5V Turbidity 5/25/2022 13:55 2.44 NTU BY-AP-MW-5V Conductivity 5/25/2022 14:00 114.39 uS/cm BY-AP-MW-5V DO 5/25/2022 14:00 1.23 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 14:00 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 14:00 99.33 mv BY-AP-MW-5V pH 5/25/2022 14:00 5.88 SU BY-AP-MW-5V Sulfide 5/25/2022 14:00 0 mg/L BY-AP-MW-5V Temperature 5/25/2022 14:00 22.54 C	BY-AP-MW-5V	Oxidation Reduction Potention	5/25/2022 13:55	96.93	mv
BY-AP-MW-5V Turbidity 5/25/2022 13:55 2.44 NTU BY-AP-MW-5V Conductivity 5/25/2022 14:00 114.39 uS/cm BY-AP-MW-5V DO 5/25/2022 14:00 1.23 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 14:00 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 14:00 99.33 mv BY-AP-MW-5V pH 5/25/2022 14:00 5.88 SU BY-AP-MW-5V Sulfide 5/25/2022 14:00 0 mg/L BY-AP-MW-5V Temperature 5/25/2022 14:00 22.54 C	BY-AP-MW-5V	рН	5/25/2022 13:55	5.86	SU
BY-AP-MW-5V Conductivity 5/25/2022 14:00 114.39 uS/cm BY-AP-MW-5V DO 5/25/2022 14:00 1.23 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 14:00 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 14:00 99.33 mv BY-AP-MW-5V pH 5/25/2022 14:00 5.88 SU BY-AP-MW-5V Sulfide 5/25/2022 14:00 0 mg/L BY-AP-MW-5V Temperature 5/25/2022 14:00 22.54 C	BY-AP-MW-5V	Temperature	5/25/2022 13:55	22.46	С
BY-AP-MW-5V DO 5/25/2022 14:00 1.23 mg/L BY-AP-MW-5V Depth to Water Detail 5/25/2022 14:00 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 14:00 99.33 mv BY-AP-MW-5V pH 5/25/2022 14:00 5.88 SU BY-AP-MW-5V Sulfide 5/25/2022 14:00 0 mg/L BY-AP-MW-5V Temperature 5/25/2022 14:00 22.54 C	BY-AP-MW-5V	Turbidity	5/25/2022 13:55	2.44	NTU
BY-AP-MW-5V Depth to Water Detail 5/25/2022 14:00 25.44 ft BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 14:00 99.33 mv BY-AP-MW-5V pH 5/25/2022 14:00 5.88 SU BY-AP-MW-5V Sulfide 5/25/2022 14:00 0 mg/L BY-AP-MW-5V Temperature 5/25/2022 14:00 22.54 C	BY-AP-MW-5V	Conductivity	5/25/2022 14:00	114.39	uS/cm
BY-AP-MW-5V Oxidation Reduction Potention 5/25/2022 14:00 99.33 mv BY-AP-MW-5V pH 5/25/2022 14:00 5.88 SU BY-AP-MW-5V Sulfide 5/25/2022 14:00 0 mg/L BY-AP-MW-5V Temperature 5/25/2022 14:00 22.54 C	BY-AP-MW-5V	DO	5/25/2022 14:00	1.23	mg/L
BY-AP-MW-5V pH 5/25/2022 14:00 5.88 SU BY-AP-MW-5V Sulfide 5/25/2022 14:00 0 mg/L BY-AP-MW-5V Temperature 5/25/2022 14:00 22.54 C	BY-AP-MW-5V	Depth to Water Detail	5/25/2022 14:00	25.44	ft
BY-AP-MW-5V Sulfide 5/25/2022 14:00 0 mg/L BY-AP-MW-5V Temperature 5/25/2022 14:00 22.54 C	BY-AP-MW-5V	Oxidation Reduction Potention	5/25/2022 14:00	99.33	mv
BY-AP-MW-5V Temperature 5/25/2022 14:00 22.54 C	BY-AP-MW-5V	рН	5/25/2022 14:00	5.88	SU
BY-AP-MW-5V Temperature 5/25/2022 14:00 22.54 C	BY-AP-MW-5V	Sulfide	5/25/2022 14:00	0	mg/L
		Temperature		22.54	
		<u> </u>		1.64	NTU

BY-AP-MW-6	Conductivity	5/25/2022 15:03	52.6	uS/cm
BY-AP-MW-6	DO	5/25/2022 15:03	0.48	mg/L
BY-AP-MW-6	Depth to Water Detail	5/25/2022 15:03	23.32	ft
BY-AP-MW-6	Oxidation Reduction Potention	5/25/2022 15:03	226.2	mv
BY-AP-MW-6	pH	5/25/2022 15:03	4.77	SU
BY-AP-MW-6	Temperature	5/25/2022 15:03	21.72	С
BY-AP-MW-6	Turbidity	5/25/2022 15:03	0.93	NTU
BY-AP-MW-6	Conductivity	5/25/2022 15:08	52.94	uS/cm
BY-AP-MW-6	DO	5/25/2022 15:08	0.48	mg/L
BY-AP-MW-6	Depth to Water Detail	5/25/2022 15:08	23.32	ft
BY-AP-MW-6	Oxidation Reduction Potention	5/25/2022 15:08	251.43	mv
BY-AP-MW-6	pH	5/25/2022 15:08	4.58	SU
BY-AP-MW-6	Temperature	5/25/2022 15:08	21.59	С
BY-AP-MW-6	Turbidity	5/25/2022 15:08	0.69	NTU
BY-AP-MW-6	Conductivity	5/25/2022 15:13	52.83	uS/cm
BY-AP-MW-6	DO	5/25/2022 15:13	0.48	mg/L
BY-AP-MW-6	Depth to Water Detail	5/25/2022 15:13	23.32	ft
BY-AP-MW-6	Oxidation Reduction Potention	5/25/2022 15:13	263.5	mv
BY-AP-MW-6	pH	5/25/2022 15:13	4.54	SU
BY-AP-MW-6	Temperature	5/25/2022 15:13	21.45	С
BY-AP-MW-6	Turbidity	5/25/2022 15:13	0.71	NTU
BY-AP-MW-6	Conductivity	5/25/2022 15:18	52.89	uS/cm
BY-AP-MW-6	DO	5/25/2022 15:18	0.49	mg/L
BY-AP-MW-6	Depth to Water Detail	5/25/2022 15:18	23.32	ft
BY-AP-MW-6	Oxidation Reduction Potention	5/25/2022 15:18	268.89	mv
BY-AP-MW-6	pН	5/25/2022 15:18	4.57	SU
BY-AP-MW-6	Sulfide	5/25/2022 15:18	0	mg/L
BY-AP-MW-6	Temperature	5/25/2022 15:18	21.47	С
BY-AP-MW-6	Turbidity	5/25/2022 15:18	0.87	NTU

BY-AP-MW-12	Conductivity	5/23/2022 15:57	576.63	uS/cm
BY-AP-MW-12	DO	5/23/2022 15:57	0.15	mg/L
BY-AP-MW-12	Depth to Water Detail	5/23/2022 15:57	21.16	ft
BY-AP-MW-12	Oxidation Reduction Potention	5/23/2022 15:57	-81.29	mv
BY-AP-MW-12	рН	5/23/2022 15:57	6.11	SU
BY-AP-MW-12	Temperature	5/23/2022 15:57	20.91	С
BY-AP-MW-12	Turbidity	5/23/2022 15:57	3.48	NTU
BY-AP-MW-12	Conductivity	5/23/2022 16:02	574.22	uS/cm
BY-AP-MW-12	DO	5/23/2022 16:02	0.12	mg/L
BY-AP-MW-12	Depth to Water Detail	5/23/2022 16:02	21.16	ft
BY-AP-MW-12	Oxidation Reduction Potention	5/23/2022 16:02	-79.37	mv
BY-AP-MW-12	рН	5/23/2022 16:02	6.13	SU
BY-AP-MW-12	Temperature	5/23/2022 16:02	20.83	C
BY-AP-MW-12	Turbidity	5/23/2022 16:02	2.35	NTU
BY-AP-MW-12	Conductivity	5/23/2022 16:07	565.99	uS/cm
BY-AP-MW-12	DO	5/23/2022 16:07	0.12	mg/L
BY-AP-MW-12	Depth to Water Detail	5/23/2022 16:07	21.16	ft
BY-AP-MW-12	Oxidation Reduction Potention	5/23/2022 16:07	-75.6	mv
BY-AP-MW-12	рН	5/23/2022 16:07	6.13	SU
BY-AP-MW-12	Temperature	5/23/2022 16:07	20.84	C
BY-AP-MW-12	Turbidity	5/23/2022 16:07	1.94	NTU
BY-AP-MW-12	Conductivity	5/23/2022 16:12	578.36	uS/cm
BY-AP-MW-12	DO	5/23/2022 16:12	0.12	mg/L
BY-AP-MW-12	Depth to Water Detail	5/23/2022 16:12	21.16	ft
BY-AP-MW-12	Oxidation Reduction Potention	5/23/2022 16:12	-72.55	mv
BY-AP-MW-12	рН	5/23/2022 16:12	6.12	SU
BY-AP-MW-12	Sulfide	5/23/2022 16:12	0	mg/L
BY-AP-MW-12	Temperature	5/23/2022 16:12	20.85	С
BY-AP-MW-12	Turbidity	5/23/2022 16:12	2.67	NTU

	[a	7/22/2022 15 17		~ /
BY-AP-MW-12V	Conductivity	5/23/2022 16:47	616.53	uS/cm
BY-AP-MW-12V	DO	5/23/2022 16:47	0.15	mg/L
BY-AP-MW-12V	Depth to Water Detail	5/23/2022 16:47	20.73	ft
BY-AP-MW-12V	Oxidation Reduction Potention	5/23/2022 16:47	-64.88	mv
BY-AP-MW-12V	рН	5/23/2022 16:47	6.22	SU
BY-AP-MW-12V	Temperature	5/23/2022 16:47	20.8	C
BY-AP-MW-12V	Turbidity	5/23/2022 16:47	2.66	NTU
BY-AP-MW-12V	Conductivity	5/23/2022 16:52	616.08	uS/cm
BY-AP-MW-12V	DO	5/23/2022 16:52	0.12	mg/L
BY-AP-MW-12V	Depth to Water Detail	5/23/2022 16:52	20.73	ft
BY-AP-MW-12V	Oxidation Reduction Potention	5/23/2022 16:52	-67.12	mv
BY-AP-MW-12V	pН	5/23/2022 16:52	6.23	SU
BY-AP-MW-12V	Temperature	5/23/2022 16:52	20.67	С
BY-AP-MW-12V	Turbidity	5/23/2022 16:52	2.66	NTU
BY-AP-MW-12V	Conductivity	5/23/2022 16:57	615.09	uS/cm
BY-AP-MW-12V	DO	5/23/2022 16:57	0.11	mg/L
BY-AP-MW-12V	Depth to Water Detail	5/23/2022 16:57	20.73	ft
BY-AP-MW-12V	Oxidation Reduction Potention	5/23/2022 16:57	-67.3	mv
BY-AP-MW-12V	pН	5/23/2022 16:57	6.22	SU
BY-AP-MW-12V	Temperature	5/23/2022 16:57	20.69	С
BY-AP-MW-12V	Turbidity	5/23/2022 16:57	0.98	NTU
BY-AP-MW-12V	Conductivity	5/23/2022 17:02	616.65	uS/cm
BY-AP-MW-12V	DO	5/23/2022 17:02	0.11	mg/L
BY-AP-MW-12V	Depth to Water Detail	5/23/2022 17:02	20.73	ft
BY-AP-MW-12V	Oxidation Reduction Potention	5/23/2022 17:02	-67.29	mv
BY-AP-MW-12V	рН	5/23/2022 17:02	6.22	SU
BY-AP-MW-12V	Sulfide	5/23/2022 17:02	0	mg/L
BY-AP-MW-12V	Temperature	5/23/2022 17:02	20.7	C
BY-AP-MW-12V	Turbidity	5/23/2022 17:02	1.04	NTU

BY-AP-MW-20V	Conductivity	5/24/2022 8:47	553.23	uS/cm
BY-AP-MW-20V	DO	5/24/2022 8:47	0.26	mg/L
BY-AP-MW-20V	Depth to Water Detail	5/24/2022 8:47	23.06	ft
BY-AP-MW-20V	Oxidation Reduction Potention	5/24/2022 8:47	-81.45	mv
BY-AP-MW-20V	pН	5/24/2022 8:47	6.3	SU
BY-AP-MW-20V	Temperature	5/24/2022 8:47	20.49	С
BY-AP-MW-20V	Turbidity	5/24/2022 8:47	7.41	NTU
BY-AP-MW-20V	Conductivity	5/24/2022 8:52	550.93	uS/cm
BY-AP-MW-20V	DO	5/24/2022 8:52	0.22	mg/L
BY-AP-MW-20V	Depth to Water Detail	5/24/2022 8:52	23.06	ft
BY-AP-MW-20V	Oxidation Reduction Potention	5/24/2022 8:52	-81.54	mv
BY-AP-MW-20V	рН	5/24/2022 8:52	6.3	SU
BY-AP-MW-20V	Temperature	5/24/2022 8:52	20.52	С
BY-AP-MW-20V	Turbidity	5/24/2022 8:52	1.34	NTU
BY-AP-MW-20V	Conductivity	5/24/2022 8:57	549.66	uS/cm
BY-AP-MW-20V	DO	5/24/2022 8:57	0.22	mg/L
BY-AP-MW-20V	Depth to Water Detail	5/24/2022 8:57	23.06	ft
BY-AP-MW-20V	Oxidation Reduction Potention	5/24/2022 8:57	-80.37	mv
BY-AP-MW-20V	рН	5/24/2022 8:57	6.3	SU
BY-AP-MW-20V	Temperature	5/24/2022 8:57	20.53	C
BY-AP-MW-20V	Turbidity	5/24/2022 8:57	1.25	NTU
BY-AP-MW-20V	Conductivity	5/24/2022 9:02	549.97	uS/cm
BY-AP-MW-20V	DO	5/24/2022 9:02	0.25	mg/L
BY-AP-MW-20V	Depth to Water Detail	5/24/2022 9:02	23.06	ft
BY-AP-MW-20V	Oxidation Reduction Potention	5/24/2022 9:02	-77.95	mv
BY-AP-MW-20V	рН	5/24/2022 9:02	6.28	SU
BY-AP-MW-20V	Sulfide	5/24/2022 9:02	0	mg/L
BY-AP-MW-20V	Temperature	5/24/2022 9:02	20.55	C
BY-AP-MW-20V	Turbidity	5/24/2022 9:02	1.01	NTU

BY-AP-MW-24H	Conductivity	5/24/2022 10:09	788.22	uS/cm
BY-AP-MW-24H	DO	5/24/2022 10:09	0.13	mg/L
BY-AP-MW-24H	Depth to Water Detail	5/24/2022 10:09	23.74	ft
BY-AP-MW-24H	Oxidation Reduction Potention	5/24/2022 10:09	-80.03	mv
BY-AP-MW-24H	рН	5/24/2022 10:09	6.22	SU
BY-AP-MW-24H	Temperature	5/24/2022 10:09	21.65	С
BY-AP-MW-24H	Turbidity	5/24/2022 10:09	3.44	NTU
BY-AP-MW-24H	Conductivity	5/24/2022 10:14	788.97	uS/cm
BY-AP-MW-24H	DO	5/24/2022 10:14	0.15	mg/L
BY-AP-MW-24H	Depth to Water Detail	5/24/2022 10:14	23.74	ft
BY-AP-MW-24H	Oxidation Reduction Potention	5/24/2022 10:14	-81.82	mv
BY-AP-MW-24H	pН	5/24/2022 10:14	6.24	SU
BY-AP-MW-24H	Temperature	5/24/2022 10:14	21.85	С
BY-AP-MW-24H	Turbidity	5/24/2022 10:14	4.94	NTU
BY-AP-MW-24H	Conductivity	5/24/2022 10:19	791.93	uS/cm
BY-AP-MW-24H	DO	5/24/2022 10:19	0.18	mg/L
BY-AP-MW-24H	Depth to Water Detail	5/24/2022 10:19	23.74	ft
BY-AP-MW-24H	Oxidation Reduction Potention	5/24/2022 10:19	-81.4	mv
BY-AP-MW-24H	рН	5/24/2022 10:19	6.25	SU
BY-AP-MW-24H	Temperature	5/24/2022 10:19	22.06	C
BY-AP-MW-24H	Turbidity	5/24/2022 10:19	3.26	NTU
BY-AP-MW-24H	Conductivity	5/24/2022 10:24	793.76	uS/cm
BY-AP-MW-24H	DO	5/24/2022 10:24	0.21	mg/L
BY-AP-MW-24H	Depth to Water Detail	5/24/2022 10:24	23.74	ft
BY-AP-MW-24H	Oxidation Reduction Potention	5/24/2022 10:24	-79.76	mv
BY-AP-MW-24H	рН	5/24/2022 10:24	6.26	SU
BY-AP-MW-24H	Temperature	5/24/2022 10:24	23.44	С
BY-AP-MW-24H	Turbidity	5/24/2022 10:24	2.17	NTU
BY-AP-MW-24H	Conductivity	5/24/2022 10:29	792.5	uS/cm
BY-AP-MW-24H	DO	5/24/2022 10:29	0.1	mg/L
BY-AP-MW-24H	Depth to Water Detail	5/24/2022 10:29	23.74	ft
BY-AP-MW-24H	Oxidation Reduction Potention	5/24/2022 10:29	-80.03	mv
BY-AP-MW-24H	рН	5/24/2022 10:29	6.22	SU
BY-AP-MW-24H	Sulfide	5/24/2022 10:29	0	mg/L
BY-AP-MW-24H	Temperature	5/24/2022 10:29	21.7	С
BY-AP-MW-24H	Turbidity	5/24/2022 10:29	2.5	NTU

BY-AP-MW-25H	Conductivity	5/25/2022 11:21	43.2	uS/cm
BY-AP-MW-25H	DO	5/25/2022 11:21	0.89	mg/L
BY-AP-MW-25H	Depth to Water Detail	5/25/2022 11:21	20.26	ft
BY-AP-MW-25H	Oxidation Reduction Potention	5/25/2022 11:21	269.23	mv
BY-AP-MW-25H	pH	5/25/2022 11:21	5.23	SU
BY-AP-MW-25H	Temperature	5/25/2022 11:21	22.56	С
BY-AP-MW-25H	Turbidity	5/25/2022 11:21	1.62	NTU
BY-AP-MW-25H	Conductivity	5/25/2022 11:26	43.16	uS/cm
BY-AP-MW-25H	DO	5/25/2022 11:26	0.87	mg/L
BY-AP-MW-25H	Depth to Water Detail	5/25/2022 11:26	20.26	ft
BY-AP-MW-25H	Oxidation Reduction Potention	5/25/2022 11:26	286.65	mv
BY-AP-MW-25H	pH	5/25/2022 11:26	5.06	SU
BY-AP-MW-25H	Temperature	5/25/2022 11:26	22.6	C
BY-AP-MW-25H	Turbidity	5/25/2022 11:26	1.21	NTU
BY-AP-MW-25H	Conductivity	5/25/2022 11:31	43.04	uS/cm
BY-AP-MW-25H	DO	5/25/2022 11:31	0.86	mg/L
BY-AP-MW-25H	Depth to Water Detail	5/25/2022 11:31	20.26	ft
BY-AP-MW-25H	Oxidation Reduction Potention	5/25/2022 11:31	286.9	mv
BY-AP-MW-25H	pH	5/25/2022 11:31	5.15	SU
BY-AP-MW-25H	Temperature	5/25/2022 11:31	22.44	C
BY-AP-MW-25H	Turbidity	5/25/2022 11:31	1.01	NTU
BY-AP-MW-25H	Conductivity	5/25/2022 11:36	43	uS/cm
BY-AP-MW-25H	DO	5/25/2022 11:36	0.84	mg/L
BY-AP-MW-25H	Depth to Water Detail	5/25/2022 11:36	20.26	ft
BY-AP-MW-25H	Oxidation Reduction Potention	5/25/2022 11:36	285.43	mv
BY-AP-MW-25H	pH	5/25/2022 11:36	5.23	SU
BY-AP-MW-25H	Sulfide	5/25/2022 11:36	0	mg/L
BY-AP-MW-25H	Temperature	5/25/2022 11:36	22.54	C
BY-AP-MW-25H	Turbidity	5/25/2022 11:36	0.93	NTU

BY-AP-MW-25V	Conductivity	5/25/2022 10:30	29.76	uS/cm
BY-AP-MW-25V	DO	5/25/2022 10:30	3.52	mg/L
BY-AP-MW-25V	Depth to Water Detail	5/25/2022 10:30	20.33	ft
BY-AP-MW-25V	Oxidation Reduction Potention	5/25/2022 10:30	231.5	mv
BY-AP-MW-25V	рН	5/25/2022 10:30	5.42	SU
BY-AP-MW-25V	Temperature	5/25/2022 10:30	22.45	С
BY-AP-MW-25V	Turbidity	5/25/2022 10:30	2.16	NTU
BY-AP-MW-25V	Conductivity	5/25/2022 10:35	29.66	uS/cm
BY-AP-MW-25V	DO	5/25/2022 10:35	3.53	mg/L
BY-AP-MW-25V	Depth to Water Detail	5/25/2022 10:35	20.33	ft
BY-AP-MW-25V	Oxidation Reduction Potention	5/25/2022 10:35	243.72	mv
BY-AP-MW-25V	pН	5/25/2022 10:35	5.43	SU
BY-AP-MW-25V	Temperature	5/25/2022 10:35	22.3	С
BY-AP-MW-25V	Turbidity	5/25/2022 10:35	1.71	NTU
BY-AP-MW-25V	Conductivity	5/25/2022 10:38	29.78	uS/cm
BY-AP-MW-25V	DO	5/25/2022 10:38	3.55	mg/L
BY-AP-MW-25V	Depth to Water Detail	5/25/2022 10:38	20.33	ft
BY-AP-MW-25V	Oxidation Reduction Potention	5/25/2022 10:38	242.97	mv
BY-AP-MW-25V	pН	5/25/2022 10:38	5.51	SU
BY-AP-MW-25V	Temperature	5/25/2022 10:38	22.31	С
BY-AP-MW-25V	Turbidity	5/25/2022 10:38	1.47	NTU
BY-AP-MW-25V	Conductivity	5/25/2022 10:43	29.77	uS/cm
BY-AP-MW-25V	DO	5/25/2022 10:43	3.54	mg/L
BY-AP-MW-25V	Depth to Water Detail	5/25/2022 10:43	20.33	ft
BY-AP-MW-25V	Oxidation Reduction Potention	5/25/2022 10:43	255.12	mv
BY-AP-MW-25V	pН	5/25/2022 10:43	5.45	SU
BY-AP-MW-25V	Temperature	5/25/2022 10:43	22.39	С
BY-AP-MW-25V	Turbidity	5/25/2022 10:43	1.47	NTU
BY-AP-MW-25V	Conductivity	5/25/2022 10:48	29.82	uS/cm
BY-AP-MW-25V	DO	5/25/2022 10:48	3.54	mg/L
BY-AP-MW-25V	Depth to Water Detail	5/25/2022 10:48	20.33	ft
BY-AP-MW-25V	Oxidation Reduction Potention	5/25/2022 10:48	261.01	mv
BY-AP-MW-25V	рН	5/25/2022 10:48	5.45	SU
BY-AP-MW-25V	Sulfide	5/25/2022 10:48	0	mg/L
BY-AP-MW-25V	Temperature	5/25/2022 10:48	22.35	С
BY-AP-MW-25V	Turbidity	5/25/2022 10:48	1.53	NTU

Analytical Report

Sample Group: WMWBARPU_1372

Project/Site: Barry Pooled Upgradient

Bucks, AL 36512

For: Southern Company Services

3535 Colonnade Parkway Birmingham, AL 35243

Attention: Dustin Brooks & Greg Dyer

Released By: Brooke Caton

tbwill@southernco.com

(205) 664-6101

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040 (205) 664-6001

June 16, 2022

Dear Dustin Brooks,

Enclosed are the analytical results for sample(s) received by the laboratory on June 02, 2022. All results reported herein conform to the laboratory's most current Quality Assurance Manual. Results marked with an asterisk conform to the most current applicable TNI/NELAC requirements. Exceptions will be noted in the body of the report.

Laboratory certification ID: E571114

Issued By: State of Florida, Department of Health

Expiration: June 30, 2022

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Quality Control: Brooke

Caton

Digitally signed by Brooke Caton

Date: 2022.06.16 09:10:32 -05'00'

Supervision: T Durant

Maske

Drigitary signed by Footal it mays DN: cn-T Durant Maske gn-T Durant Maske c-L United States I=US United States e-stmaske@southernco.com Reason: I am approving this document Location:

This Certificate states the physical and/or chemical characteristics of the sample as submitted.

This document shall not be reproduced, except in full, without written consent from

Alabama Power's General Test Laboratory.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Total Metals ICP

Barry Pooled Upgradient

WMWBARPU 1372

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BC10402	728204	WMWBARPU_1372
BC10403	728204	WMWBARPU_1372
BC10404	728204	WMWBARPU_1372
BC10405	728204	WMWBARPU_1372
BC10406	728204	WMWBARPU_1372
BC10407	728204	WMWBARPU_1372
BC10408	728204	WMWBARPU_1372

- 4. All of the above samples were analyzed by EPA 200.7 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed, and all criteria were met.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were analyzed, and all criteria were met.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- All calibration curve requirements were within acceptance criteria.
- All sample internal standard criteria were met.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical
 sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range,
 any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any
 qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of
 review.

Revision 5

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for precision were met.
- 7. The following sample was diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

Sample ID	<u>Analyte</u>	<u>Dilution Factor</u>
BC10402	Iron	10.15

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Dissolved Metals ICP

Barry Pooled Upgradient

WMWBARPU 1372

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	<u>Project ID</u>
BC10402	728219	WMWBARPU_1372
BC10403	728219	WMWBARPU_1372
BC10405	728219	WMWBARPU_1372
BC10406	728219	WMWBARPU_1372
BC10407	728219	WMWBARPU_1372

- 4. All of the above samples were analyzed and prepared by EPA 200.7 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed, and all criteria were met.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were analyzed, and all criteria were met.
- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch.
- All laboratory control sample criteria were met.
- The method blank associated with each batch passed all acceptance criteria for all requested analytes.
- All calibration curve requirements were within acceptance criteria.
- All sample internal standard criteria were met.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical
 sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range,
 any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any
 qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of
 review.

Matrix Specific Quality Control Procedures:

Revision 5

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for precision were met.
- 7. The following sample was diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

Sample IDAnalyteDilution FactorBC10402Iron10.15

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Total Metals ICPMS

Barry Pooled Upgradient

WMWBARPU 1372

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BC10402	728449	WMWBARPU_1372
BC10403	728449	WMWBARPU_1372
BC10404	728449	WMWBARPU_1372
BC10405	728449	WMWBARPU_1372
BC10406	728449	WMWBARPU_1372
BC10407	728449	WMWBARPU_1372
BC10408	728449	WMWBARPU_1372

- 4. All of the above samples were analyzed by EPA 200.8 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution factor.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Dissolved Metals ICPMS

Barry Pooled Upgradient

WMWBARPU 1372

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	<u>Project ID</u>
BC10402	728465	WMWBARPU_1372
BC10403	728465	WMWBARPU_1372
BC10405	728465	WMWBARPU_1372
BC10406	728465	WMWBARPU_1372
BC10407	728465	WMWBARPU_1372

- 4. All of the above samples were analyzed and prepared by EPA 200.8 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch.
- All laboratory control sample criteria were met.
- The method blank associated with each preparation batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution factor.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Mercury

Barry Pooled Upgradient

WMWBARPU 1372

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	<u>Project ID</u>
BC10402	728373	WMWBARPU_1372
BC10403	728373	WMWBARPU_1372
BC10404	728373	WMWBARPU_1372
BC10405	728373	WMWBARPU_1372
BC10406	728373	WMWBARPU_1372
BC10407	728373	WMWBARPU_1372
BC10408	728373	WMWBARPU_1372

- 4. All of the above samples were analyzed and prepared by EPA 245.1.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the method detection limit for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch was below the limit of quantitation for the requested analyte.
- All calibration met criteria for the requested analyte.
- All response signals were satisfactory.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

Revision 5

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution factor.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Total Dissolved Solids

Barry Pooled Upgradient

WMWBARPU 1372

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BC10402	728167	WMWBARPU_1372
BC10403	728167	WMWBARPU_1372
BC10404	728167	WMWBARPU_1372
BC10405	728167	WMWBARPU_1372
BC10406	728167	WMWBARPU_1372
BC10407	728167	WMWBARPU_1372
BC10408	728167	WMWBARPU 1372

- 4. All of the above samples were prepared and analyzed by Standard Method 2540C.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- A Method Blank was analyzed with each batch. All criteria were met.
- All final weights of samples, standards, and blanks agreed within 0.5mg of the previous weight.
- A sample duplicate was analyzed with each batch, and RPD was ≤ 10%.
- A laboratory control sample was analyzed with each batch. All criteria were met.
- Samples were between 2.5mg and 200mg residue.
- All samples with residue <2.5mg had the maximum volume of 150mL filtered. Affected samples are as follows:
 - o BC10404
 - o BC10408

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Alkalinity

Barry Pooled Upgradient

WMWBARPU 1372

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	<u>Project ID</u>
BC10402	728840,728841	WMWBARPU_1372
BC10403	728840,728841	WMWBARPU_1372
BC10405	728840,728841	WMWBARPU_1372
BC10406	728840,728841	WMWBARPU_1372
BC10407	728840,728841	WMWBARPU_1372

- 4. All of the above samples were prepared and analyzed by Standard Method 2320B.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- An initial pH check was analyzed with each batch. The acceptance criteria were met.
- A final pH check was analyzed with each batch. The acceptance criteria were met.
- An alkalinity laboratory control sample was analyzed with each batch. Range criteria of within 10% of true value was met.
- An alkalinity sample duplicate was analyzed with each batch. Precision criteria less than 10 RPD was met, except for the following:
 - o BC10407 Precision is invalid due to sample concentration.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Anions

Barry Pooled Upgradient

WMWBARPU 1372

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	<u>Batch ID</u>	Project ID
BC10402	728178,728649,728620	WMWBARPU_1372
BC10403	728178,728649,728620	WMWBARPU_1372
BC10404	728178,728649,728620	WMWBARPU_1372
BC10405	728178,728649,728620	WMWBARPU_1372
BC10406	728178,728649,728620	WMWBARPU_1372
BC10407	728178,728649,728620	WMWBARPU_1372
BC10408	728178,728649,728620	WMWBARPU_1372

- 4. All of the above samples were analyzed and prepared by SM4500 CI E, SM4500 F G, and SM4500 SO4 E.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- All calibration met criteria for the requested analyte.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Prior to sample analysis, an initial calibration blank (ICB) was analyzed and was below half the limit of quantitation for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

Revision 5

📤 Alabama Power

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

- A matrix spike and matrix spike duplicate were analyzed with each batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were analyzed with each batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without dilution.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Nitrate-Nitrite

Barry Pooled Upgradient

WMWBARPU 1372

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BC10402	728305	WMWBARPU_1372
BC10403	728305	WMWBARPU_1372
BC10404	728305	WMWBARPU_1372
BC10405	728305	WMWBARPU_1372
BC10406	728305	WMWBARPU_1372
BC10407	728305	WMWBARPU_1372
BC10408	728305	WMWBARPU_1372

- 4. All of the above samples were prepared and analyzed for NO_x by EPA 353.2.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- Water baseline report was run and met criteria.
- All calibration met criteria for the requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and met all criteria.
- All continued calibration verification (CCV) were within the acceptance criteria.
- Prior to sample analysis, an initial calibration blank (ICB) was analyzed and were below limit of detection.
- All continued calibration blanks (CCB) were below the limit of detection.

EPA 353.2 Specific QC:

- Prior to sample analysis, Cadmium coil reduction efficiency check met criteria.
- Matrix Specific QC:
 - A sample duplicate was run and criteria for precision was met.
 - o A matrix spike was run and criteria for accuracy was met.
- 7. All samples were analyzed without a dilution factor.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Total Organic Carbon

Barry Pooled Upgradient

WMWBARPU 1372

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BC10402	728186	WMWBARPU_1372
BC10403	728186	WMWBARPU_1372
BC10404	728186	WMWBARPU_1372
BC10405	728186	WMWBARPU_1372
BC10406	728186	WMWBARPU_1372
BC10407	728186	WMWBARPU_1372
BC10408	728186	WMWBARPU 1372

- 4. All of the above samples were prepared and analyzed by Standard Method 5310B.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- All calibration criteria were met.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and met all criteria.
- Prior to sample analysis, an initial calibration blank (ICB) was analyzed and was <1/2RL.
- All continued calibration verifications (CCVs) were within the acceptance range.
- All continued calibration blanks (CCBs) were <1/2RL.

Matrix Specific Quality Control Procedures:

- A matrix spike and matrix spike duplicate were analyzed with each batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were analyzed with each batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution factor.
- 8. The raw data results are shown with dilution factors included.

Certificate Of Analysis

Description: Barry Pooled Upgradient - MW-1Location Code:WMWBARPUCollected:5/31/22 13:24

Customer ID:

Submittal Date: 6/2/22 08:21

Laboratory ID Number: BC10402

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Ana	lyst: RDA		Preparati	on Method:	EPA 1638		
* Boron, Total	6/6/22 09:22	6/8/22 09:50	1.015	0.0567	mg/L	0.030000	0.1015	J
* Calcium, Total	6/6/22 09:22	6/8/22 09:50	1.015	1.14	mg/L	0.070035	0.406	
* Iron, Total	6/6/22 09:22	6/8/22 10:16	10.15	4.80	mg/L	0.08120	0.406	
* Lithium, Total	6/6/22 09:22	6/8/22 09:50	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	6/6/22 09:22	6/8/22 09:50	1.015	2.23	mg/L	0.021315	0.406	
Silica, Total (calc.)	6/6/22 09:22	6/8/22 09:50	1	6.74	mg/L			
Silicon, Total	6/6/22 09:22	6/8/22 09:50	1.015	3.15	mg/L	0.02030	0.25375	
* Sodium, Total	6/6/22 09:22	6/8/22 09:50	1.015	2.05	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Ana	lyst: RDA						
* Boron, Dissolved	6/6/22 09:06	6/8/22 11:12	1.015	0.0564	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	6/6/22 09:06	6/8/22 11:12	1.015	1.13	mg/L	0.070035	0.406	
* Iron, Dissolved	6/6/22 09:06	6/8/22 11:32	10.15	4.08	mg/L	0.08120	0.406	
* Lithium, Dissolved	6/6/22 09:06	6/8/22 11:12	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	6/6/22 09:06	6/8/22 11:12	1.015	2.25	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	6/6/22 09:06	6/8/22 11:12	1	6.83	mg/L			
Silicon, Dissolved	6/6/22 09:06	6/8/22 11:12	1.015	3.19	mg/L	0.02030	0.25375	
* Sodium, Dissolved	6/6/22 09:06	6/8/22 11:12	1.015	2.09	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Ana	lyst: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/6/22 07:13	6/6/22 14:37	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/6/22 07:13	6/6/22 14:37	1.015	0.0898	mg/L	0.006090	0.01015	
* Arsenic, Total	6/6/22 07:13	6/6/22 14:37	1.015	0.000237	mg/L	0.000081	0.000203	
* Barium, Total	6/6/22 07:13	6/6/22 14:37	1.015	0.100	mg/L	0.000508	0.001015	
* Beryllium, Total	6/6/22 07:13	6/6/22 14:37	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/6/22 07:13	6/6/22 14:37	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/6/22 07:13	6/6/22 14:37	1.015	0.000334	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/6/22 07:13	6/6/22 14:37	1.015	0.00487	mg/L	0.000068	0.000203	
∗ Lead, Total	6/6/22 07:13	6/6/22 14:37		0.0000838	mg/L	0.000068	0.000203	J
* Manganese, Total	6/6/22 07:13	6/6/22 14:37		0.154	mg/L	0.000152	0.000203	
Molybdenum, Total	6/6/22 07:13	6/6/22 14:37	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/6/22 07:13	6/6/22 14:37		0.444	mg/L	0.169505	0.5075	J

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Pooled Upgradient - MW-1

Location Code: Collected:

WMWBARPU 5/31/22 13:24

Customer ID:

Submittal Date:

6/2/22 08:21

Laboratory ID Number: BC10402					Gubillit	ui Dutc.	0/2/22 00.21		
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/6/22 07:13	6/6/22 14:37	7	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/6/22 07:13	6/6/22 14:37	7	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ							
* Antimony, Dissolved	6/6/22 07:31	6/6/22 12:38	3	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	6/6/22 07:31	6/6/22 12:38	3	1.015	0.0534	mg/L	0.006090	0.01015	
* Arsenic, Dissolved	6/6/22 07:31	6/6/22 12:38	3	1.015	0.000168	mg/L	0.000081	0.000203	J
* Barium, Dissolved	6/6/22 07:31	6/6/22 12:38	3	1.015	0.101	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	6/6/22 07:31	6/6/22 12:38	3	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	6/6/22 07:31	6/6/22 12:38	3	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	6/6/22 07:31	6/6/22 12:38	3	1.015	0.000231	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	6/6/22 07:31	6/6/22 12:38	3	1.015	0.00484	mg/L	0.000068	0.000203	
* Lead, Dissolved	6/6/22 07:31	6/6/22 12:38	3	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	6/6/22 07:31	6/6/22 12:38	3	1.015	0.155	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	6/6/22 07:31	6/6/22 12:38	3	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Dissolved	6/6/22 07:31	6/6/22 12:38	3	1.015	0.458	mg/L	0.169505	0.5075	J
* Selenium, Dissolved	6/6/22 07:31	6/6/22 12:38	3	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	6/6/22 07:31	6/6/22 12:38	3	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	lyst: CRB							
* Mercury, Total by CVAA	6/7/22 11:15	6/7/22 13:43	3	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Ana	lyst: CES							
* Nitrogen, Nitrate/Nitrite	6/6/22 12:38	6/6/22 12:38	3	1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Ana	lyst: ALH							
Alkalinity, Total as CaCO3		6/10/22 14:5	52	1	8.56	mg/L		0.1	
Analytical Method: SM 2540C	Ana	lyst: CNJ							
* Solids, Dissolved	6/3/22 13:15	6/6/22 13:42	2	1	32.0	mg/L		25	
Analytical Method: SM 4500CO2 D	Ana	lyst: ALH							
Bicarbonate Alkalinity, (calc.)	6/10/22 13:35	5 6/10/22 14:5	52	1	8.56	mg/L			
Carbonate Alkalinity, (calc.)		6/10/22 14:5		1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		lyst: ELH				ū			
* Total Organic Carbon	6/8/22 01:15	6/8/22 01:15	ξ.	1	1.58	mg/L	1.00	2	J
	0/0/22 01.15	0/0/22 01.10	,	1	1.50	g/ L	1.00	_	J

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Pooled Upgradient - MW-1

Location Code:

WMWBARPU 5/31/22 13:24

Collected: Customer ID:

Submittal Date:

6/2/22 08:21

Laboratory ID Number: BC10402

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Ana	lyst: JCC							
* Chloride	6/6/22 12:56	6/6/22 12:56	5	1	1.93	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	6/8/22 13:27	6/8/22 13:27	•	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	6/7/22 16:10	6/7/22 16:10)	1	12.8	mg/L	0.6	2	
Analytical Method: Field Measurements	Ana	lyst: DKG							
Conductivity	5/31/22 13:21	5/31/22 13:2	21		57.06	uS/cm			FA
рН	5/31/22 13:21	5/31/22 13:2	21		3.89	SU			FA
Temperature	5/31/22 13:21	5/31/22 13:2	21		20.77	С			FA
Turbidity	5/31/22 13:21	5/31/22 13:2	21		2	NTU			FA
Sulfide	5/31/22 13:21	5/31/22 13:2	21		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 13:24

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-1

Laboratory ID Number: BC10402

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10407	Aluminum, Dissolved	mg/L	0.0000977	0.010	0.100	0.124	0.128	0.104	0.0850 to 0.115	103	70.0 to 130	3.17	20.0
BC10408	Aluminum, Total	mg/L	0.000555	0.010	0.100	0.110	0.106	0.106	0.0850 to 0.115	110	70.0 to 130	3.70	20.0
BC10407	Antimony, Dissolved	mg/L	0.000304	0.00100	0.100	0.0937	0.0957	0.0923	0.0850 to 0.115	93.7	70.0 to 130	2.11	20.0
BC10408	Antimony, Total	mg/L	0.000382	0.00100	0.100	0.0896	0.0901	0.0945	0.0850 to 0.115	89.6	70.0 to 130	0.556	20.0
BC10407	Arsenic, Dissolved	mg/L	0.0000034	0.000176	0.100	0.100	0.102	0.104	0.0850 to 0.115	100	70.0 to 130	1.98	20.0
BC10408	Arsenic, Total	mg/L	0.0000173	0.000176	0.100	0.102	0.101	0.102	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10407	Barium, Dissolved	mg/L	0.0000071	0.00100	0.100	0.229	0.234	0.103	0.0850 to 0.115	100	70.0 to 130	2.16	20.0
BC10408	Barium, Total	mg/L	0.0000192	0.00100	0.100	0.0994	0.101	0.103	0.0850 to 0.115	99.4	70.0 to 130	1.60	20.0
BC10407	Beryllium, Dissolved	mg/L	0.0000130	0.000880	0.100	0.100	0.101	0.104	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
BC10408	Beryllium, Total	mg/L	0.0000106	0.000880	0.100	0.103	0.0970	0.0977	0.0850 to 0.115	103	70.0 to 130	6.00	20.0
BC10407	Boron, Dissolved	mg/L	0.000221	0.0650	1.00	1.02	1.02	1.01	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC10408	Boron, Total	mg/L	0.000098	0.0650	1.00	0.990	0.990	1.01	0.850 to 1.15	99.0	70.0 to 130	0.00	20.0
BC10407	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.0997	0.103	0.101	0.0850 to 0.115	99.7	70.0 to 130	3.26	20.0
BC10408	Cadmium, Total	mg/L	0.0000036	0.000147	0.100	0.102	0.0997	0.102	0.0850 to 0.115	102	70.0 to 130	2.28	20.0
BC10407	Calcium, Dissolved	mg/L	-0.00230	0.152	5.00	6.91	6.88	4.88	4.25 to 5.75	97.6	70.0 to 130	0.435	20.0
BC10408	Calcium, Total	mg/L	-0.00539	0.152	5.00	4.87	4.79	4.93	4.25 to 5.75	97.4	70.0 to 130	1.66	20.0
BC10408	Chloride	mg/L	-0.0327	1.00	10.0	10.6	10.6	9.58	9.00 to 11.0	106	80.0 to 120	0.00	20.0
BC10407	Chromium, Dissolved	mg/L	0.0000008	0.000440	0.100	0.102	0.104	0.102	0.0850 to 0.115	101	70.0 to 130	1.94	20.0
BC10408	Chromium, Total	mg/L	0.0000337	0.000440	0.100	0.103	0.100	0.102	0.0850 to 0.115	103	70.0 to 130	2.96	20.0
BC10407	Cobalt, Dissolved	mg/L	-0.0000006	0.000147	0.100	0.106	0.107	0.106	0.0850 to 0.115	105	70.0 to 130	0.939	20.0
BC10408	Cobalt, Total	mg/L	0.0000018	0.000147	0.100	0.106	0.106	0.107	0.0850 to 0.115	106	70.0 to 130	0.00	20.0
BC10408	Fluoride	mg/L	0.00175	0.125	2.50	2.53	2.56	2.54	2.25 to 2.75	101	80.0 to 120	1.18	20.0
BC10407	Iron, Dissolved	mg/L	-0.000261	0.0176	0.2	0.201	0.200	0.200	0.170 to 0.230	100	70.0 to 130	0.499	20.0

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 13:24

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-1

Laboratory ID Number: BC10402

		·		MB		·	·	·	Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10408	Iron, Total	mg/L	0.000083	0.0176	0.2	0.199	0.199	0.200	0.170 to 0.230	99.5	70.0 to 130	0.00	20.0
BC10407	Lead, Dissolved	mg/L	0.0000066	0.000147	0.100	0.108	0.104	0.109	0.0850 to 0.115	108	70.0 to 130	3.77	20.0
BC10408	Lead, Total	mg/L	0.0000100	0.000147	0.100	0.105	0.102	0.103	0.0850 to 0.115	105	70.0 to 130	2.90	20.0
BC10407	Lithium, Dissolved	mg/L	0.000211	0.0154	0.200	0.201	0.202	0.201	0.170 to 0.230	100	70.0 to 130	0.496	20.0
BC10408	Lithium, Total	mg/L	0.000209	0.0154	0.200	0.203	0.203	0.204	0.170 to 0.230	102	70.0 to 130	0.00	20.0
BC10407	Magnesium, Dissolved	mg/L	-0.00997	0.0462	5.00	7.28	7.22	5.16	4.25 to 5.75	103	70.0 to 130	0.828	20.0
BC10408	Magnesium, Total	mg/L	-0.00569	0.0462	5.00	5.11	5.07	5.18	4.25 to 5.75	102	70.0 to 130	0.786	20.0
BC10407	Manganese, Dissolved	mg/L	0.0000037	0.0002	0.100	0.118	0.120	0.103	0.0850 to 0.115	102	70.0 to 130	1.68	20.0
BC10408	Manganese, Total	mg/L	0.0000112	0.0002	0.100	0.104	0.102	0.104	0.0850 to 0.115	104	70.0 to 130	1.94	20.0
BC10408	Mercury, Total by CVAA	mg/L	0.000134	0.000500	0.004	0.00425	0.00421	0.00400	0.00340 to 0.00460	106	70.0 to 130	0.946	20.0
BC10407	Molybdenum, Dissolved	mg/L	0.0000017	0.0002	0.100	0.0978	0.100	0.0987	0.0850 to 0.115	97.8	70.0 to 130	2.22	20.0
BC10408	Molybdenum, Total	mg/L	-0.0000073	0.0002	0.100	0.0990	0.0981	0.101	0.0850 to 0.115	99.0	70.0 to 130	0.913	20.0
BC10407	Potassium, Dissolved	mg/L	0.00152	0.367	10.0	11.0	11.1	9.97	8.50 to 11.5	99.9	70.0 to 130	0.905	20.0
BC10408	Potassium, Total	mg/L	0.0102	0.367	10.0	10.2	10.0	10.2	8.50 to 11.5	102	70.0 to 130	1.98	20.0
BC10407	Selenium, Dissolved	mg/L	-0.0000214	0.00100	0.100	0.100	0.101	0.101	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
BC10408	Selenium, Total	mg/L	0.0000056	0.00100	0.100	0.103	0.101	0.104	0.0850 to 0.115	103	70.0 to 130	1.96	20.0
BC10407	Silicon, Dissolved	mg/L	-0.00110	0.0440	1.00	5.02	5.02	1.02	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC10408	Silicon, Total	mg/L	-0.000555	0.0440	1.00	1.01	1.01	1.02	0.850 to 1.15	101	70.0 to 130	0.00	20.0
BC10407	Sodium, Dissolved	mg/L	-0.000155	0.0660	5.00	7.73	7.76	5.13	4.25 to 5.75	102	70.0 to 130	0.387	20.0
BC10408	Sodium, Total	mg/L	0.00196	0.0660	5.00	5.16	5.17	5.17	4.25 to 5.75	103	70.0 to 130	0.194	20.0
BC10408	Sulfate	mg/L	-0.0817	2.0	20.0	20.1	20.4	19.0	18.0 to 22.0	100	80.0 to 120	1.48	20.0
BC10407	Thallium, Dissolved	mg/L	0.0000086	0.000147	0.100	0.109	0.105	0.110	0.0850 to 0.115	109	70.0 to 130	3.74	20.0
BC10407	i nailium, Dissolved	mg/L	0.0000086	0.000147	0.100	0.109	0.105	0.110	0.0850 to 0.115	109	70.0 to 130	3.74	20.0

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 13:24

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-1

Laboratory ID Number: BC10402

'				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10408	Thallium, Total	mg/L	0.0000118	0.000147	0.100	0.106	0.105	0.108	0.0850 to 0.115	106	70.0 to 130	0.948	20.0
BC10408	Total Organic Carbon	mg/L	0.160	1.00	10.0	10.0	10.2	25.1		100	80.0 to 120	1.98	20.0

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 13:24

Customer ID:

Delivery Date:

6/2/22 08:21

Description: Barry Pooled Upgradient - MW-1

Laboratory ID Number: BC10402

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10407	Alkalinity, Total as CaCO3	mg/L					0.680	52.5	45.0 to 55.0			42.9	10.0
BC10408	Nitrogen, Nitrate/Nitrite	mg/L as N	0.01	0.200	2.00	2.12	0.073	2.01	1.80 to 2.20	106	90.0 to 110	0.00	15.0
BC10407	Solids, Dissolved	mg/L	0.0000	25.0			36.0	50.0	40.0 to 60.0			1.93	10.0

Certificate Of Analysis

Description: Barry Pooled Upgradient - MW-2Location Code:WMWBARPUCollected:5/31/22 14:28

Customer ID:

Submittal Date: 6/2/22 08:21

Laboratory ID Number: BC10403

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: RDA Preparation Method: EPA 1638 6/6/22 09:22 6/8/22 09:53 1.015 Not Detected mg/L 0.030000 0.101							
* Boron, Total	6/6/22 09:22	6/8/22 09:53	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	6/6/22 09:22	6/8/22 09:53	1.015	1.24	mg/L	0.070035	0.406	
* Iron, Total	6/6/22 09:22	6/8/22 09:53	1.015	0.0704	mg/L	0.008120	0.0406	
* Lithium, Total	6/6/22 09:22	6/8/22 09:53	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	6/6/22 09:22	6/8/22 09:53	1.015	2.48	mg/L	0.021315	0.406	
Silica, Total (calc.)	6/6/22 09:22	6/8/22 09:53	1	8.39	mg/L			
Silicon, Total	6/6/22 09:22	6/8/22 09:53	1.015	3.92	mg/L	0.02030	0.25375	
* Sodium, Total	6/6/22 09:22	6/8/22 09:53	1.015	2.25	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Ana	lyst: RDA						
* Boron, Dissolved	6/6/22 09:06	6/8/22 11:15	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Dissolved	6/6/22 09:06	6/8/22 11:15	1.015	1.26	mg/L	0.070035	0.406	
* Iron, Dissolved	6/6/22 09:06	6/8/22 11:15	1.015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Dissolved	6/6/22 09:06	6/8/22 11:15	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	6/6/22 09:06	6/8/22 11:15	1.015	2.48	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	6/6/22 09:06	6/8/22 11:15	1	8.26	mg/L			
Silicon, Dissolved	6/6/22 09:06	6/8/22 11:15	1.015	3.86	mg/L	0.02030	0.25375	
* Sodium, Dissolved	6/6/22 09:06	6/8/22 11:15	1.015	2.25	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Ana	lyst: DLJ		Preparati	on Method: L	EPA 1638		
* Antimony, Total	6/6/22 07:13	6/6/22 14:40	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/6/22 07:13	6/6/22 14:40	1.015	0.127	mg/L	0.006090	0.01015	
* Arsenic, Total	6/6/22 07:13	6/6/22 14:40	1.015	0.0000879	mg/L	0.000081	0.000203	J
* Barium, Total	6/6/22 07:13	6/6/22 14:40	1.015	0.153	mg/L	0.000508	0.001015	
* Beryllium, Total	6/6/22 07:13	6/6/22 14:40	1.015	0.000413	mg/L	0.000406	0.001015	J
* Cadmium, Total	6/6/22 07:13	6/6/22 14:40	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/6/22 07:13	6/6/22 14:40	1.015	0.00120	mg/L	0.000203	0.001015	
* Cobalt, Total	6/6/22 07:13	6/6/22 14:40	1.015	0.00194	mg/L	0.000068	0.000203	
* Lead, Total	6/6/22 07:13	6/6/22 14:40		0.0000781	mg/L	0.000068	0.000203	J
* Manganese, Total	6/6/22 07:13	6/6/22 14:40		0.0241	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/6/22 07:13	6/6/22 14:40	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/6/22 07:13	6/6/22 14:40		0.905	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Pooled Upgradient - MW-2

Location Code: Collected:

WMWBARPU 5/31/22 14:28

Customer ID:

Submittal Date:

6/2/22 08:21

Laboratory ID Number: BC10403					Subilliti	ai Dale.	0/2/22 00.21		
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/6/22 07:13	6/6/22 14:40) 1	.015	0.000633	mg/L	0.000508	0.001015	J
* Thallium, Total	6/6/22 07:13	6/6/22 14:40) 1	.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ							
* Antimony, Dissolved	6/6/22 07:31	6/6/22 12:42	. 1	.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	6/6/22 07:31	6/6/22 12:42	. 1	.015	0.0788	mg/L	0.006090	0.01015	
* Arsenic, Dissolved	6/6/22 07:31	6/6/22 12:42	. 1	.015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Dissolved	6/6/22 07:31	6/6/22 12:42	. 1	.015	0.153	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	6/6/22 07:31	6/6/22 12:42	. 1	.015	0.000413	mg/L	0.000406	0.001015	J
* Cadmium, Dissolved	6/6/22 07:31	6/6/22 12:42	. 1	.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	6/6/22 07:31	6/6/22 12:42	. 1	.015	0.000998	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	6/6/22 07:31	6/6/22 12:42	. 1	.015	0.00187	mg/L	0.000068	0.000203	
* Lead, Dissolved	6/6/22 07:31	6/6/22 12:42	. 1	.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	6/6/22 07:31	6/6/22 12:42	. 1	.015	0.0235	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	6/6/22 07:31	6/6/22 12:42	. 1	.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Dissolved	6/6/22 07:31	6/6/22 12:42	. 1	.015	0.885	mg/L	0.169505	0.5075	
* Selenium, Dissolved	6/6/22 07:31	6/6/22 12:42	. 1	.015	0.000575	mg/L	0.000508	0.001015	J
* Thallium, Dissolved	6/6/22 07:31	6/6/22 12:42	. 1	.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	lyst: CRB							
* Mercury, Total by CVAA	6/7/22 11:15	6/7/22 13:45	5 1		Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Ana	lyst: CES							
* Nitrogen, Nitrate/Nitrite	6/6/22 12:39	6/6/22 12:39) 1		1.84	mg/L as N	0.20	0.3	
Analytical Method: SM 2320 B	Ana	lyst: ALH							
Alkalinity, Total as CaCO3		6/10/22 14:5	52 1		0.44	mg/L		0.1	
Analytical Method: SM 2540C	Ana	lyst: CNJ							
* Solids, Dissolved	6/3/22 13:15	6/6/22 13:42	. 1		30.7	mg/L		25	
Analytical Method: SM 4500CO2 D	Ana	lyst: ALH							
Bicarbonate Alkalinity, (calc.)	6/10/22 13:35	6/10/22 14:5	52 1		Not Detected	mg/L		1	
Carbonate Alkalinity, (calc.)		6/10/22 14:5			Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B	Ana	lyst: ELH							
* Total Organic Carbon	6/8/22 01:35	6/8/22 01:35	5 1	1	1.14	mg/L	1.00	2	J
ŭ	0/0/22 01.00	3,3,22 31.00		•		<i>3</i> –			-

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Pooled Upgradient - MW-2

Location Code:

WMWBARPU

Collected:

Customer ID:

5/31/22 14:28

Laboratory ID Number: BC10403

Submittal Date: 6/2/22 08:21 Vio Spec DF Results Units MDL Prenared Analyzed

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500CI E	Ana	lyst: JCC							
* Chloride	6/6/22 12:57	6/6/22 12:57	7	1	2.17	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	6/8/22 13:28	6/8/22 13:28	3	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	6/7/22 16:11	6/7/22 16:11	I	1	8.09	mg/L	0.6	2	
Analytical Method: Field Measurements	Ana	lyst: DKG							
Conductivity	5/31/22 14:25	5 5/31/22 14:2	25		50.04	uS/cm			FA
рН	5/31/22 14:25	5 5/31/22 14:2	25		3.31	SU			FA
Temperature	5/31/22 14:25	5 5/31/22 14:2	25		20.00	С			FA
Turbidity	5/31/22 14:25	5 5/31/22 14:2	25		4.82	NTU			FA
Sulfide	5/31/22 14:25	5 5/31/22 14:2	25		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 14:28

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-2

Laboratory ID Number: BC10403

<u> </u>				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10407	Aluminum, Dissolved	mg/L	0.0000977	0.010	0.100	0.124	0.128	0.104	0.0850 to 0.115	103	70.0 to 130	3.17	20.0
BC10408	Aluminum, Total	mg/L	0.000555	0.010	0.100	0.110	0.106	0.106	0.0850 to 0.115	110	70.0 to 130	3.70	20.0
BC10407	Antimony, Dissolved	mg/L	0.000304	0.00100	0.100	0.0937	0.0957	0.0923	0.0850 to 0.115	93.7	70.0 to 130	2.11	20.0
BC10408	Antimony, Total	mg/L	0.000382	0.00100	0.100	0.0896	0.0901	0.0945	0.0850 to 0.115	89.6	70.0 to 130	0.556	20.0
BC10407	Arsenic, Dissolved	mg/L	0.0000034	0.000176	0.100	0.100	0.102	0.104	0.0850 to 0.115	100	70.0 to 130	1.98	20.0
BC10408	Arsenic, Total	mg/L	0.0000173	0.000176	0.100	0.102	0.101	0.102	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10407	Barium, Dissolved	mg/L	0.0000071	0.00100	0.100	0.229	0.234	0.103	0.0850 to 0.115	100	70.0 to 130	2.16	20.0
BC10408	Barium, Total	mg/L	0.0000192	0.00100	0.100	0.0994	0.101	0.103	0.0850 to 0.115	99.4	70.0 to 130	1.60	20.0
BC10407	Beryllium, Dissolved	mg/L	0.0000130	0.000880	0.100	0.100	0.101	0.104	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
BC10408	Beryllium, Total	mg/L	0.0000106	0.000880	0.100	0.103	0.0970	0.0977	0.0850 to 0.115	103	70.0 to 130	6.00	20.0
BC10407	Boron, Dissolved	mg/L	0.000221	0.0650	1.00	1.02	1.02	1.01	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC10408	Boron, Total	mg/L	0.000098	0.0650	1.00	0.990	0.990	1.01	0.850 to 1.15	99.0	70.0 to 130	0.00	20.0
BC10407	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.0997	0.103	0.101	0.0850 to 0.115	99.7	70.0 to 130	3.26	20.0
BC10408	Cadmium, Total	mg/L	0.0000036	0.000147	0.100	0.102	0.0997	0.102	0.0850 to 0.115	102	70.0 to 130	2.28	20.0
BC10407	Calcium, Dissolved	mg/L	-0.00230	0.152	5.00	6.91	6.88	4.88	4.25 to 5.75	97.6	70.0 to 130	0.435	20.0
BC10408	Calcium, Total	mg/L	-0.00539	0.152	5.00	4.87	4.79	4.93	4.25 to 5.75	97.4	70.0 to 130	1.66	20.0
BC10408	Chloride	mg/L	-0.0327	1.00	10.0	10.6	10.6	9.58	9.00 to 11.0	106	80.0 to 120	0.00	20.0
BC10407	Chromium, Dissolved	mg/L	0.0000008	0.000440	0.100	0.102	0.104	0.102	0.0850 to 0.115	101	70.0 to 130	1.94	20.0
BC10408	Chromium, Total	mg/L	0.0000337	0.000440	0.100	0.103	0.100	0.102	0.0850 to 0.115	103	70.0 to 130	2.96	20.0
BC10407	Cobalt, Dissolved	mg/L	-0.0000006	0.000147	0.100	0.106	0.107	0.106	0.0850 to 0.115	105	70.0 to 130	0.939	20.0
BC10408	Cobalt, Total	mg/L	0.0000018	0.000147	0.100	0.106	0.106	0.107	0.0850 to 0.115	106	70.0 to 130	0.00	20.0
BC10408	Fluoride	mg/L	0.00175	0.125	2.50	2.53	2.56	2.54	2.25 to 2.75	101	80.0 to 120	1.18	20.0
BC10407	Iron, Dissolved	mg/L	-0.000261	0.0176	0.2	0.201	0.200	0.200	0.170 to 0.230	100	70.0 to 130	0.499	20.0

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 14:28

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-2

Laboratory ID Number: BC10403

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10408	Iron, Total	mg/L	0.000083	0.0176	0.2	0.199	0.199	0.200	0.170 to 0.230	99.5	70.0 to 130	0.00	20.0
BC10407	Lead, Dissolved	mg/L	0.0000066	0.000147	0.100	0.108	0.104	0.109	0.0850 to 0.115	108	70.0 to 130	3.77	20.0
BC10408	Lead, Total	mg/L	0.0000100	0.000147	0.100	0.105	0.102	0.103	0.0850 to 0.115	105	70.0 to 130	2.90	20.0
BC10407	Lithium, Dissolved	mg/L	0.000211	0.0154	0.200	0.201	0.202	0.201	0.170 to 0.230	100	70.0 to 130	0.496	20.0
BC10408	Lithium, Total	mg/L	0.000209	0.0154	0.200	0.203	0.203	0.204	0.170 to 0.230	102	70.0 to 130	0.00	20.0
BC10407	Magnesium, Dissolved	mg/L	-0.00997	0.0462	5.00	7.28	7.22	5.16	4.25 to 5.75	103	70.0 to 130	0.828	20.0
BC10408	Magnesium, Total	mg/L	-0.00569	0.0462	5.00	5.11	5.07	5.18	4.25 to 5.75	102	70.0 to 130	0.786	20.0
BC10407	Manganese, Dissolved	mg/L	0.0000037	0.0002	0.100	0.118	0.120	0.103	0.0850 to 0.115	102	70.0 to 130	1.68	20.0
BC10408	Manganese, Total	mg/L	0.0000112	0.0002	0.100	0.104	0.102	0.104	0.0850 to 0.115	104	70.0 to 130	1.94	20.0
BC10408	Mercury, Total by CVAA	mg/L	0.000134	0.000500	0.004	0.00425	0.00421	0.00400	0.00340 to 0.00460	106	70.0 to 130	0.946	20.0
BC10407	Molybdenum, Dissolved	mg/L	0.0000017	0.0002	0.100	0.0978	0.100	0.0987	0.0850 to 0.115	97.8	70.0 to 130	2.22	20.0
BC10408	Molybdenum, Total	mg/L	-0.0000073	0.0002	0.100	0.0990	0.0981	0.101	0.0850 to 0.115	99.0	70.0 to 130	0.913	20.0
BC10407	Potassium, Dissolved	mg/L	0.00152	0.367	10.0	11.0	11.1	9.97	8.50 to 11.5	99.9	70.0 to 130	0.905	20.0
BC10408	Potassium, Total	mg/L	0.0102	0.367	10.0	10.2	10.0	10.2	8.50 to 11.5	102	70.0 to 130	1.98	20.0
BC10407	Selenium, Dissolved	mg/L	-0.0000214	0.00100	0.100	0.100	0.101	0.101	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
BC10408	Selenium, Total	mg/L	0.0000056	0.00100	0.100	0.103	0.101	0.104	0.0850 to 0.115	103	70.0 to 130	1.96	20.0
BC10407	Silicon, Dissolved	mg/L	-0.00110	0.0440	1.00	5.02	5.02	1.02	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC10408	Silicon, Total	mg/L	-0.000555	0.0440	1.00	1.01	1.01	1.02	0.850 to 1.15	101	70.0 to 130	0.00	20.0
BC10407	Sodium, Dissolved	mg/L	-0.000155	0.0660	5.00	7.73	7.76	5.13	4.25 to 5.75	102	70.0 to 130	0.387	20.0
BC10408	Sodium, Total	mg/L	0.00196	0.0660	5.00	5.16	5.17	5.17	4.25 to 5.75	103	70.0 to 130	0.194	20.0
BC10408	Sulfate	mg/L	-0.0817	2.0	20.0	20.1	20.4	19.0	18.0 to 22.0	100	80.0 to 120	1.48	20.0
BC10407	Thallium, Dissolved	mg/L	0.0000086	0.000147	0.100	0.109	0.105	0.110	0.0850 to 0.115	109	70.0 to 130	3.74	20.0

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 14:28

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-2

Laboratory ID Number: BC10403

•				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10408	Thallium, Total	mg/L	0.0000118	0.000147	0.100	0.106	0.105	0.108	0.0850 to 0.115	106	70.0 to 130	0.948	20.0
BC10408	Total Organic Carbon	mg/L	0.160	1.00	10.0	10.0	10.2	25.1		100	80.0 to 120	1.98	20.0

Batch QC Summary

Customer Account: WMWBARPU Sample Date:

Customer ID:

5/31/22 14:28

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-2

Laboratory ID Number: BC10403

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10407	Alkalinity, Total as CaCO3	mg/L					0.680	52.5	45.0 to 55.0			42.9	10.0
BC10408	Nitrogen, Nitrate/Nitrite	mg/L as N	0.01	0.200	2.00	2.12	0.073	2.01	1.80 to 2.20	106	90.0 to 110	0.00	15.0
BC10407	Solids, Dissolved	mg/L	0.0000	25.0			36.0	50.0	40.0 to 60.0			1.93	10.0

Certificate Of Analysis

Description: Barry Pooled Upgradient Field Blank-1Location Code:WMWBARPUFBCollected:5/31/22 14:45

Customer ID:

Submittal Date: 6/2/22 08:21

Laboratory ID Number: BC10404

Name	Prepared	Analyzed	Vio Spec D	DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Ana	lyst: RDA			Preparati	on Method: EPA	A 1638		_
* Boron, Total	6/6/22 09:22	6/8/22 09:56	1.0	015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	6/6/22 09:22	6/8/22 09:56	1.0	015	Not Detected	mg/L	0.070035	0.406	U
* Iron, Total	6/6/22 09:22	6/8/22 09:56	3 1.0	015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Total	6/6/22 09:22	6/8/22 09:56	1.0	015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	6/6/22 09:22	6/8/22 09:56	1.0	015	Not Detected	mg/L	0.021315	0.406	U
Silica, Total (calc.)	6/6/22 09:22	6/8/22 09:56	5 1		Not Detected	mg/L			
Silicon, Total	6/6/22 09:22	6/8/22 09:56	1.0	015	Not Detected	mg/L	0.02030	0.25375	U
* Sodium, Total	6/6/22 09:22	6/8/22 09:56	1.0	015	Not Detected	mg/L	0.03045	0.406	U
Analytical Method: EPA 200.8	od: EPA 200.8 Analyst: DLJ Preparation Metho								
* Antimony, Total	6/6/22 07:13	6/6/22 14:44	1.0	015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/6/22 07:13	6/6/22 14:44	1.0	015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Total	6/6/22 07:13	6/6/22 14:44	1.0	015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Total	6/6/22 07:13	6/6/22 14:44	1.0	015	Not Detected	mg/L	0.000508	0.001015	U
* Beryllium, Total	6/6/22 07:13	6/6/22 14:44	1.0	015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/6/22 07:13	6/6/22 14:44	1.0	015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/6/22 07:13	6/6/22 14:44	1.0	015	0.000273	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/6/22 07:13	6/6/22 14:44	1.0	015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Total	6/6/22 07:13	6/6/22 14:44	1.0	015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/6/22 07:13	6/6/22 14:44	1.0	015	Not Detected	mg/L	0.000152	0.000203	U
* Molybdenum, Total	6/6/22 07:13	6/6/22 14:44	1.0	015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/6/22 07:13	6/6/22 14:44	1.0	015	Not Detected	mg/L	0.169505	0.5075	U
* Selenium, Total	6/6/22 07:13	6/6/22 14:44	1.0	015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/6/22 07:13	6/6/22 14:44	1.0	015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	lyst: CRB							
* Mercury, Total by CVAA	6/7/22 11:15	6/7/22 13:47	1		Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Ana	lyst: CES							
Nitrogen, Nitrate/Nitrite	6/6/22 12:41	6/6/22 12:41	1		Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2540C	Ana	lyst: CNJ							
* Solids, Dissolved	6/3/22 13:15	6/6/22 13:42	· 1		Not Detected	ma/L		25	U

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

Certificate Of Analysis

Description: Barry Pooled Upgradient Field Blank-1

Location Code:

WMWBARPUFB 5/31/22 14:45

Collected:

Customer ID: Submittal Date:

6/2/22 08:21

Laboratory ID Number: BC10404

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM 5310 B	Ana	lyst: ELH						
* Total Organic Carbon	6/8/22 01:56	6/8/22 01:56	5 1	Not Detected	mg/L	1.00	2	U
Analytical Method: SM4500Cl E	Ana	lyst: JCC						
* Chloride	6/6/22 12:58	6/6/22 12:58	3 1	Not Detected	mg/L	0.50	1	U
Analytical Method: SM4500F G 2017	Ana	lyst: JCC						
* Fluoride	6/8/22 13:29	6/8/22 13:29) 1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC						
* Sulfate	6/7/22 16:13	6/7/22 16:13	3 1	Not Detected	mg/L	0.6	2	U

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

Batch QC Summary

Customer Account: WMWBARPUFB

Sample Date:

5/31/22 14:45

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient Field Blank-1

Laboratory ID Number: BC10404

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10408	Aluminum, Total	mg/L	0.000555	0.010	0.100	0.110	0.106	0.106	0.0850 to 0.115	110	70.0 to 130	3.70	20.0
BC10408	Antimony, Total	mg/L	0.000382	0.00100	0.100	0.0896	0.0901	0.0945	0.0850 to 0.115	89.6	70.0 to 130	0.556	20.0
BC10408	Arsenic, Total	mg/L	0.0000173	0.000176	0.100	0.102	0.101	0.102	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10408	Barium, Total	mg/L	0.0000192	0.00100	0.100	0.0994	0.101	0.103	0.0850 to 0.115	99.4	70.0 to 130	1.60	20.0
BC10408	Beryllium, Total	mg/L	0.0000106	0.000880	0.100	0.103	0.0970	0.0977	0.0850 to 0.115	103	70.0 to 130	6.00	20.0
BC10408	Boron, Total	mg/L	0.000098	0.0650	1.00	0.990	0.990	1.01	0.850 to 1.15	99.0	70.0 to 130	0.00	20.0
BC10408	Cadmium, Total	mg/L	0.0000036	0.000147	0.100	0.102	0.0997	0.102	0.0850 to 0.115	102	70.0 to 130	2.28	20.0
BC10408	Calcium, Total	mg/L	-0.00539	0.152	5.00	4.87	4.79	4.93	4.25 to 5.75	97.4	70.0 to 130	1.66	20.0
BC10408	Chloride	mg/L	-0.0327	1.00	10.0	10.6	10.6	9.58	9.00 to 11.0	106	80.0 to 120	0.00	20.0
BC10408	Chromium, Total	mg/L	0.0000337	0.000440	0.100	0.103	0.100	0.102	0.0850 to 0.115	103	70.0 to 130	2.96	20.0
BC10408	Cobalt, Total	mg/L	0.0000018	0.000147	0.100	0.106	0.106	0.107	0.0850 to 0.115	106	70.0 to 130	0.00	20.0
BC10408	Fluoride	mg/L	0.00175	0.125	2.50	2.53	2.56	2.54	2.25 to 2.75	101	80.0 to 120	1.18	20.0
BC10408	Iron, Total	mg/L	0.000083	0.0176	0.2	0.199	0.199	0.200	0.170 to 0.230	99.5	70.0 to 130	0.00	20.0
BC10408	Lead, Total	mg/L	0.0000100	0.000147	0.100	0.105	0.102	0.103	0.0850 to 0.115	105	70.0 to 130	2.90	20.0
BC10408	Lithium, Total	mg/L	0.000209	0.0154	0.200	0.203	0.203	0.204	0.170 to 0.230	102	70.0 to 130	0.00	20.0
BC10408	Magnesium, Total	mg/L	-0.00569	0.0462	5.00	5.11	5.07	5.18	4.25 to 5.75	102	70.0 to 130	0.786	20.0
BC10408	Manganese, Total	mg/L	0.0000112	0.0002	0.100	0.104	0.102	0.104	0.0850 to 0.115	104	70.0 to 130	1.94	20.0
BC10408	Mercury, Total by CVAA	mg/L	0.000134	0.000500	0.004	0.00425	0.00421	0.00400	0.00340 to 0.00460	106	70.0 to 130	0.946	20.0
BC10408	Molybdenum, Total	mg/L	-0.0000073	0.0002	0.100	0.0990	0.0981	0.101	0.0850 to 0.115	99.0	70.0 to 130	0.913	20.0
BC10408	Potassium, Total	mg/L	0.0102	0.367	10.0	10.2	10.0	10.2	8.50 to 11.5	102	70.0 to 130	1.98	20.0
BC10408	Selenium, Total	mg/L	0.0000056	0.00100	0.100	0.103	0.101	0.104	0.0850 to 0.115	103	70.0 to 130	1.96	20.0
BC10408	Silicon, Total	mg/L	-0.000555	0.0440	1.00	1.01	1.01	1.02	0.850 to 1.15	101	70.0 to 130	0.00	20.0
BC10408	Sodium, Total	mg/L	0.00196	0.0660	5.00	5.16	5.17	5.17	4.25 to 5.75	103	70.0 to 130	0.194	20.0

Comments:

Batch QC Summary

Customer Account: WMWBARPUFB **Sample Date:** 5/31/22 14:45

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient Field Blank-1

Laboratory ID Number: BC10404

				MB					Standard		Rec		— Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10408	Sulfate	mg/L	-0.0817	2.0	20.0	20.1	20.4	19.0	18.0 to 22.0	100	80.0 to 120	1.48	20.0
BC10408	Thallium, Total	mg/L	0.0000118	0.000147	0.100	0.106	0.105	0.108	0.0850 to 0.115	106	70.0 to 130	0.948	20.0
BC10408	Total Organic Carbon	mg/L	0.160	1.00	10.0	10.0	10.2	25.1		100	80.0 to 120	1.98	20.0

Batch QC Summary

Customer Account: WMWBARPUFB

Sample Date:

5/31/22 14:45

Customer ID:

Delivery Date:

6/2/22 08:21

Description: Barry Pooled Upgradient Field Blank-1

Laboratory ID Number: BC10404

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10408	Nitrogen, Nitrate/Nitrite	mg/L as N	0.01	0.200	2.00	2.12	0.073	2.01	1.80 to 2.20	106	90.0 to 110	0.00	15.0
BC10407	Solids, Dissolved	mg/L	0.0000	25.0			36.0	50.0	40.0 to 60.0			1.93	10.0

Certificate Of Analysis

Description: Barry Pooled Upgradient - MW-3Location Code:WMWBARPUCollected:5/31/22 15:22

Customer ID:

Submittal Date: 6/2/22 08:21

Laboratory ID Number: BC10405

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Ana	lyst: RDA		Preparati	on Method:	EPA 1638		_
* Boron, Total	6/6/22 09:22	6/8/22 09:59	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	6/6/22 09:22	6/8/22 09:59	1.015	1.95	mg/L	0.070035	0.406	
* Iron, Total	6/6/22 09:22	6/8/22 09:59	1.015	0.0270	mg/L	0.008120	0.0406	J
* Lithium, Total	6/6/22 09:22	6/8/22 09:59	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	6/6/22 09:22	6/8/22 09:59	1.015	2.05	mg/L	0.021315	0.406	
Silica, Total (calc.)	6/6/22 09:22	6/8/22 09:59) 1	8.60	mg/L			
Silicon, Total	6/6/22 09:22	6/8/22 09:59	1.015	4.02	mg/L	0.02030	0.25375	
* Sodium, Total	6/6/22 09:22	6/8/22 09:59	1.015	3.11	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Ana	lyst: RDA						
* Boron, Dissolved	6/6/22 09:06	6/8/22 11:17	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Dissolved	6/6/22 09:06	6/8/22 11:17	1.015	1.94	mg/L	0.070035	0.406	
* Iron, Dissolved	6/6/22 09:06	6/8/22 11:17	1.015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Dissolved	6/6/22 09:06	6/8/22 11:17	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	6/6/22 09:06	6/8/22 11:17	1.015	2.01	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	6/6/22 09:06	6/8/22 11:17	1	8.52	mg/L			
Silicon, Dissolved	6/6/22 09:06	6/8/22 11:17	1.015	3.98	mg/L	0.02030	0.25375	
* Sodium, Dissolved	6/6/22 09:06	6/8/22 11:17	1.015	3.11	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Ana	alyst: DLJ		Preparati	ion Method:	EPA 1638		
* Antimony, Total	6/6/22 07:13	6/6/22 14:47	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/6/22 07:13	6/6/22 14:47	1.015	0.0446	mg/L	0.006090	0.01015	
* Arsenic, Total	6/6/22 07:13	6/6/22 14:47	1.015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Total	6/6/22 07:13	6/6/22 14:47	1.015	0.0992	mg/L	0.000508	0.001015	
* Beryllium, Total	6/6/22 07:13	6/6/22 14:47	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/6/22 07:13	6/6/22 14:47	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/6/22 07:13	6/6/22 14:47	1.015	0.00139	mg/L	0.000203	0.001015	
* Cobalt, Total	6/6/22 07:13	6/6/22 14:47	1.015	0.00149	mg/L	0.000068	0.000203	
* Lead, Total	6/6/22 07:13	6/6/22 14:47		Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/6/22 07:13	6/6/22 14:47		0.0196	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/6/22 07:13	6/6/22 14:47	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/6/22 07:13	6/6/22 14:47		0.987	mg/L	0.169505	0.5075	
					-			

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Pooled Upgradient - MW-3

Location Code:
Collected:

Sollected:

WMWBARPU 5/31/22 15:22

Customer ID:

Submittal Date: 6/2/22 08:21

Laboratory ID Number: BC10405					Subilliti	iai Dale.	0/2/22 00.21		
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/6/22 07:13	6/6/22 14:47	7 1	.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/6/22 07:13	6/6/22 14:47	7 1	.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ							
* Antimony, Dissolved	6/6/22 07:31	6/6/22 12:46	5 1	.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	6/6/22 07:31	6/6/22 12:46	5 1	.015	0.0232	mg/L	0.006090	0.01015	
* Arsenic, Dissolved	6/6/22 07:31	6/6/22 12:46	5 1	.015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Dissolved	6/6/22 07:31	6/6/22 12:46	5 1	.015	0.101	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	6/6/22 07:31	6/6/22 12:46	5 1	.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	6/6/22 07:31	6/6/22 12:46	5 1	.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	6/6/22 07:31	6/6/22 12:46	5 1	.015	0.00129	mg/L	0.000203	0.001015	
* Cobalt, Dissolved	6/6/22 07:31	6/6/22 12:46	5 1	.015	0.00154	mg/L	0.000068	0.000203	
* Lead, Dissolved	6/6/22 07:31	6/6/22 12:46	5 1	.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	6/6/22 07:31	6/6/22 12:46	5 1	.015	0.0198	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	6/6/22 07:31	6/6/22 12:46	5 1	.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Dissolved	6/6/22 07:31	6/6/22 12:46	5 1	.015	0.961	mg/L	0.169505	0.5075	
* Selenium, Dissolved	6/6/22 07:31	6/6/22 12:46	5 1	.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	6/6/22 07:31	6/6/22 12:46	5 1	.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	lyst: CRB							
* Mercury, Total by CVAA	6/7/22 11:15	6/7/22 13:50) 1		Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Ana	lyst: CES							
* Nitrogen, Nitrate/Nitrite	6/6/22 12:42	6/6/22 12:42	2 1		2.11	mg/L as N	0.20	0.3	
Analytical Method: SM 2320 B	Ana	lyst: ALH							
Alkalinity, Total as CaCO3	6/10/22 13:35	6/10/22 14:5	52 1		1.24	mg/L		0.1	
Analytical Method: SM 2540C	Ana	lyst: CNJ							
* Solids, Dissolved	6/3/22 13:15	6/6/22 13:42	2 1		35.3	mg/L		25	
Analytical Method: SM 4500CO2 D	Ana	lyst: ALH							
Bicarbonate Alkalinity, (calc.)		6/10/22 14:5	52 1		1.24	mg/L			
Carbonate Alkalinity, (calc.)	6/10/22 13:35	6/10/22 14:5	52 1		Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		lyst: ELH							
* Total Organic Carbon	6/8/22 02:12	6/8/22 02:12	2 1		Not Detected	mg/L	1.00	2	U
ŭ	0/0/22 02.12	-, -,	- '		2 0.00104	3			

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Pooled Upgradient - MW-3

Location Code:

WMWBARPU

Collected:

Customer ID:

5/31/22 15:22

Laboratory ID Number: BC10405

Submittal Date: 6/2/22 08:21

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500CI E	Ana	lyst: JCC	·			·		·	
* Chloride	6/6/22 12:59	6/6/22 12:59)	1	3.39	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	6/8/22 13:30	6/8/22 13:30)	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	6/7/22 16:14	6/7/22 16:14	ļ	1	7.02	mg/L	0.6	2	
Analytical Method: Field Measurements	Ana	lyst: DKG							
Conductivity	5/31/22 15:19	5/31/22 15:1	19		49.57	uS/cm			FA
рН	5/31/22 15:19	5/31/22 15:1	19		3.54	SU			FA
Temperature	5/31/22 15:19	5/31/22 15:1	19		20.09	С			FA
Turbidity	5/31/22 15:19	5/31/22 15:1	19		3.1	NTU			FA
Sulfide	5/31/22 15:19	5/31/22 15:1	19		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 15:22

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-3

Laboratory ID Number: BC10405

				MB	<u> </u>				Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10407	Aluminum, Dissolved	mg/L	0.0000977	0.010	0.100	0.124	0.128	0.104	0.0850 to 0.115	103	70.0 to 130	3.17	20.0
BC10408	Aluminum, Total	mg/L	0.000555	0.010	0.100	0.110	0.106	0.106	0.0850 to 0.115	110	70.0 to 130	3.70	20.0
BC10407	Antimony, Dissolved	mg/L	0.000304	0.00100	0.100	0.0937	0.0957	0.0923	0.0850 to 0.115	93.7	70.0 to 130	2.11	20.0
BC10408	Antimony, Total	mg/L	0.000382	0.00100	0.100	0.0896	0.0901	0.0945	0.0850 to 0.115	89.6	70.0 to 130	0.556	20.0
BC10407	Arsenic, Dissolved	mg/L	0.0000034	0.000176	0.100	0.100	0.102	0.104	0.0850 to 0.115	100	70.0 to 130	1.98	20.0
BC10408	Arsenic, Total	mg/L	0.0000173	0.000176	0.100	0.102	0.101	0.102	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10407	Barium, Dissolved	mg/L	0.0000071	0.00100	0.100	0.229	0.234	0.103	0.0850 to 0.115	100	70.0 to 130	2.16	20.0
BC10408	Barium, Total	mg/L	0.0000192	0.00100	0.100	0.0994	0.101	0.103	0.0850 to 0.115	99.4	70.0 to 130	1.60	20.0
BC10407	Beryllium, Dissolved	mg/L	0.0000130	0.000880	0.100	0.100	0.101	0.104	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
BC10408	Beryllium, Total	mg/L	0.0000106	0.000880	0.100	0.103	0.0970	0.0977	0.0850 to 0.115	103	70.0 to 130	6.00	20.0
BC10407	Boron, Dissolved	mg/L	0.000221	0.0650	1.00	1.02	1.02	1.01	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC10408	Boron, Total	mg/L	0.000098	0.0650	1.00	0.990	0.990	1.01	0.850 to 1.15	99.0	70.0 to 130	0.00	20.0
BC10407	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.0997	0.103	0.101	0.0850 to 0.115	99.7	70.0 to 130	3.26	20.0
BC10408	Cadmium, Total	mg/L	0.0000036	0.000147	0.100	0.102	0.0997	0.102	0.0850 to 0.115	102	70.0 to 130	2.28	20.0
BC10407	Calcium, Dissolved	mg/L	-0.00230	0.152	5.00	6.91	6.88	4.88	4.25 to 5.75	97.6	70.0 to 130	0.435	20.0
BC10408	Calcium, Total	mg/L	-0.00539	0.152	5.00	4.87	4.79	4.93	4.25 to 5.75	97.4	70.0 to 130	1.66	20.0
BC10408	Chloride	mg/L	-0.0327	1.00	10.0	10.6	10.6	9.58	9.00 to 11.0	106	80.0 to 120	0.00	20.0
BC10407	Chromium, Dissolved	mg/L	0.0000008	0.000440	0.100	0.102	0.104	0.102	0.0850 to 0.115	101	70.0 to 130	1.94	20.0
BC10408	Chromium, Total	mg/L	0.0000337	0.000440	0.100	0.103	0.100	0.102	0.0850 to 0.115	103	70.0 to 130	2.96	20.0
BC10407	Cobalt, Dissolved	mg/L	-0.0000006	0.000147	0.100	0.106	0.107	0.106	0.0850 to 0.115	105	70.0 to 130	0.939	20.0
BC10408	Cobalt, Total	mg/L	0.0000018	0.000147	0.100	0.106	0.106	0.107	0.0850 to 0.115	106	70.0 to 130	0.00	20.0
BC10408	Fluoride	mg/L	0.00175	0.125	2.50	2.53	2.56	2.54	2.25 to 2.75	101	80.0 to 120	1.18	20.0
BC10407	Iron, Dissolved	mg/L	-0.000261	0.0176	0.2	0.201	0.200	0.200	0.170 to 0.230	100	70.0 to 130	0.499	20.0

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 15:22

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-3

Laboratory ID Number: BC10405

			MB		·	·		Standard		Rec		Prec
Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
Iron, Total	mg/L	0.000083	0.0176	0.2	0.199	0.199	0.200	0.170 to 0.230	99.5	70.0 to 130	0.00	20.0
Lead, Dissolved	mg/L	0.0000066	0.000147	0.100	0.108	0.104	0.109	0.0850 to 0.115	108	70.0 to 130	3.77	20.0
Lead, Total	mg/L	0.0000100	0.000147	0.100	0.105	0.102	0.103	0.0850 to 0.115	105	70.0 to 130	2.90	20.0
Lithium, Dissolved	mg/L	0.000211	0.0154	0.200	0.201	0.202	0.201	0.170 to 0.230	100	70.0 to 130	0.496	20.0
Lithium, Total	mg/L	0.000209	0.0154	0.200	0.203	0.203	0.204	0.170 to 0.230	102	70.0 to 130	0.00	20.0
Magnesium, Dissolved	mg/L	-0.00997	0.0462	5.00	7.28	7.22	5.16	4.25 to 5.75	103	70.0 to 130	0.828	20.0
Magnesium, Total	mg/L	-0.00569	0.0462	5.00	5.11	5.07	5.18	4.25 to 5.75	102	70.0 to 130	0.786	20.0
Manganese, Dissolved	mg/L	0.0000037	0.0002	0.100	0.118	0.120	0.103	0.0850 to 0.115	102	70.0 to 130	1.68	20.0
Manganese, Total	mg/L	0.0000112	0.0002	0.100	0.104	0.102	0.104	0.0850 to 0.115	104	70.0 to 130	1.94	20.0
Mercury, Total by CVAA	mg/L	0.000134	0.000500	0.004	0.00425	0.00421	0.00400	0.00340 to 0.00460	106	70.0 to 130	0.946	20.0
Molybdenum, Dissolved	mg/L	0.0000017	0.0002	0.100	0.0978	0.100	0.0987	0.0850 to 0.115	97.8	70.0 to 130	2.22	20.0
Molybdenum, Total	mg/L	-0.0000073	0.0002	0.100	0.0990	0.0981	0.101	0.0850 to 0.115	99.0	70.0 to 130	0.913	20.0
Potassium, Dissolved	mg/L	0.00152	0.367	10.0	11.0	11.1	9.97	8.50 to 11.5	99.9	70.0 to 130	0.905	20.0
Potassium, Total	mg/L	0.0102	0.367	10.0	10.2	10.0	10.2	8.50 to 11.5	102	70.0 to 130	1.98	20.0
Selenium, Dissolved	mg/L	-0.0000214	0.00100	0.100	0.100	0.101	0.101	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
Selenium, Total	mg/L	0.0000056	0.00100	0.100	0.103	0.101	0.104	0.0850 to 0.115	103	70.0 to 130	1.96	20.0
Silicon, Dissolved	mg/L	-0.00110	0.0440	1.00	5.02	5.02	1.02	0.850 to 1.15	102	70.0 to 130	0.00	20.0
Silicon, Total	mg/L	-0.000555	0.0440	1.00	1.01	1.01	1.02	0.850 to 1.15	101	70.0 to 130	0.00	20.0
Sodium, Dissolved	mg/L	-0.000155	0.0660	5.00	7.73	7.76	5.13	4.25 to 5.75	102	70.0 to 130	0.387	20.0
Sodium, Total	mg/L	0.00196	0.0660	5.00	5.16	5.17	5.17	4.25 to 5.75	103	70.0 to 130	0.194	20.0
Sulfate	mg/L	-0.0817	2.0	20.0	20.1	20.4	19.0	18.0 to 22.0	100	80.0 to 120	1.48	20.0
Thallium, Dissolved	mg/L	0.0000086	0.000147	0.100	0.109	0.105	0.110	0.0850 to 0.115	109	70.0 to 130	3.74	20.0
	Analysis Iron, Total Lead, Dissolved Lead, Total Lithium, Dissolved Lithium, Total Magnesium, Dissolved Magnesium, Total Manganese, Dissolved Manganese, Total Mercury, Total by CVAA Molybdenum, Dissolved Molybdenum, Total Potassium, Dissolved Potassium, Total Selenium, Dissolved Selenium, Total Silicon, Dissolved Silicon, Total Sodium, Dissolved Sodium, Total Sodium, Total Sodium, Total Sodium, Total	Iron, Total mg/L Lead, Dissolved mg/L Lead, Total mg/L Lithium, Dissolved mg/L Lithium, Total mg/L Magnesium, Dissolved mg/L Manganese, Dissolved mg/L Manganese, Total mg/L Mercury, Total by CVAA mg/L Molybdenum, Dissolved mg/L Potassium, Total mg/L Potassium, Total mg/L Selenium, Dissolved mg/L Selenium, Dissolved mg/L Silicon, Dissolved mg/L Sodium, Dissolved mg/L Sodium, Total mg/L	Iron, Total	Iron, Total	Iron, Total	MB	Iron, Total	Analysis Units MB Limit Spike MS MSD Standard Iron, Total mg/L 0.000083 0.0176 0.2 0.199 0.199 0.200 Lead, Dissolved mg/L 0.0000066 0.000147 0.100 0.108 0.104 0.109 Lead, Total mg/L 0.000011 0.0154 0.200 0.201 0.202 0.201 Lithium, Dissolved mg/L 0.000299 0.0154 0.200 0.203 0.203 0.204 Magnesium, Dissolved mg/L 0.00997 0.0462 5.00 7.28 7.22 5.16 Magnesium, Total mg/L 0.00569 0.0462 5.00 5.11 5.07 5.18 Manganese, Dissolved mg/L 0.00569 0.0462 5.00 5.11 5.07 5.18 Manganese, Total mg/L 0.0000037 0.0002 0.100 0.118 0.102 0.104 Mercury, Total by CVAA mg/L 0.0000134 0.00050 <td> Name</td> <td> MB</td> <td> Name</td> <td> Iron, Total</td>	Name	MB	Name	Iron, Total

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 15:22

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-3

Laboratory ID Number: BC10405

'				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10408	Thallium, Total	mg/L	0.0000118	0.000147	0.100	0.106	0.105	0.108	0.0850 to 0.115	106	70.0 to 130	0.948	20.0
BC10408	Total Organic Carbon	mg/L	0.160	1.00	10.0	10.0	10.2	25.1		100	80.0 to 120	1.98	20.0

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 15:22

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-3

Laboratory ID Number: BC10405

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10407	Alkalinity, Total as CaCO3	mg/L					0.680	52.5	45.0 to 55.0			42.9	10.0
BC10408	Nitrogen, Nitrate/Nitrite	mg/L as N	0.01	0.200	2.00	2.12	0.073	2.01	1.80 to 2.20	106	90.0 to 110	0.00	15.0
BC10407	Solids, Dissolved	mg/L	0.0000	25.0			36.0	50.0	40.0 to 60.0			1.93	10.0

Certificate Of Analysis

Description: Barry Pooled Upgradient - MW-3 DupLocation Code:WMWBARPUCollected:5/31/22 15:22

Customer ID:

Submittal Date: 6/2/22 08:21

Laboratory ID Number: BC10406

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Ana	lyst: RDA		Preparati	on Method:	EPA 1638		
* Boron, Total	6/6/22 09:22	6/8/22 10:02	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	6/6/22 09:22	6/8/22 10:02	1.015	1.97	mg/L	0.070035	0.406	
* Iron, Total	6/6/22 09:22	6/8/22 10:02	1.015	0.0242	mg/L	0.008120	0.0406	J
* Lithium, Total	6/6/22 09:22	6/8/22 10:02	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	6/6/22 09:22	6/8/22 10:02	1.015	2.04	mg/L	0.021315	0.406	
Silica, Total (calc.)	6/6/22 09:22	6/8/22 10:02	1	8.54	mg/L			
Silicon, Total	6/6/22 09:22	6/8/22 10:02	1.015	3.99	mg/L	0.02030	0.25375	
* Sodium, Total	6/6/22 09:22	6/8/22 10:02	1.015	3.11	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Ana	lyst: RDA						
* Boron, Dissolved	6/6/22 09:06	6/8/22 11:20	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Dissolved	6/6/22 09:06	6/8/22 11:20	1.015	1.94	mg/L	0.070035	0.406	
* Iron, Dissolved	6/6/22 09:06	6/8/22 11:20	1.015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Dissolved	6/6/22 09:06	6/8/22 11:20	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	6/6/22 09:06	6/8/22 11:20	1.015	2.04	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	6/6/22 09:06	6/8/22 11:20	1	8.52	mg/L			
Silicon, Dissolved	6/6/22 09:06	6/8/22 11:20	1.015	3.98	mg/L	0.02030	0.25375	
* Sodium, Dissolved	6/6/22 09:06	6/8/22 11:20	1.015	3.14	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Ana	lyst: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/6/22 07:13	6/6/22 14:51	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/6/22 07:13	6/6/22 14:51	1.015	0.0429	mg/L	0.006090	0.01015	
* Arsenic, Total	6/6/22 07:13	6/6/22 14:51	1.015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Total	6/6/22 07:13	6/6/22 14:51	1.015	0.101	mg/L	0.000508	0.001015	
* Beryllium, Total	6/6/22 07:13	6/6/22 14:51	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/6/22 07:13	6/6/22 14:51	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/6/22 07:13	6/6/22 14:51	1.015	0.00134	mg/L	0.000203	0.001015	
* Cobalt, Total	6/6/22 07:13	6/6/22 14:51		0.00152	mg/L	0.000068	0.000203	
* Lead, Total	6/6/22 07:13	6/6/22 14:51		Not Detected	•	0.000068	0.000203	U
* Manganese, Total	6/6/22 07:13	6/6/22 14:51		0.0198	mg/L	0.000152	0.000203	
Molybdenum, Total	6/6/22 07:13	6/6/22 14:51		Not Detected	•	0.000102	0.000203	U
* Potassium, Total	6/6/22 07:13	6/6/22 14:51		0.974	mg/L	0.169505	0.5075	J

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Pooled Upgradient - MW-3 Dup

Location Code: Collected:

WMWBARPU 5/31/22 15:22

Customer ID:

Submittal Date:

6/2/22 08:21

Laboratory ID Number: BC10406					Oubline	ui Buto.	0/2/22 00.21		
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/6/22 07:13	6/6/22 14:51		1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/6/22 07:13	6/6/22 14:51	I	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ							
* Antimony, Dissolved	6/6/22 07:31	6/6/22 12:49)	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	6/6/22 07:31	6/6/22 12:49)	1.015	0.0237	mg/L	0.006090	0.01015	
* Arsenic, Dissolved	6/6/22 07:31	6/6/22 12:49)	1.015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Dissolved	6/6/22 07:31	6/6/22 12:49)	1.015	0.0993	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	6/6/22 07:31	6/6/22 12:49)	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	6/6/22 07:31	6/6/22 12:49)	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	6/6/22 07:31	6/6/22 12:49)	1.015	0.00122	mg/L	0.000203	0.001015	
* Cobalt, Dissolved	6/6/22 07:31	6/6/22 12:49)	1.015	0.00158	mg/L	0.000068	0.000203	
* Lead, Dissolved	6/6/22 07:31	6/6/22 12:49)	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	6/6/22 07:31	6/6/22 12:49)	1.015	0.0199	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	6/6/22 07:31	6/6/22 12:49)	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Dissolved	6/6/22 07:31	6/6/22 12:49)	1.015	1.01	mg/L	0.169505	0.5075	
* Selenium, Dissolved	6/6/22 07:31	6/6/22 12:49)	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	6/6/22 07:31	6/6/22 12:49)	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	lyst: CRB							
* Mercury, Total by CVAA	6/7/22 11:15	6/7/22 13:52	2	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Ana	lyst: CES							
* Nitrogen, Nitrate/Nitrite	6/6/22 12:43	6/6/22 12:43	3	1	2.01	mg/L as N	0.20	0.3	
Analytical Method: SM 2320 B	Ana	lyst: ALH							
Alkalinity, Total as CaCO3	6/10/22 13:35	6/10/22 14:5	52	1	1.20	mg/L		0.1	
Analytical Method: SM 2540C	Ana	lyst: CNJ							
* Solids, Dissolved	6/3/22 13:15	6/6/22 13:42	2	1	31.3	mg/L		25	
Analytical Method: SM 4500CO2 D	Ana	lyst: ALH							
Bicarbonate Alkalinity, (calc.)	6/10/22 13:35	6/10/22 14:5	52	1	1.20	mg/L			
Carbonate Alkalinity, (calc.)	6/10/22 13:35	6/10/22 14:5	52	1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B	Ana	lyst: ELH							
* Total Organic Carbon	6/8/22 02:28	6/8/22 02:28	3	1	Not Detected	mg/L	1.00	2	U

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Pooled Upgradient - MW-3 Dup

Location Code:

WMWBARPU

Collected:

Customer ID:

5/31/22 15:22

Laboratory ID Number: BC10406

Submittal Date: 6/2/22 08:21

- Bolo400			١,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		D It.	1124	MDI	DI	
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Ana	alyst: JCC							
* Chloride	6/6/22 13:01	6/6/22 13:01	1 1	1	3.41	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	alyst: JCC							
* Fluoride	6/8/22 13:32	6/8/22 13:32	2 ′	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Ana	alyst: JCC							
* Sulfate	6/7/22 16:15	6/7/22 16:15	5 ′	1	7.18	mg/L	0.6	2	
Analytical Method: Field Measurements	Ana	alyst: DKG							
Conductivity	5/31/22 15:19	9 5/31/22 15:	19		49.57	uS/cm			FA
рН	5/31/22 15:19	9 5/31/22 15:	19		3.54	SU			FA
Temperature	5/31/22 15:19	9 5/31/22 15:	19		20.09	С			FA
Turbidity	5/31/22 15:19	9 5/31/22 15:	19		3.1	NTU			FA
Sulfide	5/31/22 15:19	9 5/31/22 15:1	19		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 15:22

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-3 Dup

Laboratory ID Number: BC10406

				MB					Standard		Rec		Pred
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mi
BC10407	Aluminum, Dissolved	mg/L	0.0000977	0.010	0.100	0.124	0.128	0.104	0.0850 to 0.115	103	70.0 to 130	3.17	20.0
3C10408	Aluminum, Total	mg/L	0.000555	0.010	0.100	0.110	0.106	0.106	0.0850 to 0.115	110	70.0 to 130	3.70	20.0
3C10407	Antimony, Dissolved	mg/L	0.000304	0.00100	0.100	0.0937	0.0957	0.0923	0.0850 to 0.115	93.7	70.0 to 130	2.11	20.0
BC10408	Antimony, Total	mg/L	0.000382	0.00100	0.100	0.0896	0.0901	0.0945	0.0850 to 0.115	89.6	70.0 to 130	0.556	20.0
3C10407	Arsenic, Dissolved	mg/L	0.0000034	0.000176	0.100	0.100	0.102	0.104	0.0850 to 0.115	100	70.0 to 130	1.98	20.0
BC10408	Arsenic, Total	mg/L	0.0000173	0.000176	0.100	0.102	0.101	0.102	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10407	Barium, Dissolved	mg/L	0.0000071	0.00100	0.100	0.229	0.234	0.103	0.0850 to 0.115	100	70.0 to 130	2.16	20.0
BC10408	Barium, Total	mg/L	0.0000192	0.00100	0.100	0.0994	0.101	0.103	0.0850 to 0.115	99.4	70.0 to 130	1.60	20.0
BC10407	Beryllium, Dissolved	mg/L	0.0000130	0.000880	0.100	0.100	0.101	0.104	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
BC10408	Beryllium, Total	mg/L	0.0000106	0.000880	0.100	0.103	0.0970	0.0977	0.0850 to 0.115	103	70.0 to 130	6.00	20.0
BC10407	Boron, Dissolved	mg/L	0.000221	0.0650	1.00	1.02	1.02	1.01	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC10408	Boron, Total	mg/L	0.000098	0.0650	1.00	0.990	0.990	1.01	0.850 to 1.15	99.0	70.0 to 130	0.00	20.0
BC10407	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.0997	0.103	0.101	0.0850 to 0.115	99.7	70.0 to 130	3.26	20.0
BC10408	Cadmium, Total	mg/L	0.0000036	0.000147	0.100	0.102	0.0997	0.102	0.0850 to 0.115	102	70.0 to 130	2.28	20.0
BC10407	Calcium, Dissolved	mg/L	-0.00230	0.152	5.00	6.91	6.88	4.88	4.25 to 5.75	97.6	70.0 to 130	0.435	20.0
BC10408	Calcium, Total	mg/L	-0.00539	0.152	5.00	4.87	4.79	4.93	4.25 to 5.75	97.4	70.0 to 130	1.66	20.0
BC10408	Chloride	mg/L	-0.0327	1.00	10.0	10.6	10.6	9.58	9.00 to 11.0	106	80.0 to 120	0.00	20.0
BC10407	Chromium, Dissolved	mg/L	0.0000008	0.000440	0.100	0.102	0.104	0.102	0.0850 to 0.115	101	70.0 to 130	1.94	20.0
BC10408	Chromium, Total	mg/L	0.0000337	0.000440	0.100	0.103	0.100	0.102	0.0850 to 0.115	103	70.0 to 130	2.96	20.0
BC10407	Cobalt, Dissolved	mg/L	-0.0000006	0.000147	0.100	0.106	0.107	0.106	0.0850 to 0.115	105	70.0 to 130	0.939	20.0
3C10408	Cobalt, Total	mg/L	0.0000018	0.000147	0.100	0.106	0.106	0.107	0.0850 to 0.115	106	70.0 to 130	0.00	20.0
3C10408	Fluoride	mg/L	0.00175	0.125	2.50	2.53	2.56	2.54	2.25 to 2.75	101	80.0 to 120	1.18	20.0
BC10407	Iron, Dissolved	mg/L	-0.000261	0.0176	0.2	0.201	0.200	0.200	0.170 to 0.230	100	70.0 to 130	0.499	20.0

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 15:22

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-3 Dup

Laboratory ID Number: BC10406

	·		MB				·	Standard		Rec		Prec
Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
Iron, Total	mg/L	0.000083	0.0176	0.2	0.199	0.199	0.200	0.170 to 0.230	99.5	70.0 to 130	0.00	20.0
Lead, Dissolved	mg/L	0.0000066	0.000147	0.100	0.108	0.104	0.109	0.0850 to 0.115	108	70.0 to 130	3.77	20.0
Lead, Total	mg/L	0.0000100	0.000147	0.100	0.105	0.102	0.103	0.0850 to 0.115	105	70.0 to 130	2.90	20.0
Lithium, Dissolved	mg/L	0.000211	0.0154	0.200	0.201	0.202	0.201	0.170 to 0.230	100	70.0 to 130	0.496	20.0
Lithium, Total	mg/L	0.000209	0.0154	0.200	0.203	0.203	0.204	0.170 to 0.230	102	70.0 to 130	0.00	20.0
Magnesium, Dissolved	mg/L	-0.00997	0.0462	5.00	7.28	7.22	5.16	4.25 to 5.75	103	70.0 to 130	0.828	20.0
Magnesium, Total	mg/L	-0.00569	0.0462	5.00	5.11	5.07	5.18	4.25 to 5.75	102	70.0 to 130	0.786	20.0
Manganese, Dissolved	mg/L	0.0000037	0.0002	0.100	0.118	0.120	0.103	0.0850 to 0.115	102	70.0 to 130	1.68	20.0
Manganese, Total	mg/L	0.0000112	0.0002	0.100	0.104	0.102	0.104	0.0850 to 0.115	104	70.0 to 130	1.94	20.0
Mercury, Total by CVAA	mg/L	0.000134	0.000500	0.004	0.00425	0.00421	0.00400	0.00340 to 0.00460	106	70.0 to 130	0.946	20.0
Molybdenum, Dissolved	mg/L	0.0000017	0.0002	0.100	0.0978	0.100	0.0987	0.0850 to 0.115	97.8	70.0 to 130	2.22	20.0
Molybdenum, Total	mg/L	-0.0000073	0.0002	0.100	0.0990	0.0981	0.101	0.0850 to 0.115	99.0	70.0 to 130	0.913	20.0
Potassium, Dissolved	mg/L	0.00152	0.367	10.0	11.0	11.1	9.97	8.50 to 11.5	99.9	70.0 to 130	0.905	20.0
Potassium, Total	mg/L	0.0102	0.367	10.0	10.2	10.0	10.2	8.50 to 11.5	102	70.0 to 130	1.98	20.0
Selenium, Dissolved	mg/L	-0.0000214	0.00100	0.100	0.100	0.101	0.101	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
Selenium, Total	mg/L	0.0000056	0.00100	0.100	0.103	0.101	0.104	0.0850 to 0.115	103	70.0 to 130	1.96	20.0
Silicon, Dissolved	mg/L	-0.00110	0.0440	1.00	5.02	5.02	1.02	0.850 to 1.15	102	70.0 to 130	0.00	20.0
Silicon, Total	mg/L	-0.000555	0.0440	1.00	1.01	1.01	1.02	0.850 to 1.15	101	70.0 to 130	0.00	20.0
Sodium, Dissolved	mg/L	-0.000155	0.0660	5.00	7.73	7.76	5.13	4.25 to 5.75	102	70.0 to 130	0.387	20.0
Sodium, Total	mg/L	0.00196	0.0660	5.00	5.16	5.17	5.17	4.25 to 5.75	103	70.0 to 130	0.194	20.0
Sulfate	mg/L	-0.0817	2.0	20.0	20.1	20.4	19.0	18.0 to 22.0	100	80.0 to 120	1.48	20.0
Thallium, Dissolved	mg/L	0.0000086	0.000147	0.100	0.109	0.105	0.110	0.0850 to 0.115	109	70.0 to 130	3.74	20.0
	Iron, Total Lead, Dissolved Lead, Total Lithium, Dissolved Lithium, Total Magnesium, Dissolved Magnesium, Total Manganese, Dissolved Manganese, Total Mercury, Total by CVAA Molybdenum, Dissolved Molybdenum, Total Potassium, Dissolved Potassium, Total Selenium, Dissolved Selenium, Total Silicon, Dissolved Silicon, Total Sodium, Dissolved Sodium, Total Sodium, Total	Iron, Total mg/L Lead, Dissolved mg/L Lead, Total mg/L Lithium, Dissolved mg/L Lithium, Dissolved mg/L Lithium, Total mg/L Magnesium, Dissolved mg/L Manganese, Dissolved mg/L Manganese, Total mg/L Mercury, Total by CVAA mg/L Molybdenum, Dissolved mg/L Potassium, Dissolved mg/L Selenium, Dissolved mg/L Selenium, Dissolved mg/L Silicon, Dissolved mg/L Silicon, Total mg/L Sodium, Dissolved mg/L Sodium, Dissolved mg/L Sodium, Total mg/L	Iron, Total	Iron, Total	Iron, Total mg/L 0.000083 0.0176 0.2	Iron, Total	Iron, Total	Iron, Total	Analysis Units MB Limit Spike MS MSD Standard Limit Iron, Total mg/L 0.000083 0.0176 0.2 0.199 0.199 0.200 0.170 to 0.230 Lead, Dissolved mg/L 0.0000100 0.00147 0.100 0.108 0.104 0.109 0.0850 to 0.115 Lead, Total mg/L 0.0000100 0.00147 0.100 0.105 0.102 0.103 0.0850 to 0.115 Lithium, Dissolved mg/L 0.000211 0.0154 0.200 0.201 0.202 0.201 0.170 to 0.230 Magnesium, Dissolved mg/L 0.000209 0.0154 0.200 0.203 0.203 0.204 0.170 to 0.230 Magnesium, Dissolved mg/L -0.00997 0.0462 5.00 7.28 7.22 5.16 4.25 to 5.75 Manganese, Dissolved mg/L 0.0000037 0.0002 0.100 0.114 0.102 0.103 0.0850 to 0.115 Mercury, Total by CVAA mg/L	Analysis Units MB Limit Spike MS MSD Standard Limit Recommendation Iron, Total mg/L 0.000083 0.0176 0.2 0.199 0.199 0.200 0.170 to 0.230 99.5 Lead, Dissolved mg/L 0.000066 0.000147 0.100 0.108 0.104 0.109 0.0850 to 0.115 108 Lead, Total mg/L 0.0000100 0.000147 0.100 0.105 0.102 0.103 0.0850 to 0.115 108 Lithlum, Dissolved mg/L 0.000209 0.0154 0.200 0.201 0.202 0.201 0.170 to 0.230 100 Lithlum, Total mg/L 0.000029 0.0154 0.200 0.203 0.203 0.204 0.170 to 0.230 100 Magnesium, Dissolved mg/L 0.000029 0.0164 0.200 2.20 2.21 5.16 4.25 to 5.75 102 Magnesium, Total mg/L 0.000997 0.0062 5.00 5.11 5.0	Analysis Units MB Limit Spike MS MSD Standard Limit Rec Limit Iron, Total mg/L 0.000083 0.0176 0.2 0.199 0.199 0.200 0.170 to 0.230 99.5 70.0 to 130 Lead, Dissolved mg/L 0.000066 0.000147 0.100 0.108 0.104 0.109 0.0850 to 0.115 108 70.0 to 130 Lead, Total mg/L 0.0000100 0.000147 0.100 0.105 0.102 0.103 0.0850 to 0.115 105 70.0 to 130 Lithlum, Dissolved mg/L 0.000209 0.0154 0.200 0.201 0.202 0.201 0.170 to 0.230 102 70.0 to 130 Magnesium, Dissolved mg/L 0.000209 0.0154 0.200 0.203 0.204 0.170 to 0.230 102 70.0 to 130 Magnesium, Dissolved mg/L 0.008029 0.0462 5.00 7.28 7.22 5.16 4.25 to 5.75 102 70.0 to 130 <t< td=""><td>Analysis Units MB Limit Spike MS MSD Standard Limit Rec Limit Proposition Iron, Total mg/L 0.000083 0.0176 0.2 0.199 0.199 0.200 0.170 to 0.230 9.9 7.0 to 130 0.00 Lead, Dissolved mg/L 0.0000066 0.00147 0.100 0.106 0.102 0.103 0.0850 to 0.115 108 70.0 to 130 2.00 Lithium, Dissolved mg/L 0.000211 0.0154 0.200 0.201 0.202 0.201 0.170 to 0.230 109 70.0 to 130 0.00 Magnesium, Dissolved mg/L 0.000201 0.0154 0.200 0.23 0.204 0.170 to 0.230 109 70.0 to 130 0.00 Magnesium, Dissolved mg/L 0.00029 0.0462 5.00 7.28 7.22 5.16 4.25 to 5.75 102 70.0 to 130 0.00 Manganese, Dissolved mg/L 0.000037 0.0002 0.100 0.114</td></t<>	Analysis Units MB Limit Spike MS MSD Standard Limit Rec Limit Proposition Iron, Total mg/L 0.000083 0.0176 0.2 0.199 0.199 0.200 0.170 to 0.230 9.9 7.0 to 130 0.00 Lead, Dissolved mg/L 0.0000066 0.00147 0.100 0.106 0.102 0.103 0.0850 to 0.115 108 70.0 to 130 2.00 Lithium, Dissolved mg/L 0.000211 0.0154 0.200 0.201 0.202 0.201 0.170 to 0.230 109 70.0 to 130 0.00 Magnesium, Dissolved mg/L 0.000201 0.0154 0.200 0.23 0.204 0.170 to 0.230 109 70.0 to 130 0.00 Magnesium, Dissolved mg/L 0.00029 0.0462 5.00 7.28 7.22 5.16 4.25 to 5.75 102 70.0 to 130 0.00 Manganese, Dissolved mg/L 0.000037 0.0002 0.100 0.114

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 15:22

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-3 Dup

Laboratory ID Number: BC10406

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10408	Thallium, Total	mg/L	0.0000118	0.000147	0.100	0.106	0.105	0.108	0.0850 to 0.115	106	70.0 to 130	0.948	20.0
BC10408	Total Organic Carbon	mg/L	0.160	1.00	10.0	10.0	10.2	25.1		100	80.0 to 120	1.98	20.0

Batch QC Summary

Customer Account: WMWBARPU Sample Date: 5/31/22 15:22

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-3 Dup

Laboratory ID Number: BC10406

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10407	Alkalinity, Total as CaCO3	mg/L					0.680	52.5	45.0 to 55.0			42.9	10.0
BC10408	Nitrogen, Nitrate/Nitrite	mg/L as N	0.01	0.200	2.00	2.12	0.073	2.01	1.80 to 2.20	106	90.0 to 110	0.00	15.0
BC10407	Solids, Dissolved	mg/L	0.0000	25.0			36.0	50.0	40.0 to 60.0			1.93	10.0

Certificate Of Analysis

Description: Barry Pooled Upgradient - MW-4

Location Code: Collected:

WMWBARPU 5/31/22 16:24

Customer ID:

Submittal Date:

6/2/22 08:21

Laboratory ID Number: BC10407				Subn	nittal Date:	6/2/22 08:21		
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Ana	alyst: RDA		Prepa	ration Method:	EPA 1638		
* Boron, Total	6/6/22 09:22	6/8/22 10:05	5 1.015	Not Detecte	ed mg/L	0.030000	0.1015	U
* Calcium, Total	6/6/22 09:22	6/8/22 10:05	5 1.015	2.02	mg/L	0.070035	0.406	
* Iron, Total	6/6/22 09:22	6/8/22 10:05	5 1.015	0.222	mg/L	0.008120	0.0406	
* Lithium, Total	6/6/22 09:22	6/8/22 10:05	5 1.015	Not Detecte	ed mg/L	0.007105	0.01999956	U
* Magnesium, Total	6/6/22 09:22	6/8/22 10:05	5 1.015	5 2.20	mg/L	0.021315	0.406	
Silica, Total (calc.)	6/6/22 09:22	6/8/22 10:05	5 1	8.82	mg/L			
Silicon, Total	6/6/22 09:22	6/8/22 10:05	1.015	5 4.12	mg/L	0.02030	0.25375	
* Sodium, Total	6/6/22 09:22	6/8/22 10:05	1.015	2.69	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Ana	alyst: RDA						
* Boron, Dissolved	6/6/22 09:06	6/8/22 11:23	3 1.015	Not Detecte	ed mg/L	0.030000	0.1015	U
* Calcium, Dissolved	6/6/22 09:06	6/8/22 11:23	3 1.015	2.03	mg/L	0.070035	0.406	
* Iron, Dissolved	6/6/22 09:06	6/8/22 11:23	3 1.015	Not Detecte	ed mg/L	0.008120	0.0406	U
* Lithium, Dissolved	6/6/22 09:06	6/8/22 11:23	3 1.015	Not Detecte	ed mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	6/6/22 09:06	6/8/22 11:23	3 1.015	5 2.14	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	6/6/22 09:06	6/8/22 11:23	3 1	8.56	mg/L			
Silicon, Dissolved	6/6/22 09:06	6/8/22 11:23	3 1.015	4.00	mg/L	0.02030	0.25375	
* Sodium, Dissolved	6/6/22 09:06	6/8/22 11:23	3 1.015	2.65	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Ana	alyst: DLJ		Prepa	ration Method:	EPA 1638		
* Antimony, Total	6/6/22 07:13	6/6/22 14:55	1.015	Not Detecte	ed mg/L	0.000508	0.001015	U
* Aluminum, Total	6/6/22 07:13	6/6/22 14:55	5 1.015	0.233	mg/L	0.006090	0.01015	
* Arsenic, Total	6/6/22 07:13	6/6/22 14:55	5 1.015	0.000203	mg/L	0.000081	0.000203	
* Barium, Total	6/6/22 07:13	6/6/22 14:55	5 1.015	0.129	mg/L	0.000508	0.001015	
* Beryllium, Total	6/6/22 07:13	6/6/22 14:55	1.015	Not Detecte	ed mg/L	0.000406	0.001015	U
* Cadmium, Total	6/6/22 07:13	6/6/22 14:55	5 1.015	Not Detecte	ed mg/L	0.000068	0.000203	U
* Chromium, Total	6/6/22 07:13	6/6/22 14:55	5 1.015	0.00156	mg/L	0.000203	0.001015	
* Cobalt, Total	6/6/22 07:13	6/6/22 14:55	5 1.015	0.00150	mg/L	0.000068	0.000203	
* Lead, Total	6/6/22 07:13	6/6/22 14:55			mg/L	0.000068	0.000203	J
* Manganese, Total	6/6/22 07:13	6/6/22 14:55			mg/L	0.000152	0.000203	
* Molybdenum, Total	6/6/22 07:13	6/6/22 14:55			· .	0.000102	0.000203	U
* Potassium, Total	6/6/22 07:13	6/6/22 14:55			mg/L	0.169505	0.5075	-
	0/0/22 07.13	0/0/22 14.30	1.013	7 1.00	111g/ L	0.100000	0.0070	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Pooled Upgradient - MW-4

Location Code: Collected:

WMWBARPU 5/31/22 16:24

Customer ID:

Submittal Date:

6/2/22 08:21

Laboratory ID Number: BC10407								
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/6/22 07:13	6/6/22 14:55	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/6/22 07:13	6/6/22 14:55	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ						
* Antimony, Dissolved	6/6/22 07:31	6/6/22 12:53	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	6/6/22 07:31	6/6/22 12:53	1.015	0.0212	mg/L	0.006090	0.01015	
* Arsenic, Dissolved	6/6/22 07:31	6/6/22 12:53	1.015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Dissolved	6/6/22 07:31	6/6/22 12:53	1.015	0.129	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	6/6/22 07:31	6/6/22 12:53	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	6/6/22 07:31	6/6/22 12:53	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	6/6/22 07:31	6/6/22 12:53	1.015	0.00104	mg/L	0.000203	0.001015	
* Cobalt, Dissolved	6/6/22 07:31	6/6/22 12:53	1.015	0.00138	mg/L	0.000068	0.000203	
* Lead, Dissolved	6/6/22 07:31	6/6/22 12:53	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	6/6/22 07:31	6/6/22 12:53	1.015	0.0165	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	6/6/22 07:31	6/6/22 12:53	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Dissolved	6/6/22 07:31	6/6/22 12:53	1.015	1.01	mg/L	0.169505	0.5075	
* Selenium, Dissolved	6/6/22 07:31	6/6/22 12:53	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	6/6/22 07:31	6/6/22 12:53	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	lyst: CRB						
* Mercury, Total by CVAA	6/7/22 11:15	6/7/22 13:54	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Ana	lyst: CES						
* Nitrogen, Nitrate/Nitrite	6/6/22 12:44	6/6/22 12:44	1	2.55	mg/L as N	0.20	0.3	
Analytical Method: SM 2320 B	Ana	lyst: ALH						
Alkalinity, Total as CaCO3	6/10/22 13:35	6/10/22 14:5	2 1	0.44	mg/L		0.1	PA
Analytical Method: SM 2540C	Ana	lyst: CNJ						
* Solids, Dissolved	6/3/22 13:15	6/6/22 13:42	1	36.7	mg/L		25	
Analytical Method: SM 4500CO2 D	Ana	lyst: ALH						
Bicarbonate Alkalinity, (calc.)	6/10/22 13:35	6/10/22 14:5	2 1	Not Detected	mg/L		1	
Carbonate Alkalinity, (calc.)	6/10/22 13:35	6/10/22 14:5	2 1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		lyst: ELH						
* Total Organic Carbon	6/8/22 02:51	6/8/22 02:51	1	Not Detected	mg/L	1.00	2	U
* Total Organic Carbon	6/8/22 02:51	6/8/22 02:51	1	Not Detected	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Pooled Upgradient - MW-4

Location Code:

WMWBARPU 5/31/22 16:24

Collected: Customer ID:

Submittal Date:

6/2/22 08:21

Laboratory ID Number: BC10407

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Ana	lyst: JCC							
* Chloride	6/6/22 13:02	6/6/22 13:02	2	1	3.31	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	6/8/22 13:33	6/8/22 13:33	3	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	6/7/22 16:16	6/7/22 16:16	3	1	7.94	mg/L	0.6	2	
Analytical Method: Field Measurements	Ana	lyst: DKG							
Conductivity	5/31/22 16:21	5/31/22 16:2	21		52.45	uS/cm			FA
рН	5/31/22 16:21	5/31/22 16:2	21		3.97	SU			FA
Temperature	5/31/22 16:21	5/31/22 16:2	21		22.67	С			FA
Turbidity	5/31/22 16:21	5/31/22 16:2	21		8.23	NTU			FA
Sulfide	5/31/22 16:21	5/31/22 16:2	21		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 16:24

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-4

Laboratory ID Number: BC10407

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10407	Aluminum, Dissolved	mg/L	0.0000977	0.010	0.100	0.124	0.128	0.104	0.0850 to 0.115	103	70.0 to 130	3.17	20.0
BC10408	Aluminum, Total	mg/L	0.000555	0.010	0.100	0.110	0.106	0.106	0.0850 to 0.115	110	70.0 to 130	3.70	20.0
3C10407	Antimony, Dissolved	mg/L	0.000304	0.00100	0.100	0.0937	0.0957	0.0923	0.0850 to 0.115	93.7	70.0 to 130	2.11	20.0
BC10408	Antimony, Total	mg/L	0.000382	0.00100	0.100	0.0896	0.0901	0.0945	0.0850 to 0.115	89.6	70.0 to 130	0.556	20.0
3C10407	Arsenic, Dissolved	mg/L	0.0000034	0.000176	0.100	0.100	0.102	0.104	0.0850 to 0.115	100	70.0 to 130	1.98	20.0
BC10408	Arsenic, Total	mg/L	0.0000173	0.000176	0.100	0.102	0.101	0.102	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10407	Barium, Dissolved	mg/L	0.0000071	0.00100	0.100	0.229	0.234	0.103	0.0850 to 0.115	100	70.0 to 130	2.16	20.0
BC10408	Barium, Total	mg/L	0.0000192	0.00100	0.100	0.0994	0.101	0.103	0.0850 to 0.115	99.4	70.0 to 130	1.60	20.0
BC10407	Beryllium, Dissolved	mg/L	0.0000130	0.000880	0.100	0.100	0.101	0.104	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
BC10408	Beryllium, Total	mg/L	0.0000106	0.000880	0.100	0.103	0.0970	0.0977	0.0850 to 0.115	103	70.0 to 130	6.00	20.0
BC10407	Boron, Dissolved	mg/L	0.000221	0.0650	1.00	1.02	1.02	1.01	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC10408	Boron, Total	mg/L	0.000098	0.0650	1.00	0.990	0.990	1.01	0.850 to 1.15	99.0	70.0 to 130	0.00	20.0
BC10407	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.0997	0.103	0.101	0.0850 to 0.115	99.7	70.0 to 130	3.26	20.0
BC10408	Cadmium, Total	mg/L	0.0000036	0.000147	0.100	0.102	0.0997	0.102	0.0850 to 0.115	102	70.0 to 130	2.28	20.0
BC10407	Calcium, Dissolved	mg/L	-0.00230	0.152	5.00	6.91	6.88	4.88	4.25 to 5.75	97.6	70.0 to 130	0.435	20.0
BC10408	Calcium, Total	mg/L	-0.00539	0.152	5.00	4.87	4.79	4.93	4.25 to 5.75	97.4	70.0 to 130	1.66	20.0
BC10408	Chloride	mg/L	-0.0327	1.00	10.0	10.6	10.6	9.58	9.00 to 11.0	106	80.0 to 120	0.00	20.0
BC10407	Chromium, Dissolved	mg/L	0.0000008	0.000440	0.100	0.102	0.104	0.102	0.0850 to 0.115	101	70.0 to 130	1.94	20.0
3C10408	Chromium, Total	mg/L	0.0000337	0.000440	0.100	0.103	0.100	0.102	0.0850 to 0.115	103	70.0 to 130	2.96	20.0
BC10407	Cobalt, Dissolved	mg/L	-0.0000006	0.000147	0.100	0.106	0.107	0.106	0.0850 to 0.115	105	70.0 to 130	0.939	20.0
3C10408	Cobalt, Total	mg/L	0.0000018	0.000147	0.100	0.106	0.106	0.107	0.0850 to 0.115	106	70.0 to 130	0.00	20.0
3C10408	Fluoride	mg/L	0.00175	0.125	2.50	2.53	2.56	2.54	2.25 to 2.75	101	80.0 to 120	1.18	20.0
BC10407	Iron, Dissolved	mg/L	-0.000261	0.0176	0.2	0.201	0.200	0.200	0.170 to 0.230	100	70.0 to 130	0.499	20.0

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 16:24

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-4

Laboratory ID Number: BC10407

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10408	Iron, Total	mg/L	0.000083	0.0176	0.2	0.199	0.199	0.200	0.170 to 0.230	99.5	70.0 to 130	0.00	20.0
BC10407	Lead, Dissolved	mg/L	0.0000066	0.000147	0.100	0.108	0.104	0.109	0.0850 to 0.115	108	70.0 to 130	3.77	20.0
BC10408	Lead, Total	mg/L	0.0000100	0.000147	0.100	0.105	0.102	0.103	0.0850 to 0.115	105	70.0 to 130	2.90	20.0
BC10407	Lithium, Dissolved	mg/L	0.000211	0.0154	0.200	0.201	0.202	0.201	0.170 to 0.230	100	70.0 to 130	0.496	20.0
BC10408	Lithium, Total	mg/L	0.000209	0.0154	0.200	0.203	0.203	0.204	0.170 to 0.230	102	70.0 to 130	0.00	20.0
BC10407	Magnesium, Dissolved	mg/L	-0.00997	0.0462	5.00	7.28	7.22	5.16	4.25 to 5.75	103	70.0 to 130	0.828	20.0
BC10408	Magnesium, Total	mg/L	-0.00569	0.0462	5.00	5.11	5.07	5.18	4.25 to 5.75	102	70.0 to 130	0.786	20.0
BC10407	Manganese, Dissolved	mg/L	0.0000037	0.0002	0.100	0.118	0.120	0.103	0.0850 to 0.115	102	70.0 to 130	1.68	20.0
BC10408	Manganese, Total	mg/L	0.0000112	0.0002	0.100	0.104	0.102	0.104	0.0850 to 0.115	104	70.0 to 130	1.94	20.0
BC10408	Mercury, Total by CVAA	mg/L	0.000134	0.000500	0.004	0.00425	0.00421	0.00400	0.00340 to 0.00460	106	70.0 to 130	0.946	20.0
BC10407	Molybdenum, Dissolved	mg/L	0.0000017	0.0002	0.100	0.0978	0.100	0.0987	0.0850 to 0.115	97.8	70.0 to 130	2.22	20.0
BC10408	Molybdenum, Total	mg/L	-0.0000073	0.0002	0.100	0.0990	0.0981	0.101	0.0850 to 0.115	99.0	70.0 to 130	0.913	20.0
BC10407	Potassium, Dissolved	mg/L	0.00152	0.367	10.0	11.0	11.1	9.97	8.50 to 11.5	99.9	70.0 to 130	0.905	20.0
BC10408	Potassium, Total	mg/L	0.0102	0.367	10.0	10.2	10.0	10.2	8.50 to 11.5	102	70.0 to 130	1.98	20.0
BC10407	Selenium, Dissolved	mg/L	-0.0000214	0.00100	0.100	0.100	0.101	0.101	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
BC10408	Selenium, Total	mg/L	0.0000056	0.00100	0.100	0.103	0.101	0.104	0.0850 to 0.115	103	70.0 to 130	1.96	20.0
BC10407	Silicon, Dissolved	mg/L	-0.00110	0.0440	1.00	5.02	5.02	1.02	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC10408	Silicon, Total	mg/L	-0.000555	0.0440	1.00	1.01	1.01	1.02	0.850 to 1.15	101	70.0 to 130	0.00	20.0
BC10407	Sodium, Dissolved	mg/L	-0.000155	0.0660	5.00	7.73	7.76	5.13	4.25 to 5.75	102	70.0 to 130	0.387	20.0
BC10408	Sodium, Total	mg/L	0.00196	0.0660	5.00	5.16	5.17	5.17	4.25 to 5.75	103	70.0 to 130	0.194	20.0
BC10408	Sulfate	mg/L	-0.0817	2.0	20.0	20.1	20.4	19.0	18.0 to 22.0	100	80.0 to 120	1.48	20.0
BC10407	Thallium, Dissolved	mg/L	0.0000086	0.000147	0.100	0.109	0.105	0.110	0.0850 to 0.115	109	70.0 to 130	3.74	20.0

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 16:24

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient - MW-4

Laboratory ID Number: BC10407

'				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10408	Thallium, Total	mg/L	0.0000118	0.000147	0.100	0.106	0.105	0.108	0.0850 to 0.115	106	70.0 to 130	0.948	20.0
BC10408	Total Organic Carbon	mg/L	0.160	1.00	10.0	10.0	10.2	25.1		100	80.0 to 120	1.98	20.0

Batch QC Summary

Customer Account: WMWBARPU **Sample Date:** 5/31/22 16:24

Customer ID:

Delivery Date:

6/2/22 08:21

Description: Barry Pooled Upgradient - MW-4

Laboratory ID Number: BC10407

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10407	Alkalinity, Total as CaCO3	mg/L					0.680	52.5	45.0 to 55.0			42.9	10.0
BC10408	Nitrogen, Nitrate/Nitrite	mg/L as N	0.01	0.200	2.00	2.12	0.073	2.01	1.80 to 2.20	106	90.0 to 110	0.00	15.0
BC10407	Solids, Dissolved	mg/L	0.0000	25.0			36.0	50.0	40.0 to 60.0			1.93	10.0

Certificate Of Analysis

Description: Barry Pooled Upgradient Equipment Blank-1Location Code:WMWBARPUEBCollected:5/31/22 16:45

Customer ID:

Submittal Date: 6/2/22 08:21

Laboratory ID Number: BC10408

Name	Prepared	Analyzed	Vio Spec D	OF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Ana	lyst: RDA			Preparati	on Method: EPA	A 1638		
* Boron, Total	6/6/22 09:22	6/8/22 10:07	1.0	015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	6/6/22 09:22	6/8/22 10:07	1.0	015	Not Detected	mg/L	0.070035	0.406	U
* Iron, Total	6/6/22 09:22	6/8/22 10:07	1.0	015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Total	6/6/22 09:22	6/8/22 10:07	1.0	015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	6/6/22 09:22	6/8/22 10:07	1.0	015	Not Detected	mg/L	0.021315	0.406	U
Silica, Total (calc.)	6/6/22 09:22	6/8/22 10:07	1		Not Detected	mg/L			
Silicon, Total	6/6/22 09:22	6/8/22 10:07	1.0	015	Not Detected	mg/L	0.02030	0.25375	U
* Sodium, Total	6/6/22 09:22	6/8/22 10:07	1.0	015	Not Detected	mg/L	0.03045	0.406	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ			Preparati	on Method: EP	A 1638		
* Antimony, Total	6/6/22 07:13	6/6/22 14:58	1.0	015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/6/22 07:13	6/6/22 14:58	1.0	015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Total	6/6/22 07:13	6/6/22 14:58	1.0	015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Total	6/6/22 07:13	6/6/22 14:58	1.0	015	Not Detected	mg/L	0.000508	0.001015	U
* Beryllium, Total	6/6/22 07:13	6/6/22 14:58	1.0	015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/6/22 07:13	6/6/22 14:58	1.0	015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/6/22 07:13	6/6/22 14:58	1.0	015	0.000269	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/6/22 07:13	6/6/22 14:58	1.0	015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Total	6/6/22 07:13	6/6/22 14:58	1.0	015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/6/22 07:13	6/6/22 14:58	1.0	015	Not Detected	mg/L	0.000152	0.000203	U
* Molybdenum, Total	6/6/22 07:13	6/6/22 14:58	1.0	015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/6/22 07:13	6/6/22 14:58	1.0	015	Not Detected	mg/L	0.169505	0.5075	U
* Selenium, Total	6/6/22 07:13	6/6/22 14:58	1.0	015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/6/22 07:13	6/6/22 14:58	1.0	015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	lyst: CRB							
Mercury, Total by CVAA	6/7/22 11:15	6/7/22 13:57	1		Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Ana	lyst: CES							
* Nitrogen, Nitrate/Nitrite	6/6/22 12:45	6/6/22 12:45	1		Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2540C	Ana	lyst: CNJ							
* Solids, Dissolved	6/3/22 13:15	6/6/22 13:42	! 1		Not Detected	ma/L		25	U

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Pooled Upgradient Equipment Blank-1

Location Code:

WMWBARPUEB 5/31/22 16:45

Collected: Customer ID:

Submittal Date:

6/2/22 08:21

Laboratory ID Number: BC10408					Submit	iai Date:	0/2/22 06.2	21	
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 5310 B	Ana	lyst: ELH							
* Total Organic Carbon	6/8/22 03:13	6/8/22 03:13	3	1	Not Detected	mg/L	1.00	2	U
Analytical Method: SM4500Cl E	Ana	lyst: JCC							
* Chloride	6/6/22 13:03	6/6/22 13:03	3	1	Not Detected	mg/L	0.50	1	U
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	6/8/22 13:34	6/8/22 13:34	1	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	6/7/22 16:17	6/7/22 16:17	7	1	Not Detected	mg/L	0.6	2	U

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARPUEB **Sample Date:** 5/31/22 16:45

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient Equipment Blank-1

Laboratory ID Number: BC10408

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10408	Aluminum, Total	mg/L	0.000555	0.010	0.100	0.110	0.106	0.106	0.0850 to 0.115	110	70.0 to 130	3.70	20.0
BC10408	Antimony, Total	mg/L	0.000382	0.00100	0.100	0.0896	0.0901	0.0945	0.0850 to 0.115	89.6	70.0 to 130	0.556	20.0
BC10408	Arsenic, Total	mg/L	0.0000173	0.000176	0.100	0.102	0.101	0.102	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10408	Barium, Total	mg/L	0.0000192	0.00100	0.100	0.0994	0.101	0.103	0.0850 to 0.115	99.4	70.0 to 130	1.60	20.0
BC10408	Beryllium, Total	mg/L	0.0000106	0.000880	0.100	0.103	0.0970	0.0977	0.0850 to 0.115	103	70.0 to 130	6.00	20.0
BC10408	Boron, Total	mg/L	0.000098	0.0650	1.00	0.990	0.990	1.01	0.850 to 1.15	99.0	70.0 to 130	0.00	20.0
BC10408	Cadmium, Total	mg/L	0.0000036	0.000147	0.100	0.102	0.0997	0.102	0.0850 to 0.115	102	70.0 to 130	2.28	20.0
BC10408	Calcium, Total	mg/L	-0.00539	0.152	5.00	4.87	4.79	4.93	4.25 to 5.75	97.4	70.0 to 130	1.66	20.0
BC10408	Chloride	mg/L	-0.0327	1.00	10.0	10.6	10.6	9.58	9.00 to 11.0	106	80.0 to 120	0.00	20.0
BC10408	Chromium, Total	mg/L	0.0000337	0.000440	0.100	0.103	0.100	0.102	0.0850 to 0.115	103	70.0 to 130	2.96	20.0
BC10408	Cobalt, Total	mg/L	0.0000018	0.000147	0.100	0.106	0.106	0.107	0.0850 to 0.115	106	70.0 to 130	0.00	20.0
BC10408	Fluoride	mg/L	0.00175	0.125	2.50	2.53	2.56	2.54	2.25 to 2.75	101	80.0 to 120	1.18	20.0
BC10408	Iron, Total	mg/L	0.000083	0.0176	0.2	0.199	0.199	0.200	0.170 to 0.230	99.5	70.0 to 130	0.00	20.0
BC10408	Lead, Total	mg/L	0.0000100	0.000147	0.100	0.105	0.102	0.103	0.0850 to 0.115	105	70.0 to 130	2.90	20.0
BC10408	Lithium, Total	mg/L	0.000209	0.0154	0.200	0.203	0.203	0.204	0.170 to 0.230	102	70.0 to 130	0.00	20.0
BC10408	Magnesium, Total	mg/L	-0.00569	0.0462	5.00	5.11	5.07	5.18	4.25 to 5.75	102	70.0 to 130	0.786	20.0
BC10408	Manganese, Total	mg/L	0.0000112	0.0002	0.100	0.104	0.102	0.104	0.0850 to 0.115	104	70.0 to 130	1.94	20.0
BC10408	Mercury, Total by CVAA	mg/L	0.000134	0.000500	0.004	0.00425	0.00421	0.00400	0.00340 to 0.00460	106	70.0 to 130	0.946	20.0
BC10408	Molybdenum, Total	mg/L	-0.0000073	0.0002	0.100	0.0990	0.0981	0.101	0.0850 to 0.115	99.0	70.0 to 130	0.913	20.0
BC10408	Potassium, Total	mg/L	0.0102	0.367	10.0	10.2	10.0	10.2	8.50 to 11.5	102	70.0 to 130	1.98	20.0
BC10408	Selenium, Total	mg/L	0.0000056	0.00100	0.100	0.103	0.101	0.104	0.0850 to 0.115	103	70.0 to 130	1.96	20.0
BC10408	Silicon, Total	mg/L	-0.000555	0.0440	1.00	1.01	1.01	1.02	0.850 to 1.15	101	70.0 to 130	0.00	20.0
BC10408	Sodium, Total	mg/L	0.00196	0.0660	5.00	5.16	5.17	5.17	4.25 to 5.75	103	70.0 to 130	0.194	20.0

Batch QC Summary

Customer Account: WMWBARPUEB **Sample Date:** 5/31/22 16:45

Customer ID:

Delivery Date: 6/2/22 08:21

Description: Barry Pooled Upgradient Equipment Blank-1

Laboratory ID Number: BC10408

				MB					Standard		Rec		— Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10408	Sulfate	mg/L	-0.0817	2.0	20.0	20.1	20.4	19.0	18.0 to 22.0	100	80.0 to 120	1.48	20.0
BC10408	Thallium, Total	mg/L	0.0000118	0.000147	0.100	0.106	0.105	0.108	0.0850 to 0.115	106	70.0 to 130	0.948	20.0
BC10408	Total Organic Carbon	mg/L	0.160	1.00	10.0	10.0	10.2	25.1		100	80.0 to 120	1.98	20.0

Batch QC Summary

Customer Account: WMWBARPUEB

Sample Date:

5/31/22 16:45

Customer ID:

Delivery Date:

6/2/22 08:21

Description: Barry Pooled Upgradient Equipment Blank-1

Laboratory ID Number: BC10408

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10408	Nitrogen, Nitrate/Nitrite	mg/L as N	0.01	0.200	2.00	2.12	0.073	2.01	1.80 to 2.20	106	90.0 to 110	0.00	15.0
BC10407	Solids, Dissolved	mg/L	0.0000	25.0			36.0	50.0	40.0 to 60.0			1.93	10.0

(205) 664-6001

U

Compound was analyzed, but not detected.

Definitions

Project Number: WMWBARPU_1372

Abbreviation	Description
DF	Dilution Factor
LCS	Lab Control Sample
LFM	Lab Fortified Matrix
MB	Method Blank
MDL	Method Detection Limit; minimum concentration of an analyte that can be determined with 99% confidence that the concentration is greater than zero.
MS	Matrix Spike
MSD	Matrix Spike Duplicate
Prec	Precision (% RPD)
Q	Qualifier; comment used to note deviations or additional information associated with analytical results.
QC	Quality Control
Rec	Recovery of Matrix Spike
RL	Reporting Limit; lowest concentration at which an analyte can be quantitatively measured.
Vio Spec	Violation Specification; regulatory limit which has been exceeded by the sample analyzed.
Qualifier	Description
FA	Field results were reviewed by the Water Field Group. Refer to APC Field Case Narrative.
J	Reported value is an estimate because concentration is less than reporting limit.
PA	Precision is invalid due to sample concentration.

≱ab Fiel	Chain of	Custody	Fi	eld Com	plete	Outsid	le Lab			
Fiel		vater l Testing Labo		ab Comp	olete		L	ab ETA		
Regi	iested Complete					Results To				=
Requ	_	ector Dallas G	Sentry		——————————————————————————————————————	Requested By			g Dyei	
	Con	cctor Bando c	, or itiny			Location			ogradient	
			1	1						
Bottle		500 mL 3	Hg	250	———		500 mL	┤├ ──		50 mL
	2 Dissolved Metals	500 mL 4	Nitrate/Nitrite;	тос 250	mL 6	Anions	250 mL	8 N/A	N/.	4
		mples relinquished N, TOC pH < 2 SU. B		ng 8 shippin	g lab on 06/0	1/22 @ 1554.				
				Bottle				Lab		
	Sample #	Date	Time	Count		Description		Filter	Lab Id	
	MW-1	05/31/2022	13:24	7	Groundw	/ater			BC10402	
	MW-2	05/31/2022	14:28	7	Groundw	/ater			BC10403	
	FB-1	05/31/2022	14:45	5	Field Bla	nk			BC10404	
	MW-3	05/31/2022	15:22	7	Groundw	/ater			BC10405	
	MW-3 dup	05/31/2022	15:22	7	Sample I	Duplicate			BC10406	
	MW-4	05/31/2022	16:24	7	Groundw	ater			BC10407	
	EB-1	05/31/2022	16:45	5	Equipme	nt Blank			BC10408	
	Relinqu	ished By		1		Received By			Date/Ti	me
	Palla	Staty		Broc	ke Cat		signed by Brod 2.06.02 08:18:		06/02/2022	08:18
						0				
	SmarTroll ID 75	86-41443-5-2			All me	etals and radi	ological b	ottles b	nave pH < 2	
	Turbidity ID 39			1		Cooler Temp	1.9 °C	3	r	
	Sample Event 13			1		mometer ID	7044-382	81-2-1		
				_		pH Strip ID	10275-59	506-10-2	2	
Bottle	s/Pre-Preserved Bottles a	re provided by the C	GTL	_		- +				

Page 65 of 66

Lab S	Chain of Ground	of Custoo	dy	Fi	eld C	omj	plete		V	Outsid	e Lab				
Field	Ground APC Gener	lwater ral Testing La	abo	ratory La	ab Co	mpl	lete				I	,ab	ЕТА		
Reque	sted Comple			Tuto1 y				$\overline{}$	Res	ults To					
reque	_	ollector Dalla		entry				$\frac{1}{1}$		sted By			.s, arc	g Dyci	
									_	•			ed U	ogradient	
Bottles	1 Radium	1 L	3	N/A		I/A		5	N/A		V/A	7.	7 N/		N/A
Dotties	2 N/A	N/A	4			I/A		\mapsto	N/A		N/A	⊣⊢	B N/A		N/A
		Radium MS/MSD	collec	ļ			nquishe	_				n 06/	01/22	@ 1555.	
					Bott								ab		
	Sample #	Date	20	Time	Cou	_	0			iption		Fi	lter	Lab I	
<u> </u>	1W-1	05/31/202	-	13:24	3	-+	Grour					-		BC104	
<u> </u>	1W-2	05/31/202	-	14:28	1	\dashv	Grour					╀		BC104	
<u> </u>	B-1 IW-3	05/31/202	-	14:45 15:22	1	-+	Field Grour					+		BC104 BC104	
-	IW-3 dup	05/31/202	\rightarrow		1	-+			Duplica	to.		+		BC104	
-	IW-4	05/31/202	\rightarrow	15:22 16:24	1	-+	Grour					\vdash		BC104	
-	B-1	05/31/202	\rightarrow	16:45	1	$\overline{}$			nt Blan	ık		\vdash		BC104	
F		00/01/202	_	10.43	<u> </u>	\dashv	<u> </u>		in Bian			T			
						\dashv									
						寸						T			
						\dashv									
						\neg						Т			
						ヿ									
						_						_			
			\Box			\dashv									
			_			_						igspace			
						\dashv						_			
			_			\dashv						-			
	Relin	quished By								ved By			-	Date	e/Time
	Va	Ustaty			Bro	00	ke C	at	on		igned by Bro 2.06.02 08:19			06/02/2	022 08:19
Sn	narTroll ID	7586-41443-5	5-2				All	me	etals ar	nd radio	ological	bot	tles l	nave pH	< 2 🔽
Ti	urbidity ID	3901-20010-2	2-2					(Cooler	Temp	N/A				
Sai	mple Event	1372					П	her	mome	ter ID	N/A				
						pH Strip ID 10275-59506-10-2									

Page 66 of 66

Bottles/Pre-Preserved Bottles are provided by the GTL

8.0

(724)850-5600

July 18, 2022

Brooke Caton Alabama Power 744 Highway 87 Calera, AL 35040

RE: Project: WMWBARPU_1372

Pace Project No.: 30502759

Dear Brooke Caton:

Enclosed are the analytical results for sample(s) received by the laboratory on June 08, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Skyler C. Richmond

Soft Richard

skyler.richmond@pacelabs.com (724)850-5600

Project Manager

Enclosures

cc: Blaine Denton, Alabama Power Renee Jernigan, Alabama Power

CERTIFICATIONS

Project: WMWBARPU_1372

Pace Project No.: 30502759

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1

New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Missouri Certification #: 235

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: WMWBARPU_1372

Pace Project No.: 30502759

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30497264001	BC10409 MW-1	Water	05/31/22 13:24	06/08/22 10:55
30497264002	BC10409 MW-1 MS	Water	05/31/22 13:24	06/08/22 10:55
30497264003	BC10409 MW-1 MSD	Water	05/31/22 13:24	06/08/22 10:55
30497264004	BC10410 MW-2	Water	05/31/22 14:28	06/08/22 10:55
30497264005	BC10411 FB-1	Water	05/31/22 14:45	06/08/22 10:55
30497264006	BC10412 MW-3	Water	05/31/22 15:22	06/08/22 10:55
30497264007	BC10413 MW-3 Dup	Water	05/31/22 15:22	06/08/22 10:55
30497264008	BC10414 MW-4	Water	05/31/22 16:24	06/08/22 10:55
30497264009	BC10415 EB-1	Water	05/31/22 16:45	06/08/22 10:55

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: WMWBARPU_1372

Pace Project No.: 30502759

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30497264001	BC10409 MW-1	EPA 9315		1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30497264002	BC10409 MW-1 MS	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
30497264003	BC10409 MW-1 MSD	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
30497264004	BC10410 MW-2	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30497264005	BC10411 FB-1	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30497264006	BC10412 MW-3	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30497264007	BC10413 MW-3 Dup	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30497264008	BC10414 MW-4	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30497264009	BC10415 EB-1	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

REPORT OF LABORATORY ANALYSIS

PROJECT NARRATIVE

Project: WMWBARPU_1372

Pace Project No.: 30502759

Method: EPA 9315

Description: 9315 Total Radium **Client:** Alabama Power **Date:** July 18, 2022

General Information:

9 samples were analyzed for EPA 9315 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: WMWBARPU_1372

Pace Project No.: 30502759

Method: EPA 9320

Description: 9320 Radium 228 **Client:** Alabama Power **Date:** July 18, 2022

General Information:

9 samples were analyzed for EPA 9320 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: WMWBARPU_1372

Pace Project No.: 30502759

Method:Total Radium CalculationDescription:Total Radium 228+226Client:Alabama PowerDate:July 18, 2022

General Information:

7 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: WMWBARPU_1372

Pace Project No.: 30502759

Sample: BC10409 MW-1 PWS:	Lab ID: 3049 Site ID:	77264001 Collected: 05/31/22 13:24 Sample Type:	Received:	06/08/22 10:55	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.489 ± 0.227 (0.256) C:87% T:NA	pCi/L	07/11/22 09:59	9 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.849 ± 0.368 (0.583) C:70% T:95%	pCi/L	07/07/22 11:2	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.34 ± 0.595 (0.839)	pCi/L	07/11/22 22:45	5 7440-14-4	

07/07/22 11:21 15262-20-1

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: WMWBARPU_1372

EPA 9320

Pace Project No.: 30502759

Radium-228

Sample: BC10409 MW-1 MS Lab ID: 30497264002 Collected: 05/31/22 13:24 Received: 06/08/22 10:55 Matrix: Water

C:NA T:NA

PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg EPA 9315 100.20 %REC ± NA (NA) Radium-226 pCi/L 07/11/22 10:00 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg 100.48 %REC ± NA (NA)

pCi/L

Project: WMWBARPU_1372

Pace Project No.: 30502759

Sample: BC10409 MW-1 MSD Lab ID: 30497264003 Collected: 05/31/22 13:24 Received: 06/08/22 10:55 Matrix: Water

Site ID: Sample Type:

PWS: Act ± Unc (MDC) Carr Trac CAS No. **Parameters** Method Units Analyzed Qual Pace Analytical Services - Greensburg EPA 9315 107.43 %REC 6.96 RPD ± Radium-226 pCi/L 07/11/22 10:00 13982-63-3 NA (NA) C:NA T:NA Pace Analytical Services - Greensburg EPA 9320 96.00 %REC 4.56 RPD ± Radium-228 pCi/L 07/07/22 11:21 15262-20-1

NA (NA) C:NA T:NA

Project: WMWBARPU_1372

Pace Project No.: 30502759

Sample: BC10410 MW-2 PWS:	Lab ID: 30497 Site ID:	7264004 Collected: 05/31/22 14:28 Sample Type:	Received:	06/08/22 10:55	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg		•	,	
Radium-226	EPA 9315	0.599 ± 0.245 (0.238) C:88% T:NA	pCi/L	07/11/22 10:00	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.783 ± 0.376 (0.633) C:71% T:91%	pCi/L	07/07/22 11:21	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.38 ± 0.621 (0.871)	pCi/L	07/11/22 22:45	5 7440-14-4	

Project: WMWBARPU_1372

Pace Project No.: 30502759

Sample: BC10411 FB-1 PWS:	Lab ID: 3049 Site ID:	7264005 Collected: 05/31/22 14:45 Sample Type:	Received:	06/08/22 10:55	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.205U ± 0.156 (0.242) C:91% T:NA	pCi/L	07/11/22 10:00	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.418U ± 0.295 (0.564) C:74% T:96%	pCi/L	07/07/22 11:2	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.623U ± 0.451 (0.806)	pCi/L	07/11/22 22:4	5 7440-14-4	

Project: WMWBARPU_1372

Pace Project No.: 30502759

Sample: BC10412 MW-3 PWS:	Lab ID: 3049 Site ID:	7264006 Collected: 05/31/22 15:22 Sample Type:	Received:	06/08/22 10:55	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg			_	
Radium-226	EPA 9315	0.393 ± 0.203 (0.247) C:93% T:NA	pCi/L	07/11/22 10:00	0 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.28 ± 0.477 (0.700) C:71% T:86%	pCi/L	07/07/22 11:2	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.67 ± 0.680 (0.947)	pCi/L	07/11/22 22:4	5 7440-14-4	

Project: WMWBARPU_1372

Pace Project No.: 30502759

Sample: BC10413 MW-3 Dup PWS:	Lab ID: 3049 Site ID:	7264007 Collected: 05/31/22 15:22 Sample Type:	Received:	06/08/22 10:55	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.585 ± 0.243 (0.241) C:91% T:NA	pCi/L	07/11/22 10:00	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.768 ± 0.378 (0.645) C:70% T:92%	pCi/L	07/07/22 11:2	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.35 ± 0.621 (0.886)	pCi/L	07/11/22 22:4	5 7440-14-4	

Project: WMWBARPU_1372

Pace Project No.: 30502759

Sample: BC10414 MW-4 PWS:	Lab ID: 3049 Site ID:	7264008 Collected: 05/31/22 16:24 Sample Type:	Received:	06/08/22 10:55	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.469 ± 0.216 (0.222) C:91% T:NA	pCi/L	07/11/22 10:00	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.996 ± 0.362 (0.479) C:72% T:94%	pCi/L	07/07/22 11:2	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.47 ± 0.578 (0.701)	pCi/L	07/11/22 22:4	5 7440-14-4	

Project: WMWBARPU_1372

Pace Project No.: 30502759

Sample: BC10415 EB-1 PWS:	Lab ID: 3049 Site ID:	7264009 Collected: 05/31/22 16:4 Sample Type:	5 Received:	06/08/22 10:55	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg	_			
Radium-226	EPA 9315	0.107U ± 0.131 (0.264) C:93% T:NA	pCi/L	07/11/22 10:0	0 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.447U ± 0.321 (0.618) C:69% T:99%	pCi/L	07/07/22 11:2	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.554U ± 0.452 (0.882)	pCi/L	07/11/22 22:4	5 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: WMWBARPU_1372

Pace Project No.: 30502759

QC Batch: 511756 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30497264001, 30497264002, 30497264003, 30497264004, 30497264005, 30497264006, 30497264007,

30497264008, 30497264009

METHOD BLANK: 2480257 Matrix: Water

Associated Lab Samples: 30497264001, 30497264002, 30497264003, 30497264004, 30497264005, 30497264006, 30497264007,

30497264008, 30497264009

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.215 ± 0.115 (0.148) C:93% T:NA
 pCi/L
 07/11/22 09:59

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: WMWBARPU_1372

Pace Project No.: 30502759

QC Batch: 511755 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30497264001, 30497264002, 30497264003, 30497264004, 30497264005, 30497264006, 30497264007,

30497264008, 30497264009

METHOD BLANK: 2480254 Matrix: Water

Associated Lab Samples: 30497264001, 30497264002, 30497264003, 30497264004, 30497264005, 30497264006, 30497264007,

30497264008, 30497264009

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.729 ± 0.340 (0.552) C:70% T:96%
 pCi/L
 07/07/22 11:25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: WMWBARPU_1372

Pace Project No.: 30502759

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 07/18/2022 10:32 AM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: WMWBARPU_1372

Pace Project No.: 30502759

Date: 07/18/2022 10:32 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
30497264001	BC10409 MW-1	EPA 9315	511756		
30497264002	BC10409 MW-1 MS	EPA 9315	511756		
30497264003	BC10409 MW-1 MSD	EPA 9315	511756		
30497264004	BC10410 MW-2	EPA 9315	511756		
30497264005	BC10411 FB-1	EPA 9315	511756		
30497264006	BC10412 MW-3	EPA 9315	511756		
30497264007	BC10413 MW-3 Dup	EPA 9315	511756		
30497264008	BC10414 MW-4	EPA 9315	511756		
30497264009	BC10415 EB-1	EPA 9315	511756		
30497264001	BC10409 MW-1	EPA 9320	511755		
30497264002	BC10409 MW-1 MS	EPA 9320	511755		
30497264003	BC10409 MW-1 MSD	EPA 9320	511755		
30497264004	BC10410 MW-2	EPA 9320	511755		
30497264005	BC10411 FB-1	EPA 9320	511755		
30497264006	BC10412 MW-3	EPA 9320	511755		
30497264007	BC10413 MW-3 Dup	EPA 9320	511755		
30497264008	BC10414 MW-4	EPA 9320	511755		
30497264009	BC10415 EB-1	EPA 9320	511755		
30497264001	BC10409 MW-1	Total Radium Calculation	517875		
30497264004	BC10410 MW-2	Total Radium Calculation	517875		
30497264005	BC10411 FB-1	Total Radium Calculation	517875		
30497264006	BC10412 MW-3	Total Radium Calculation	517875		
30497264007	BC10413 MW-3 Dup	Total Radium Calculation	517875		
30497264008	BC10414 MW-4	Total Radium Calculation	517875		
30497264009	BC10415 EB-1	Total Radium Calculation	517875		

	_	7	r	ç04 8	_	gg F	1:						-,			_p_														_		
		5		gency		Idon		A.		CO 470 103)	7.6	35	000	100	3 × 5	5,242	2						SAMPLE CONDITIONS						Receiv (Y/V) Custoc Sealed Cooler Cooler (Y/V)			
	Page .	a B B		Kegulatory Agency	W. 100	State / Location	7	(NZ	7) eninoldO leubise	+	+	╁	╁	┢	╁	+	+	+	╁	+	+							O ni	TEMP			
	Δ.		1	Keguia		OINT			mu2 muibs9 isjo		Ļ		Ļ	L		Ĺ	1	1	1	1	1		֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	3	\top	1	Est N		Ī			
							(N/A)		PA 9320	-		+		×	-	× ×	+	╁	+	+	+	_	¥	2								
į							Filterec	N/A 35	eT sesylanA etee Aq	3 ×	×	×	×	×	×	×	<u> </u>		1			- 1		2		T						
st be completed accurately.			2		1000000		alysis	6				L					Ι	I	Ι	Ι	Ι	- L	\$	68.3								
2 9 0		П				-	Requested Analysis Filtered (Y/N)	Preservatives	ниоз	×	×	×	×	×	×	×	_	+	_	4	\perp								;p			
en biene							Reques	Presc	H2SO4	L		L			匚		t	T	t	1					ı				DATE Signed:			
§					-		100 A	I	# ОF СОИТАІИЕРВ Программент	- κ	-	-	-		-	-			+		-	- <u>2</u>				-		Gentry	DAT			
o o			4	2	n o		2000					·			f		<u> </u>		_L			H IA						Dallas Ge				
		8	744 Highway 87 GSC Bids #8		Skvier Richmond				TIME	13:24	14:28	14:45	15:22	15:22	16:24	16.45					T	ACCEPTED BY / AFFILIATION			Ī	l		۵ ا				
		1000	200	; } }	Vier R			COLLECTED	Z Z	ļ	<u> </u>		<u> </u>			ļ	╄┈	╁	╁	-	+	- PTED			,							
		Brooke Caton	2000	S S S	ď	4		8	S	5/31/2022	5/31/2022	5/31/2022	5/31/2022	5/31/2022	5/31/2022	5/31/2022						Ş		1								
		ooke	A I			16788			se) Baytbiamas	ပ	ဗ	9	Ŋ	ပ	Ø	ပ	1	L	L	İ			T	-			5878					
=		面	1	ı	٠			valid codes to left)	Field Filtered MATRIX CODE {see	ΒW	O.V	ВW	ωS	ĞΜ	GW	GW	<u> </u>	╁	L	╀	-		•	7			18740 18740					
		ne:			Manage			ijke Duplicate	Matrix Spike/Malrix Sp	×							L	L	Ļ	1	Ţ			+	十	╁	-					
		Attention: Company Name:	.s:	Pace Quote:	roject	rofile #	ŀ		Sample Duplicate	#	#=	Ħ	±	×	_	ţ	┝	-	\vdash	╀	╀	TIME		İ								
		Attenti	Address:	Pace (Pace F	Pace F			i	gradier	gradier	gradier	gradier	gradier	gradien	gradien				İ			ી	7:46								
	716								lame ty_ID	APCO_Barry_Pooled_Upgradient	APCO_Barry_Pooled_Upgradient	APCO_Barry_Pooled_Upgradient	APCO_Barry_Pooled_Upgradient	APCO_Barry_Pooled_Upgradient	APCO_Barry_Pooled_Upgradient	APCO_Barry_Pooled_Upgradient]				ш		\top	†	T		LER:	LER:			
	5	_			E				Site Name Facility_ID	Ty_Po	rry_Poc	ny_Poc	my Poc	Try Poc	Poo Vr	Ty Poo						DATE		5/3/2022			NATUR	FSAMP	SAMP			
	1	Sentor			gradie	1372	ı			S	CO_Ba	CO_Ba	CO_Ba	CO_Bai	CO_Bai	CO Bar									丅	1	SAMPLER NAME AND SIGNATURE	PRINT Name of SAMPLER:	SIGNATURE of SAMPLER:			
		aine [ω	d Cp	S.	İ			₹	ΑP	Ą	ΑP	ΑP	ΑP	АP	_		_	Ļ	_						AMEA	RINT	SIGNAT			
	اۃ	2 & B		75563	Pool	§ Mgg	Ì		a 0	MW-1	MW-2	18-01	AW-3	AW-3	AW-4	9-03						Į,					LERN	_	"			
	rmation	aron		PC16	Barry	\$	ľ		Station Name Location ID	3Y-UP-	3Y-UP-I	3Y-UP	Y-UP-	Y-UP-	Y-UP.	Y-UP-F				ļ			E C	5			SAM					
	ct Info	nee J		*	Plant				Stati	APCO-BY-UP-MW-1	APCO-BY-UP-MW-2	APCO-BY-UP-FB-01	APCO-BY-UP-MW-3	APCO-BY-UP-MW-3	APCO-BY-UP-MW-4	APCO-8Y-UP-EB-01						66	30 /004									
m	Report To: Brooks Catal	Copy To: Renee Jernigan & Blaine Denton		e Order	ame:	Project Number: WMWBARPU_1372	١			4		1	1	1	1	`				_	L	RELINQUISHED BY / AFFILIATION	Brooke Catoo, ABC CT									
Section B	Require	opy Te		urchas	rolect	roject	1		, o					Q.			ĺ					ELNO	å									SALVERY CO.
υ,		П	П			+	İ		Description	MW-1	MW-2	FB-1	MW-3	MW-3 Dup	MW4	EB-1																
	AU A	Bldg #		اے					ď					≥																		
	Comp	CSC	6	000	ğ	S		_	3 0 0	\dagger	1	\dashv					-	-	-							Color annual control of the color of the col						
٩	nt Information: Alabama Power Comnany	744 Highway 87 GSC Bldg #8	320	DOE 664 6404 In		20 days		<u> </u>	One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique	<u></u>		+	, l	, l	4	_						NTS										***************************************
	mation ama P	-lighw.	era, A	nosm	04-0			SAMPLE	racter Z, 0-9 / Is musi	BC10409	BC10410	BC10411	BC10412	BC10413	BC10414	BC10415						OMME										
:	Alaba	44	اَ اِ	MOI C	200	i cite		SAN	ne Cha (A-: mple Id	m	0	œ	<u>ا</u>	mo .	co i	۵		İ				NAL C										e de la companya de l
4 c	Required Client Information: Company: Alabama Po	, i	1		Č				Sai				_		_							ADDITIONAL COMMENTS										
Section A	Sompa	Address:	Email To	Phone:	901100				HITEM #	- •	۰ ا	9	d 1	0 (۱ ه		ထ	6	10	11	12										Page	21

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Ra-226 JC2 6/19/2022 67288 DW Test:

Analyst: Date: Worklist: Matrix:

730000	750057	0.215	0.111	0.148	3.80	A/A	See Comment*
ssessment	MB Sample ID	MB concentration:	M/B Counting Uncertainty:	MB MDC:	MB Numerical Performance Indicator:	MB Status vs Numerical Indicator:	MB Status vs. MDC:

Method Blank As

	Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
	Sample Collection Date:	5/31/2022	
	Sample I.D.	30497264001	
	Sample MS I.D.	30497264002	
	Sample MSD I.D.	30497264003	
	Spike I.D.:	19-033	
	MS/MSD Decay Corrected Spike Concentration (pCi/mL):	24.027	
	Spike Volume Used in MS (mL):	0.20	
	Spike Volume Used in MSD (mL):	0.20	
	MS Aliquot (L, g, F):	0.308	
	MS Target Conc.(pCi/L, g, F):	15.619	
	MSD Aliquot (L, g, F):	0.275	
	MSD Target Conc. (pCi/L, g, F):	17.494	
	MS Spike Uncertainty (calculated):	0.187	
Г	MSD Spike Uncertainty (calculated):	0.210	
Т	Sample Result:	0.489	
Г	Sample Result Counting Uncertainty (pCi/L, g, F):	0.216	
	Sample Matrix Spike Result:	16.140	
	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	1.094	
-	Sample Matrix Spike Duplicate Result.	19.283	
	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	1.262	
	MS Numerical Performance Indicator:	0.054	
	MSD Numerical Performance Indicator:	1.964	
	MS Percent Recovery:	100.20%	
	MSD Percent Recovery:	107.43%	
_	MS Status vs Numerical Indicator:	N/A	
	MSD Status vs Numerical Indicator:	N/A	
	MS Status vs Recovery:		
	MSD Status vs Recovery:		
	MS/MSD Upper % Recovery Limits:	125%	
	MS/MSD Lower % Recovery Limits:		

Laboratory Control Sample Assessment			
	LCS67288	LCSD67288	
Count Date:	7/11/2022	7/11/2022	
Spike I.D.:	19-033	19-033	
Decay Corrected Spike Concentration (pCi/mL):	24.026	24.026	
Volume Used (mL):	0.10	0.10	
Alignot Volume (L, g, F):	0.505	0.506	Matri
Target Conc. (pCi/L, g, F):	4.756	4.747	
Uncertainty (Calculated):	0.057	0.057	
Result (pCi/L, g, F):	4.603	4.462	
LCS/LCSD Counting Uncertainty (pCi/L, g, F):		0.446	
Numerical Performance Indicator:	-0.64	-1.25	
Percent Recovery:	%2.296	93.98%	
Status vs Numerical Indicator:	N/A	ΑX	
Status vs Recovery:	Pass	Pass	
Upper % Recovery Limits:	125%	125%	
Lower % Recovery Limits:	75%	75%	
Duplicate Sample Assessment			Matrix

Laboratory Control Sample Assessment

	30497264001	30497264002	30497264003	16.140	1.094	19.283	1.262	-3.687	%96:9	N/A	Pass	25%
Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% RPD Limit:
г								_				

LCS67288 LCSD67288 4.603 0.465 4.462 0.446 NO 0.429 2.93%

Sample I.D.:

Duplicate Sample I.D.:

Sample Result (pG/IL. g, F):

Sample Duplicate Result (pG/IL. g, F):

Sample Duplicate Result (pG/IL. g, F):

Are sample and/or duplicate results below RL?

Duplicate Numerical Performance Indicator

(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: Duplicate Status vs Numerical Indicator:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Duplicate Status vs RPD: % RPD Limit:

Comments:
The method blank result is below the reporting limit for this analysis and is acceptable.

TAR_67288_W.xls Total Alpha Radium (ENV-FRM-GBUR-0142 R0).xls

Quality Control Sample Performance Assessment

Ra-228

Test:

Face Analytical www.pacealase.com

. 11
Š
9
2
Ö
hte
ij
dh
Ξ
lds
Fiel
Y
흹
ш
즼
2
lar
t h
S
t IV
S
nai
¥

MS/MSD 2

Analyst.	ΙΑΛ		Sample Matrix Spike Control Assessment
Date:	6/17/2022		Sample Collection Date:
Worklist	67287		Sample I.D.
Matrix	<u> </u>		Sample MS I.D.
			Sample MSD I.D.
Method Blank Assessment			Spike I.D.:
MB Sample ID	2480254		MS/MSD Decay Corrected Spike Concentration (pCi/mL):
MB concentration:	0.729		Spike Volume Used in MS (mL):
M/B 2 Sigma CSU:	0.340		Spike Volume Used in MSD (mL):
MB MDC:	0.552		MS Aliquot (L, g, F):
MB Numerical Performance Indicator:	4.21		MS Target Conc.(pCi/L, g, F):
MB Status vs Numerical Indicator:	Fail*		MSD Aliquot (L, g, F):
MB Status vs. MDC:	See Comment*		MSD Target Conc. (pCi/L, g, F):
			MS Spike Uncertainty (calculated):
Laboratory Control Sample Assessment	CSD (Y or N)?	z	MSD Spike Uncertainty (calculated):
	LCS67287	LCSD67287	Sample Result:
Count Date:	7/7/2022		Sample Result 2 Sigma CSU (pCi/L, g, F):
Spike I.D.:	22-016		Sample Matrix Spike Result:
Decay Corrected Spike Concentration (pCi/mL):	35.124		Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):
Volume Used (mL):	0.10		Sample Matrix Spike Duplicate Result:
Aliquot Volume (L, g, F):	0.809		Matrix Spike Duplicate Result 2 Sigma CSU (pCi/l., g, F):
Target Conc. (pCi/L, g, F):	4.344		MS Numerical Performance Indicator:
Uncertainty (Calculated):	0.213		MSD Numerical Performance Indicator:
Result (pCi/L, g, F):	3.828		MS Percent Recovery:
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	0.860		MSD Percent Recovery:
Numerical Performance Indicator:	-1.14		MS Status vs Numerical Indicator:
Percent Recovery:	88.11%		MSD Status vs Numerical Indicator:
Status vs Numerical Indicator:	N/A		MS Status vs Recovery:
Status vs Recovery:	Pass		MSD Status vs Recovery:
Upper % Recovery Limits:	135%		MS/MSD Upper % Recovery Limits:
Lower % Recovery Limits:	%09		MS/MSD Lower % Recovery Limits:

MS/MSD 1
5/31/2022
30497264001
30497264002
30497264002
22-016
35.554
0.20
0.806
8.818
0.816
8.818
0.816
8.784
0.432
0.432
0.432
0.432
0.432
0.432
0.432
0.432
0.432
0.432
0.432
0.432
0.432
0.432
0.432
0.432
0.432
0.888
0.889
0.989
0.989
0.988
0.988
0.988
0.988
0.988
0.988
0.988
0.988
0.988
0.988
0.988
0.988
0.988
0.988
0.988
0.988
0.988
0.988
0.988
0.988

						_	_				_	_	_		╝	1														_
Sample Result:	Sample Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery.	MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:		Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD LD.		Sample Matrix Spike Result.	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% RPD Limit:
LCSD67287																		Enter Duplicate	sample IDs if	other than	Ourer trian	LCS/LCSD in	the space below.							
LCS67287	7/7/2022	22-016	35.124	0.10	0.809	4.344	0.213	3.828	0.860	-1.14	88.11%	N/A	Pass	135%	%09										See Below ##					
	Count Date:	Spike I.D.:	Decay Corrected Spike Concentration (pCi/mL):	Volume Used (mL):	Aliquot Volume (L, g, F):	Target Conc. (pCi/L, g, F):	Uncertainty (Calculated):	Result (pCi/L, g, F):	LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	Numerical Performance Indicator:	Percent Recovery:	Status vs Numerical Indicator:	Status vs Recovery:	Upper % Recovery Limits:	Lower % Recovery Limits:		Duplicate Sample Assessment	Sample I.D.:	Dinicate Sample I.D.	Consideration of the constant	Sample Result (polic, g, r).	Sample Result 2 Sigma CSU (pCi/L, g, F):	Sample Duplicate Result (pCi/l., g, F):	Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):	Are sample and/or duplicate results below RL?	Dinicate Numerical Performance Indicator:	Duplicate RPD:	Dunicate Status vs Numerical Indicator:	Dinicate Status vs RPD.	% RPD Limit:

Matrix Spike/Matrix Spike Duplicate Sample Assess	Sample Matrix Spike Result 2 Sigma CSU (Sample Matrix Spike Duplicate Result 2 Sigma CSU (Sample Matrix Spike Duplicate Result 2 Sigma CSU (Duplicate Numerical Performan, (Based on the Percent Recoveries) MS/ MSD Dup
	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
	See Below ##
Duplicate Sample Assessment	Sample I.D.: Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator: Duplicate Status vs Numerical Indicator: Duplicate Status vs Numerical Indicator: Duplicate Status vs Numerical Indicator: Duplicate Status vs Numerical Indicator: Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:
•The method blank result is below the reporting limit for this analysis and is acceptable.

Ra-228 NELAC DW2 Printed: 7/8/2022 3:34 PM

Page 23 of 23

Ra-228_67287_W Ra-228 (R086-8 04Sep2019).xls

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040 205-664-6001

Analytical Report

Sample Group: WMWBARAP_1367

Project/Site: Barry Ash Pond

Bucks, AL 36512

For: Southern Company Services

3535 Colonnade Parkway Birmingham, AL 35243

Attention: Dustin Brooks & Greg Dyer

Released By: Brooke Caton

tbwill@southernco.com

(205) 664-6101

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040 (205) 664-6001

June 15, 2022

Dear Dustin Brooks,

Enclosed are the analytical results for sample(s) received by the laboratory between May 25, 2022 and May 26, 2022. All results reported herein conform to the laboratory's most current Quality Assurance Manual. Results marked with an asterisk conform to the most current applicable TNI/NELAC requirements. Exceptions will be noted in the body of the report.

Laboratory certification ID: E571114

Issued By: State of Florida, Department of Health

Expiration: June 30, 2022

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Quality Control: Brooke

Caton

Digitally signed by Brooke Caton

Date: 2022.06.16 10:52:56 -05'00'

Supervision:

T Durant Maske Digitally signed by 1 Jurant Maske c=US

United States I=US United States
e=Idmaske@southernco.com
Reason: I am approving this document
Location:
Date: 2022-06-16 11-07-05-00

This Certificate states the physical and/or chemical characteristics of the sample as submitted.

This document shall not be reproduced, except in full, without written consent from

Alabama Power's General Test Laboratory.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Total Metals ICP

Barry Ash Pond

WMWBARAP_1367

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BC09974	728050	WMWBARAP_1367
BC09975	728050	WMWBARAP_1367
BC09976	728050	WMWBARAP_1367
BC09977	728050	WMWBARAP_1367
BC09978	728050	WMWBARAP_1367
BC09979	728050	WMWBARAP_1367
BC09980	728050	WMWBARAP_1367
BC09981	728050	WMWBARAP_1367
BC09982	728050	WMWBARAP_1367
BC09983	728050	WMWBARAP_1367
BC09984	728051	WMWBARAP_1367
BC09985	728051	WMWBARAP_1367
BC09986	728051	WMWBARAP_1367
BC09987	728051	WMWBARAP_1367
BC09988	728051	WMWBARAP_1367
BC09989	728051	WMWBARAP_1367
BC09990	728051	WMWBARAP_1367
BC09991	728051	WMWBARAP_1367
BC09992	728051	WMWBARAP_1367
BC09993	728051	WMWBARAP_1367
BC09994	728052	WMWBARAP_1367
BC09995	728052	WMWBARAP_1367
BC09996	728052	WMWBARAP_1367
BC09997	728052	WMWBARAP_1367
BC09998	728052	WMWBARAP_1367
BC09999	728052	WMWBARAP_1367
BC10000	728052	WMWBARAP_1367
BC10001	728052	WMWBARAP_1367
BC10111	728052	WMWBARAP_1367
BC10112	728052	WMWBARAP_1367
BC10113	728053	WMWBARAP_1367

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

728053	WMWBARAP_1367
728053	WMWBARAP_1367
728053	WMWBARAP_1367
728053	WMWBARAP_1367
728053	WMWBARAP_1367
728053	WMWBARAP_1367
728053	WMWBARAP_1367
728053	WMWBARAP_1367
728053	WMWBARAP_1367
728054	WMWBARAP_1367
728054	WMWBARAP_1367
728054	WMWBARAP_1367
728054	WMWBARAP_1367
728054	WMWBARAP_1367
728054	WMWBARAP_1367
728054	WMWBARAP_1367
	728053 728053 728053 728053 728053 728053 728053 728053 728054 728054 728054 728054 728054 728054

- 4. All of the above samples were analyzed by EPA 200.7 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed, and all criteria were met.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were analyzed, and all criteria were met.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- All calibration curve requirements were within acceptance criteria.
- All sample internal standard criteria were met.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for accuracy were met except for the following:
 - o BC09983 Iron and Sodium MS/MSD spike levels were less than 30% of the sample concentrations.
 - o BC09993 Iron and Sodium MS/MSD spike levels were less than 30% of the sample concentrations.
 - BC10112 Iron MS/MSD spike levels were less than 30% of the sample concentrations.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

Sample ID	<u>Analyte</u>	Dilution Factor
BC09974	Iron, Sodium	50.75
BC09975	Iron	50.75
BC09976	Iron, Sodium	50.75
BC09977	Iron	50.75
BC09979	Calcium, Iron	50.75
BC09981	Calcium, Iron	50.75
BC09982	Iron, Sodium	50.75
BC09983	Iron, Sodium	50.75
BC09984	Iron	50.75
BC09985	Iron, Sodium	50.75
BC09986	Iron	50.75
BC09987	Iron, Sodium	50.75
BC09988	Iron	50.75
BC09989	Iron	50.75
BC09991	Iron, Sodium	50.75
BC09992	Iron	50.75
BC09993	Iron, Sodium	50.75
BC09994	Iron, Sodium	50.75
BC09995	Iron, Sodium	50.75
BC09996	Iron, Sodium	50.75
BC09997	Iron, Sodium	50.75
BC09998	Iron, Sodium	50.75
BC09999	Calcium, Iron	50.75

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

BC10000	Sodium	50.75
BC10111	Iron, Sodium	50.75
BC10112	Iron, Sodium	50.75
BC10113	Iron	50.75
BC10114	Iron	50.75
BC10115	Iron, Sodium	20.3
BC10116	Iron	50.75
BC10118	Calcium, Sodium	20.3
BC10119	Iron	50.75
BC10120	Sodium	20.3
BC10121	Iron	50.75
BC10126	Iron	50.75

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Dissolved Metals ICP

Barry Ash Pond

WMWBARAP_1367

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BC09974	727585	WMWBARAP_1367
BC09975	727585	WMWBARAP_1367
BC09976	727585	WMWBARAP_1367
BC09977	727585	WMWBARAP_1367
BC09979	727585	WMWBARAP_1367
BC09981	727585	WMWBARAP_1367
BC09982	727585	WMWBARAP_1367
BC09983	727585	WMWBARAP_1367
BC09984	727585	WMWBARAP_1367
BC09985	727585	WMWBARAP_1367
BC09986	727586	WMWBARAP_1367
BC09987	727586	WMWBARAP_1367
BC09988	727586	WMWBARAP_1367
BC09989	727586	WMWBARAP_1367
BC09991	727586	WMWBARAP_1367
BC09992	727586	WMWBARAP_1367
BC09993	727586	WMWBARAP_1367
BC09994	727586	WMWBARAP_1367
BC09995	727586	WMWBARAP_1367
BC09996	727586	WMWBARAP_1367
BC09997	727587	WMWBARAP_1367
BC09998	727587	WMWBARAP_1367
BC09999	727587	WMWBARAP_1367
BC10000	727587	WMWBARAP_1367
BC10001	727587	WMWBARAP_1367
BC10111	727587	WMWBARAP_1367
BC10112	727587	WMWBARAP_1367
BC10113	727587	WMWBARAP_1367
BC10114	727587	WMWBARAP_1367
BC10115	727587	WMWBARAP_1367
BC10116	727588	WMWBARAP_1367

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

BC10117	727588	WMWBARAP_1367
BC10118	727588	WMWBARAP_1367
BC10119	727588	WMWBARAP_1367
BC10120	727588	WMWBARAP_1367
BC10121	727588	WMWBARAP_1367
BC10122	727588	WMWBARAP_1367
BC10124	727588	WMWBARAP_1367
BC10125	727588	WMWBARAP_1367
BC10126	727588	WMWBARAP_1367
BC10127	727589	WMWBARAP_1367
BC10128	727589	WMWBARAP_1367

- 4. All of the above samples were analyzed and prepared by EPA 200.7 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed, and all criteria were met.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were analyzed, and all criteria were met.
- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch.
- All laboratory control sample criteria were met.
- The method blank associated with each batch passed all acceptance criteria for all requested analytes.
- All calibration curve requirements were within acceptance criteria.
- All sample internal standard criteria were met.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

Revision 5

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for accuracy were met except for the following:
 - o BC09985 Iron MS/MSD spike levels were less than 30% of the sample concentrations.
 - o BC09996 Iron MS/MSD spike levels were less than 30% of the sample concentrations.
 - o BC10115 Iron and Sodium MS/MSD spike levels were less than 30% of the sample concentrations.
 - o BC10126 Iron MS/MSD spike levels were less than 30% of the sample concentrations.
- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

Sample ID	<u>Analyte</u>	Dilution Factor
BC09974	Iron, Sodium	50.75
BC09975	Iron	50.75
BC09976	Iron, Sodium	50.75
BC09977	Iron	50.75
BC09979	Calcium, Iron	50.75
BC09981	Calcium, Iron	50.75
BC09982	Iron, Sodium	50.75
BC09983	Iron, Sodium	50.75
BC09984	Iron	50.75
BC09985	Iron, Sodium	50.75
BC09986	Iron	50.75
BC09987	Iron, Sodium	50.75
BC09988	Iron	50.75
BC09989	Iron	50.75
BC09991	Iron, Sodium	50.75
BC09992	Iron	50.75
BC09993	Iron, Sodium	50.75
BC09994	Iron, Sodium	50.75
BC09995	Iron, Sodium	50.75
BC09996	Iron, Sodium	50.75
BC09997	Iron, Sodium	50.75
BC09998	Iron, Sodium	50.75
BC09999	Calcium, Iron	50.75
BC10000	Sodium	50.75
BC10111	Iron, Sodium	50.75
BC10112	Iron, Sodium	50.75
BC10113	Iron	50.75
BC10114	Iron	50.75

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

BC10115	Sodium	10.15
BC10116	Iron	50.75
BC10118	Calcium, Sodium	20.3
BC10119	Iron	50.75
BC10120	Sodium	20.3
BC10121	Iron	50.75
BC10126	Iron	50.75

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Total Metals ICPMS

Barry Ash Pond

WMWBARAP_1367

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BC09974	728138	WMWBARAP_1367
BC09975	728138	WMWBARAP_1367
BC09976	728138	WMWBARAP_1367
BC09977	728138	WMWBARAP_1367
BC09978	728138	WMWBARAP_1367
BC09979	728138	WMWBARAP_1367
BC09980	728138	WMWBARAP_1367
BC09981	728138	WMWBARAP_1367
BC09982	728138	WMWBARAP_1367
BC09983	728138	WMWBARAP_1367
BC09984	728139	WMWBARAP_1367
BC09985	728139	WMWBARAP_1367
BC09986	728139	WMWBARAP_1367
BC09987	728139	WMWBARAP_1367
BC09988	728139	WMWBARAP_1367
BC09989	728139	WMWBARAP_1367
BC09990	728139	WMWBARAP_1367
BC09991	728139	WMWBARAP_1367
BC09992	728139	WMWBARAP_1367
BC09993	728139	WMWBARAP_1367
BC09994	728140	WMWBARAP_1367
BC09995	728140	WMWBARAP_1367
BC09996	728140	WMWBARAP_1367
BC09997	728140	WMWBARAP_1367
BC09998	728140	WMWBARAP_1367
BC09999	728140	WMWBARAP_1367
BC10000	728140	WMWBARAP_1367
BC10001	728140	WMWBARAP_1367
BC10111	728140	WMWBARAP_1367
BC10112	728140	WMWBARAP_1367
BC10113	728141	WMWBARAP_1367

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

BC10114	728141	WMWBARAP_1367
BC10115	728141	WMWBARAP_1367
BC10116	728141	WMWBARAP_1367
BC10117	728141	WMWBARAP_1367
BC10118	728141	WMWBARAP_1367
BC10119	728141	WMWBARAP_1367
BC10120	728141	WMWBARAP_1367
BC10121	728141	WMWBARAP_1367
BC10122	728141	WMWBARAP_1367
BC10123	728142	WMWBARAP_1367
BC10124	728142	WMWBARAP_1367
BC10125	728142	WMWBARAP_1367
BC10126	728142	WMWBARAP_1367
BC10127	728142	WMWBARAP_1367
BC10128	728142	WMWBARAP_1367
BC10129	728142	WMWBARAP_1367

- 4. All of the above samples were analyzed by EPA 200.8 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for accuracy were met, except for the following:
 - o BC10112 Aluminum MS and/or MSD recovery is outside specification limits.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

Sample ID	<u>Analyte</u>	Dilution Factor
BC09977	Manganese	5.075
BC09979	Manganese	5.075
BC09984	Manganese	5.075
BC09992	Manganese	5.075
BC09995	Manganese	5.075
BC09996	Manganese	5.075
BC09997	Manganese	5.075
BC10118	Manganese	5.075

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Dissolved Metals ICPMS

Barry Ash Pond

WMWBARAP_1367

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	<u>Project ID</u>
BC09974	728138	WMWBARAP_1367
BC09975	728138	WMWBARAP_1367
BC09976	728138	WMWBARAP_1367
BC09977	728138	WMWBARAP_1367
BC09979	728138	WMWBARAP_1367
BC09981	728138	WMWBARAP_1367
BC09982	728138	WMWBARAP_1367
BC09983	728138	WMWBARAP_1367
BC09984	728139	WMWBARAP_1367
BC09985	728139	WMWBARAP_1367
BC09986	728139	WMWBARAP_1367
BC09987	728139	WMWBARAP_1367
BC09988	728139	WMWBARAP_1367
BC09989	728139	WMWBARAP_1367
BC09991	728139	WMWBARAP_1367
BC09992	728139	WMWBARAP_1367
BC09993	728139	WMWBARAP_1367
BC09994	728140	WMWBARAP_1367
BC09995	728140	WMWBARAP_1367
BC09996	728140	WMWBARAP_1367
BC09997	728140	WMWBARAP_1367
BC09998	728140	WMWBARAP_1367
BC09999	728140	WMWBARAP_1367
BC10000	728140	WMWBARAP_1367
BC10001	728140	WMWBARAP_1367
BC10111	728140	WMWBARAP_1367
BC10112	728140	WMWBARAP_1367
BC10113	728141	WMWBARAP_1367
BC10114	728141	WMWBARAP_1367
BC10115	728141	WMWBARAP_1367
BC10116	728141	WMWBARAP_1367

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

BC10117	728141	WMWBARAP_1367
BC10118	728141	WMWBARAP_1367
BC10119	728141	WMWBARAP_1367
BC10120	728141	WMWBARAP_1367
BC10121	728141	WMWBARAP_1367
BC10122	728141	WMWBARAP_1367
BC10124	728142	WMWBARAP_1367
BC10125	728142	WMWBARAP_1367
BC10126	728142	WMWBARAP_1367
BC10127	728142	WMWBARAP_1367
BC10128	728142	WMWBARAP_1367

- 4. All of the above samples were analyzed and prepared by EPA 200.8 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch.
- All laboratory control sample criteria were met.
- The method blank associated with each preparation batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for accuracy were met, except for the following:
 - o BC09996 Manganese MS/MSD spike levels were less than 30% of the sample concentrations.
 - o BC10126 Manganese MS/MSD spike levels were less than 30% of the sample concentrations.
- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

Sample ID	<u>Analyte</u>	Dilution Factor
BC09977	Manganese	5.075
BC09979	Manganese	5.075
BC09984	Manganese	5.075
BC09992	Manganese	5.075
BC09996	Manganese	5.075
BC09997	Manganese	5.075
BC10118	Manganese	5.075

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Mercury

Barry Ash Pond

WMWBARAP_1367

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BC09974	727489	WMWBARAP_1367
BC09975	727489	WMWBARAP_1367
BC09976	727489	WMWBARAP_1367
BC09977	727489	WMWBARAP_1367
BC09978	727489	WMWBARAP_1367
BC09979	727489	WMWBARAP_1367
BC09980	727489	WMWBARAP_1367
BC09981	727489	WMWBARAP_1367
BC09982	727489	WMWBARAP_1367
BC09983	727489	WMWBARAP_1367
BC09984	727490	WMWBARAP_1367
BC09985	727490	WMWBARAP_1367
BC09986	727490	WMWBARAP_1367
BC09987	727490	WMWBARAP_1367
BC09988	727490	WMWBARAP_1367
BC09989	727490	WMWBARAP_1367
BC09990	727490	WMWBARAP_1367
BC09991	727490	WMWBARAP_1367
BC09992	727490	WMWBARAP_1367
BC09993	727490	WMWBARAP_1367
BC09994	728312	WMWBARAP_1367
BC09995	728312	WMWBARAP_1367
BC09996	728312	WMWBARAP_1367
BC09997	728312	WMWBARAP_1367
BC09998	728312	WMWBARAP_1367
BC09999	728312	WMWBARAP_1367
BC10000	728312	WMWBARAP_1367
BC10001	728312	WMWBARAP_1367
BC10111	728312	WMWBARAP_1367
BC10112	728312	WMWBARAP_1367
BC10113	728313	WMWBARAP_1367

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

BC10114	728313	WMWBARAP_1367
BC10115	728313	WMWBARAP_1367
BC10116	728313	WMWBARAP_1367
BC10117	728313	WMWBARAP_1367
BC10118	728313	WMWBARAP_1367
BC10119	728313	WMWBARAP_1367
BC10120	728313	WMWBARAP_1367
BC10121	728313	WMWBARAP_1367
BC10122	728313	WMWBARAP_1367
BC10123	728314	WMWBARAP_1367
BC10124	728314	WMWBARAP_1367
BC10125	728314	WMWBARAP_1367
BC10126	728314	WMWBARAP_1367
BC10127	728314	WMWBARAP_1367
BC10128	728314	WMWBARAP_1367
BC10129	728314	WMWBARAP_1367

- 4. All of the above samples were analyzed and prepared by EPA 245.1.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the method detection limit for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch was below the limit of quantitation for the requested analyte.
- All calibration met criteria for the requested analyte.
- All response signals were satisfactory.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

Revision 5

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

- A matrix spike and matrix spike duplicate were digested and analyzed with each analytical batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each analytical batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Total Dissolved Solids

Barry Ash Pond

WMWBARAP_1367

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BC09974	727313	WMWBARAP_1367
BC09975	727313	WMWBARAP_1367
BC09976	727313	WMWBARAP_1367
BC09977	727313	WMWBARAP_1367
BC09978	727313	WMWBARAP_1367
BC09979	727313	WMWBARAP_1367
BC09980	727313	WMWBARAP_1367
BC09981	727664	WMWBARAP_1367
BC09982	727664	WMWBARAP_1367
BC09983	727665	WMWBARAP_1367
BC09984	727313	WMWBARAP_1367
BC09985	727313	WMWBARAP_1367
BC09986	727313	WMWBARAP_1367
BC09987	727314	WMWBARAP_1367
BC09988	727314	WMWBARAP_1367
BC09989	727314	WMWBARAP_1367
BC09990	727314	WMWBARAP_1367
BC09991	727664	WMWBARAP_1367
BC09992	727664	WMWBARAP_1367
BC09993	727665	WMWBARAP_1367
BC09994	727314	WMWBARAP_1367
BC09995	727314	WMWBARAP_1367
BC09996	727314	WMWBARAP_1367
BC09997	727314	WMWBARAP_1367
BC09998	727314	WMWBARAP_1367
BC09999	727314	WMWBARAP_1367
BC10000	727664	WMWBARAP_1367
BC10001	727665	WMWBARAP_1367
BC10111	727706	WMWBARAP_1367
BC10112	727706	WMWBARAP_1367
BC10113	727706	WMWBARAP_1367

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

BC10114	727706	WMWBARAP_1367
BC10115	727706	WMWBARAP_1367
BC10116	727706	WMWBARAP_1367
BC10117	727706	WMWBARAP_1367
BC10118	727706	WMWBARAP_1367
BC10119	727707	WMWBARAP_1367
BC10120	727707	WMWBARAP_1367
BC10121	727707	WMWBARAP_1367
BC10122	727707	WMWBARAP_1367
BC10123	727707	WMWBARAP_1367
BC10124	727707	WMWBARAP_1367
BC10125	727707	WMWBARAP_1367
BC10126	727707	WMWBARAP_1367
BC10127	727707	WMWBARAP_1367
BC10128	727707	WMWBARAP_1367
BC10129	727760	WMWBARAP_1367

- 4. All of the above samples were analyzed and prepared by Standard Method 2540C.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- A Method Blank was analyzed with each batch. All criteria were met.
- All final weights of samples, standards, and blanks agreed within 0.5mg of the previous weight.
- A sample duplicate was analyzed with each batch. RPD/2 was less than 5%.
- A laboratory control sample was analyzed with each batch. All criteria were met.
- Samples were between 2.5mg and 200mg residue.
- All samples with residue <2.5mg had the maximum volume of 150mL filtered. Affected samples are as follows:
 - o BC09978
 - o BC09980
 - o BC09990
 - o BC10123
 - o BC10129

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Alkalinity

Barry Ash Pond

WMWBARAP_1367

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BC09974	727744,727745	WMWBARAP_1367
BC09975	728143,728144	WMWBARAP_1367
BC09976	728143,728144	WMWBARAP_1367
BC09977	728143,728144	WMWBARAP_1367
BC09979	728367,728368	WMWBARAP_1367
BC09981	728367,728368	WMWBARAP_1367
BC09982	728367,728368	WMWBARAP_1367
BC09983	728367,728368	WMWBARAP_1367
BC09984	728143,728144	WMWBARAP_1367
BC09985	728143,728144	WMWBARAP_1367
BC09986	728143,728144	WMWBARAP_1367
BC09987	728143,728144	WMWBARAP_1367
BC09988	728367,728368	WMWBARAP_1367
BC09989	728367,728368	WMWBARAP_1367
BC09991	728367,728368	WMWBARAP_1367
BC09992	728367,728368	WMWBARAP_1367
BC09993	728367,728368	WMWBARAP_1367
BC09994	728180,728181	WMWBARAP_1367
BC09995	728180,728181	WMWBARAP_1367
BC09996	728180,728181	WMWBARAP_1367
BC09997	728180,728181	WMWBARAP_1367
BC09998	728180,728181	WMWBARAP_1367
BC09999	728367,728368	WMWBARAP_1367
BC10000	728367,728368	WMWBARAP_1367
BC10001	728367,728368	WMWBARAP_1367
BC10111	728541,728542	WMWBARAP_1367
BC10112	728541,728542	WMWBARAP_1367
BC10113	728549,728550	WMWBARAP_1367
BC10114	728549,728550	WMWBARAP_1367
BC10115	728562,728563	WMWBARAP_1367
BC10116	728562,728563	WMWBARAP_1367

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

BC10117	728562,728563	WMWBARAP_1367
BC10118	728541,728542	WMWBARAP_1367
BC10119	728541,728542	WMWBARAP_1367
BC10120	728541,728542	WMWBARAP_1367
BC10121	728562,728563	WMWBARAP_1367
BC10122	728562,728563	WMWBARAP_1367
BC10124	728541,728542	WMWBARAP_1367
BC10125	728549,728550	WMWBARAP_1367
BC10126	728562,728563	WMWBARAP_1367
BC10127	728562,728563	WMWBARAP_1367
BC10128	728562,728563	WMWBARAP_1367

- 4. All of the above samples were analyzed and prepared by Standard Method 2320B.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- An initial pH check was analyzed with each batch. The acceptance criteria were met.
- A final pH check was analyzed with each batch. The acceptance criteria were met.
- An alkalinity laboratory control sample was analyzed with each batch. Range criteria of within 10% of true value was met.
- An alkalinity sample duplicate was analyzed with each batch. Precision criteria less than 10 RPD was met.
- 7. The following samples had pH>10 and/or TDS>500mg/L. Therefore, the calculations for carbonate and bicarbonate are estimates:
 - BC09993
 - BC10118

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Anions

Barry Ash Pond

WMWBARAP_1367

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BC09974	728172,728640,728614	WMWBARAP_1367
BC09975	728172,728640,728614	WMWBARAP_1367
BC09976	728172,728640,728614	WMWBARAP_1367
BC09977	728172,728640,728614	WMWBARAP_1367
BC09978	728172,728640,728614	WMWBARAP_1367
BC09979	728172,728640,728614	WMWBARAP_1367
BC09980	728172,728640,728614	WMWBARAP_1367
BC09981	728172,728640,728614	WMWBARAP_1367
BC09982	728172,728640,728614	WMWBARAP_1367
BC09983	728172,728640,728614	WMWBARAP_1367
BC09984	728173,728641,728615	WMWBARAP_1367
BC09985	728173,728641,728615	WMWBARAP_1367
BC09986	728173,728641,728615	WMWBARAP_1367
BC09987	728173,728641,728615	WMWBARAP_1367
BC09988	728173,728641,728615	WMWBARAP_1367
BC09989	728173,728641,728615	WMWBARAP_1367
BC09990	728173,728641,728615	WMWBARAP_1367
BC09991	728173,728641,728615	WMWBARAP_1367
BC09992	728173,728641,728615	WMWBARAP_1367
BC09993	728173,728641,728615	WMWBARAP_1367
BC09994	728174,728642,728616	WMWBARAP_1367
BC09995	728174,728642,728616	WMWBARAP_1367
BC09996	728174,728642,728616	WMWBARAP_1367
BC09997	728174,728642,728616	WMWBARAP_1367
BC09998	728174,728642,728616	WMWBARAP_1367
BC09999	728174,728642,728616	WMWBARAP_1367
BC10000	728174,728642,728616	WMWBARAP_1367
BC10001	728174,728642,728616	WMWBARAP_1367
BC10111	728174,728642,728616	WMWBARAP_1367
BC10112	728174,728642,728616	WMWBARAP_1367
BC10113	728175,728643,728617	WMWBARAP_1367

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

BC10114	728175,728643,728617	WMWBARAP_1367
BC10115	728175,728643,728617	WMWBARAP_1367
BC10116	728175,728643,728617	WMWBARAP_1367
BC10117	728175,728643,728617	WMWBARAP_1367
BC10118	728175,728643,728617	WMWBARAP_1367
BC10119	728175,728643,728617	WMWBARAP_1367
BC10120	728175,728643,728617	WMWBARAP_1367
BC10121	728175,728643,728617	WMWBARAP_1367
BC10122	728175,728643,728617	WMWBARAP_1367
BC10123	728177,728644,728618	WMWBARAP_1367
BC10124	728177,728644,728618	WMWBARAP_1367
BC10125	728177,728644,728618	WMWBARAP_1367
BC10126	728177,728644,728618	WMWBARAP_1367
BC10127	728177,728644,728618	WMWBARAP_1367
BC10128	728177,728644,728618	WMWBARAP_1367
BC10129	728177,728644,728618	WMWBARAP_1367

- 4. All of the above samples were analyzed and prepared by SM4500 CI E, SM4500 F G, & SM4500 SO4 E.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- All calibration met criteria for the requested analyte.
- Prior to sample analysis, an initial calibration verification (ICV), and all criteria were met.
- Prior to sample analysis, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

Revision 5

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

- A matrix spike was analyzed with each batch. Acceptance criteria for accuracy were met, except for the following:
 - o BC09983 Sulfate MS and/or MSD recovery is outside of the specification limits.
- A sample duplicate was analyzed with each batch. Acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

Sample ID	<u>Analyte</u>	Dilution Factor
BC09974	Chloride, Sulfate	3,4
BC09975	Chloride	2
BC09976	Chloride, Sulfate	4,4
BC09977	Chloride	2
BC09979	Chloride	2
BC09981	Chloride	2
BC09982	Chloride	4
BC09983	Chloride, Sulfate	4,2
BC09985	Chloride	4
BC09987	Chloride	20
BC09991	Chloride	10
BC09993	Chloride	20
BC09994	Chloride	3
BC09995	Chloride	3
BC09996	Chloride	3
BC09997	Chloride	3
BC09998	Chloride	4
BC09999	Chloride	3
BC10000	Chloride	10
BC10111	Chloride, Sulfate	10,4
BC10112	Chloride, Sulfate	10,8
BC10113	Chloride	10
BC10114	Chloride	10
BC10115	Chloride	10
BC10118	Chloride, Sulfate	40,2
BC10120	Chloride	20
BC10127	Chloride	3

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Nitrate-Nitrite

Barry Ash Pond

WMWBARAP_1367

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BC09974	727376	WMWBARAP_1367
BC09975	727376	WMWBARAP_1367
BC09976	727376	WMWBARAP_1367
BC09977	727376	WMWBARAP_1367
BC09978	727376	WMWBARAP_1367
BC09979	727376	WMWBARAP_1367
BC09980	727376	WMWBARAP_1367
BC09981	727376	WMWBARAP_1367
BC09982	727376	WMWBARAP_1367
BC09983	727376	WMWBARAP_1367
BC09984	727377	WMWBARAP_1367
BC09985	727377	WMWBARAP_1367
BC09986	727377	WMWBARAP_1367
BC09987	727377	WMWBARAP_1367
BC09988	727377	WMWBARAP_1367
BC09989	727377	WMWBARAP_1367
BC09990	727377	WMWBARAP_1367
BC09991	727377	WMWBARAP_1367
BC09992	727377	WMWBARAP_1367
BC09993	727377	WMWBARAP_1367
BC09994	727378	WMWBARAP_1367
BC09995	727378	WMWBARAP_1367
BC09996	727378	WMWBARAP_1367
BC09997	727378	WMWBARAP_1367
BC09998	727378	WMWBARAP_1367
BC09999	727378	WMWBARAP_1367
BC10000	727378	WMWBARAP_1367
BC10001	727378	WMWBARAP_1367
BC10111	727708	WMWBARAP_1367
BC10112	727708	WMWBARAP_1367
BC10113	727708	WMWBARAP_1367

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

BC10114	727708	WMWBARAP_1367
BC10115	727708	WMWBARAP_1367
BC10116	727708	WMWBARAP_1367
BC10117	727708	WMWBARAP_1367
BC10118	727708	WMWBARAP_1367
BC10119	727708	WMWBARAP_1367
BC10120	727708	WMWBARAP_1367
BC10121	727709	WMWBARAP_1367
BC10122	727709	WMWBARAP_1367
BC10123	727709	WMWBARAP_1367
BC10124	727709	WMWBARAP_1367
BC10125	727709	WMWBARAP_1367
BC10126	727709	WMWBARAP_1367
BC10127	727709	WMWBARAP_1367
BC10128	727709	WMWBARAP_1367
BC10129	727709	WMWBARAP_1367

- 4. All of the above samples were prepared and analyzed for NO_x by EPA 353.2.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- Water baseline report was run and met criteria.
- All calibration met criteria for the requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and met all criteria.
- All continued calibration verification (CCV) were within the acceptance criteria.
- Prior to sample analysis, an initial calibration blank (ICB) was analyzed and were below limit of detection.
- All continued calibration blanks (CCB) were below the limit of detection.

EPA 353.2 Specific QC:

- Prior to sample analysis, Cadmium coil reduction efficiency check met criteria.
- Matrix Specific QC:
 - o A sample duplicate was run and criteria for precision was met.
 - o A matrix spike was run and criteria for accuracy was met.
- 7. All samples were analyzed without a dilution factor.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Total Organic Carbon

Barry Ash Pond

WMWBARAP_1367

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BC09974	727710	WMWBARAP_1367
BC09975	727710	WMWBARAP_1367
BC09976	727710	WMWBARAP_1367
BC09977	727710	WMWBARAP_1367
BC09978	727710	WMWBARAP_1367
BC09979	727710	WMWBARAP_1367
BC09980	727710	WMWBARAP_1367
BC09981	727710	WMWBARAP_1367
BC09982	727710	WMWBARAP_1367
BC09983	727710	WMWBARAP_1367
BC09984	727711	WMWBARAP_1367
BC09985	727711	WMWBARAP_1367
BC09986	727711	WMWBARAP_1367
BC09987	727711	WMWBARAP_1367
BC09988	727711	WMWBARAP_1367
BC09989	727711	WMWBARAP_1367
BC09990	727711	WMWBARAP_1367
BC09991	727711	WMWBARAP_1367
BC09992	727711	WMWBARAP_1367
BC09993	727711	WMWBARAP_1367
BC09994	727712	WMWBARAP_1367
BC09995	727712	WMWBARAP_1367
BC09996	727712	WMWBARAP_1367
BC09997	727712	WMWBARAP_1367
BC09998	727712	WMWBARAP_1367
BC09999	727712	WMWBARAP_1367
BC10000	727712	WMWBARAP_1367
BC10001	727712	WMWBARAP_1367
BC10111	728184	WMWBARAP_1367
BC10112	728184	WMWBARAP_1367
BC10113	728184	WMWBARAP_1367

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

BC10114	728184	WMWBARAP_1367
BC10115	728184	WMWBARAP_1367
BC10116	728184	WMWBARAP_1367
BC10117	728184	WMWBARAP_1367
BC10118	728184	WMWBARAP_1367
BC10119	728184	WMWBARAP_1367
BC10120	728184	WMWBARAP_1367
BC10121	728185	WMWBARAP_1367
BC10122	728185	WMWBARAP_1367
BC10123	728185	WMWBARAP_1367
BC10124	728185	WMWBARAP_1367
BC10125	728185	WMWBARAP_1367
BC10126	728185	WMWBARAP_1367
BC10127	728185	WMWBARAP_1367
BC10128	728185	WMWBARAP_1367
BC10129	728185	WMWBARAP_1367

- 4. All of the above samples were prepared and analyzed by Standard Method 5310B.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- All calibration criteria were met.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and met all criteria.
- Prior to sample analysis, an initial calibration blank (ICB) was analyzed and was <1/2RL.
- All continued calibration verifications (CCVs) were within the acceptance range.
- All continued calibration blanks (CCBs) were <1/2RL.

Matrix Specific Quality Control Procedures:

- A matrix spike and matrix spike duplicate were analyzed with each batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were analyzed with each batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution factor.
- 8. The raw data results are shown with dilution factors included.

Certificate Of Analysis

Description: Barry Ash Pond - MW-20HLocation Code:WMWBARAPCollected:5/23/22 15:48

Customer ID:

Laboratory ID Number: BC09974 Submittal Date: 5/25/22 14:49

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analy	Analyst: RDA			Preparation Method: EPA 1638			
* Boron, Total	5/31/22 10:50	6/2/22 09:41	1.015	0.0653	mg/L	0.030000	0.1015	J
* Calcium, Total	5/31/22 10:50	6/2/22 09:41	1.015	28.6	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 10:18	50.75	55.8	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 09:41	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 09:41	1.015	17.9	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 09:41	1	16.6	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 09:41	1.015	7.78	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 10:18	50.75	96.4	mg/L	1.5225	20.3	
Analytical Method: EPA 200.7	Anal	/st: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 10:36	1.015	0.0647	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	5/27/22 09:45	6/1/22 10:36	1.015	28.4	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 11:14	50.75	53.9	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 10:36	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 10:36	1.015	17.5	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 10:36	1	16.0	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 10:36	1.015	7.50	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 11:14	50.75	99.5	mg/L	1.5225	20.3	
Analytical Method: EPA 200.8	Anal	/st: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 16:19	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 16:19	1.015	0.0264	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 16:19	1.015	0.0136	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 16:19	1.015	0.0963	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 16:19	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 16:19	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 16:19	1.015	0.00233	mg/L	0.000203	0.001015	
* Cobalt, Total	6/1/22 11:30	6/1/22 16:19	1.015	0.00423	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 16:19	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 16:19	1.015	0.507	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 16:19	1.015	0.000537	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 16:19		3.44	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-20H

Location Code: Collected:

WMWBARAP 5/23/22 15:48

Customer ID:

Submittal Date:

5/25/22 14:49

Laboratory ID Number: BC09974				Submit	tal Date:	5/25/22 14:4	9	
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 16:19	9 1.015	0.000538	mg/L	0.000508	0.001015	J
* Thallium, Total	6/1/22 11:30	6/1/22 16:19	9 1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ						
* Antimony, Dissolved	5/31/22 14:15	5/31/22 15:4	47 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 15:4	47 1.015	0.00856	mg/L	0.006090	0.01015	J
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 15:4	47 1.015	0.0134	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 15:4	47 1.015	0.100	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 15:4	47 1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 15:4	47 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 15:4	47 1.015	0.00235	mg/L	0.000203	0.001015	
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 15:4	47 1.015	0.00426	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 15:4	47 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 15:4	47 1.015	0.502	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 15:4	47 1.015	0.000399	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 15:4	47 1.015	3.31	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 15:4	47 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 15:4	47 1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	lyst: CRB						
* Mercury, Total by CVAA	6/6/22 11:40	6/6/22 14:19	9 1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Ana	lyst: CES						
* Nitrogen, Nitrate/Nitrite	5/26/22 13:11	5/26/22 13:	11 1	0.231	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Ana	lyst: ALH						
Alkalinity, Total as CaCO3	5/31/22 13:12	5/31/22 15:0	37 1	377	mg/L		0.1	
Analytical Method: SM 2540C	Ana	lyst: CNJ						
* Solids, Dissolved	5/25/22 16:30	5/31/22 13:	58 1	462	mg/L		25	
Analytical Method: SM 4500CO2 D	Ana	lyst: ALH						
Bicarbonate Alkalinity, (calc.)		, 2 5/31/22 15:0	37 1	377	mg/L			
Carbonate Alkalinity, (calc.)		5/31/22 15:3		Not Detected	•		0.5	
Analytical Method: SM 5310 B		lyst: ELH	·		J			
* Total Organic Carbon		5/31/22 16:0	03 1	28.3	mg/L	1.00	2	
-	5,5 ., 10.00	,,			J			

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-20H

Location Code:

WMWBARAP

Collected:

Customer ID:

5/23/22 15:48

Laboratory ID Number: BC09974

Submittal Date: 5/25/22 14:49

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Ana	lyst: CES							
* Chloride	5/31/22 13:40	5/31/22 13:4	40	3	44.1	mg/L	1.50	3	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	6/8/22 11:18	6/8/22 11:18	8	1	0.124	mg/L	0.06	0.125	J
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	6/7/22 13:19	6/7/22 13:19	9 .	4	95.1	mg/L	2.4	8	
Analytical Method: Field Measurements	Ana	lyst: DKG							
Conductivity	5/23/22 15:45	5/23/22 15:4	45		784.43	uS/cm			FA
рН	5/23/22 15:45	5/23/22 15:4	45		6.15	SU			FA
Temperature	5/23/22 15:45	5/23/22 15:4	45		19.98	С			FA
Turbidity	5/23/22 15:45	5/23/22 15:4	45		1.75	NTU			FA
Sulfide	5/23/22 15:45	5/23/22 15:4	45		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/23/22 15:48

Customer ID:

Delivery Date: 5/25/22 14:49

Description: Barry Ash Pond - MW-20H

Laboratory ID Number: BC09974

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09985	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.105	0.103	0.102	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09983	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.256	0.260	0.108	0.0850 to 0.115	125	70.0 to 130	1.55	20.0
BC09985	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.101	0.0984	0.0949	0.0850 to 0.115	101	70.0 to 130	2.61	20.0
BC09983	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.0985	0.0989	0.0925	0.0850 to 0.115	98.5	70.0 to 130	0.405	20.0
BC09985	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.118	0.117	0.104	0.0850 to 0.115	103	70.0 to 130	0.851	20.0
BC09983	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.116	0.116	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC09985	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.167	0.168	0.102	0.0850 to 0.115	97.3	70.0 to 130	0.597	20.0
BC09983	Barium, Total	mg/L	0.000	0.00100	0.100	0.173	0.173	0.0987	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC09985	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.108	0.103	0.100	0.0850 to 0.115	108	70.0 to 130	4.74	20.0
BC09983	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.109	0.110	0.105	0.0850 to 0.115	109	70.0 to 130	0.913	20.0
BC09985	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.09	1.08	1.01	0.850 to 1.15	103	70.0 to 130	0.922	20.0
BC09983	Boron, Total	mg/L	0.000087	0.0650	1.00	1.05	1.08	1.02	0.850 to 1.15	100	70.0 to 130	2.82	20.0
BC09985	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.104	0.103	0.101	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC09983	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0994	0.0987	0.100	0.0850 to 0.115	99.4	70.0 to 130	0.707	20.0
BC09985	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	31.2	31.0	4.87	4.25 to 5.75	92.0	70.0 to 130	0.643	20.0
BC09983	Calcium, Total	mg/L	0.00617	0.152	5.00	23.9	24.2	4.91	4.25 to 5.75	98.0	70.0 to 130	1.25	20.0
BC09983	Chloride	mg/L	-0.129	1.00	40.0	74.3	75.5	9.80	9.00 to 11.0	90.2	80.0 to 120	1.60	20.0
BC09985	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.104	0.100	0.100	0.0850 to 0.115	101	70.0 to 130	3.92	20.0
BC09983	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.108	0.109	0.101	0.0850 to 0.115	101	70.0 to 130	0.922	20.0
BC09985	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.107	0.104	0.104	0.0850 to 0.115	106	70.0 to 130	2.84	20.0
BC09983	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.103	0.104	0.101	0.0850 to 0.115	101	70.0 to 130	0.966	20.0
BC09983	Fluoride	mg/L	-0.043	0.125	2.50	2.76	2.80	2.53	2.25 to 2.75	105	80.0 to 120	1.44	20.0
BC09985	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	72.2	72.3	0.200	0.170 to 0.230	250	70.0 to 130	0.138	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/23/22 15:48

Customer ID:

Delivery Date: 5/25/22 14:49

Description: Barry Ash Pond - MW-20H

Laboratory ID Number: BC09974

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Iron, Total	mg/L	0.000064	0.0176	0.2	27.0	28.1	0.203	0.170 to 0.230	450	70.0 to 130	3.99	20.0
BC09985	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.105	0.103	0.104	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09983	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.103	0.102	0.102	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC09985	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.234	0.233	0.205	0.170 to 0.230	105	70.0 to 130	0.428	20.0
BC09983	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.198	0.204	0.206	0.170 to 0.230	99.0	70.0 to 130	2.99	20.0
BC09985	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	18.8	18.6	5.09	4.25 to 5.75	102	70.0 to 130	1.07	20.0
BC09983	Magnesium, Total	mg/L	0.00180	0.0462	5.00	11.7	11.9	5.21	4.25 to 5.75	98.2	70.0 to 130	1.69	20.0
BC09985	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	0.716	0.708	0.103	0.0850 to 0.115	95.0	70.0 to 130	1.12	20.0
BC09983	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.541	0.545	0.103	0.0850 to 0.115	104	70.0 to 130	0.737	20.0
BC09983	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00335	0.00348	0.00362	0.00340 to 0.00460	83.8	70.0 to 130	3.81	20.0
BC09985	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.100	0.101	0.0992	0.0850 to 0.115	98.5	70.0 to 130	0.995	20.0
BC09983	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.101	0.102	0.0965	0.0850 to 0.115	97.3	70.0 to 130	0.985	20.0
BC09985	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	18.7	18.6	10.3	8.50 to 11.5	98.1	70.0 to 130	0.536	20.0
BC09983	Potassium, Total	mg/L	-0.0109	0.367	10.0	12.6	12.6	10.5	8.50 to 11.5	101	70.0 to 130	0.00	20.0
BC09985	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.105	0.104	0.106	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09983	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.107	0.106	0.105	0.0850 to 0.115	107	70.0 to 130	0.939	20.0
BC09985	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	8.38	8.34	0.999	0.850 to 1.15	98.0	70.0 to 130	0.478	20.0
BC09983	Silicon, Total	mg/L	0.00083	0.0440	1.00	8.26	8.42	1.04	0.850 to 1.15	114	70.0 to 130	1.92	20.0
BC09985	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	63.1	63.0	5.14	4.25 to 5.75	106	70.0 to 130	0.159	20.0
BC09983	Sodium, Total	mg/L	0.00067	0.0660	5.00	57.9	59.0	5.25	4.25 to 5.75	126	70.0 to 130	1.88	20.0
BC09983	Sulfate	mg/L	-0.231	2.0	20.0	66.4	66.7	18.9	18.0 to 22.0	77.0	80.0 to 120	0.451	20.0
BC09985	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.102	0.102	0.103	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC09985	i nailium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.102	0.102	0.103	0.0850 to 0.115	102	70.0 to 130	0.00	

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/23/22 15:48

Delivery Date: 5/25/22 14:49

Customer ID:

Description: Barry Ash Pond - MW-20H

Laboratory ID Number: BC09974

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.106	0.103	0.107	0.0850 to 0.115	106	70.0 to 130	2.87	20.0
BC09983	Total Organic Carbon	mg/L	0.303	1.00	10.0	33.9	34.2	10.2		105	80.0 to 120	0.881	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/23/22 15:48

Customer ID:

Delivery Date:

5/25/22 14:49

Description: Barry Ash Pond - MW-20H

Laboratory ID Number: BC09974

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09974	Alkalinity, Total as CaCO3	mg/L					373	50.4	45.0 to 55.0			1.07	10.0
BC09983	Nitrogen, Nitrate/Nitrite	mg/L as N	0.08	0.200	2.00	2.19	0.161	2.01	1.80 to 2.20	110	90.0 to 110	0.00	15.0
BC09986	Solids, Dissolved	mg/L	1.00	25.0			130	49.0	40.0 to 60.0			2.28	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-8VLocation Code:WMWBARAPCollected:5/23/22 17:26

Customer ID:

Laboratory ID Number: BC09975 Submittal Date: 5/25/22 14:50

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analy	/st: RDA		Preparati	on Method:	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 09:44	1.015	0.259	mg/L	0.030000	0.1015	
* Calcium, Total	5/31/22 10:50	6/2/22 09:44	1.015	24.4	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 10:22	50.75	73.1	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 09:44	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 09:44	1.015	14.0	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 09:44	1	15.3	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 09:44	1.015	7.13	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 09:44	1.015	36.3	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analy	/st: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 10:38	1.015	0.254	mg/L	0.030000	0.1015	
* Calcium, Dissolved	5/27/22 09:45	6/1/22 10:38	1.015	24.3	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 11:17	50.75	68.0	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 10:38	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 10:38	1.015	13.8	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 10:38	1	14.8	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 10:38	1.015	6.92	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 10:38	1.015	36.3	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Analy	/st: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 16:23	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 16:23	1.015	0.00840	mg/L	0.006090	0.01015	J
* Arsenic, Total	6/1/22 11:30	6/1/22 16:23	1.015	0.00386	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 16:23	1.015	0.277	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 16:23	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 16:23	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 16:23	1.015	0.00124	mg/L	0.000203	0.001015	
* Cobalt, Total	6/1/22 11:30	6/1/22 16:23	1.015	0.000921	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 16:23	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 16:23	1.015	0.762	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 16:23	1.015	0.000286	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 16:23	1.015	2.59	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-8VLocation Code:WMWBARAPCollected:5/23/22 17:26

Customer ID:

Submittal Date: 5/25/22 14:50

Laboratory ID Number: BC09975

5/31/22 14:15 5/31/22 14:15 5/31/22 14:15 5/31/22 14:15 5/31/22 14:15	5/31/22 15:5 5/31/22 15:5	3 51 51 51	1.015 1.015 1.015 1.015	Not Detected Not Detected Not Detected Not Detected	mg/L	0.000508 0.000068 0.000508 0.006090	0.001015 0.000203 0.001015	U
Ana. 5/31/22 14:15 5/31/22 14:15 5/31/22 14:15 5/31/22 14:15 5/31/22 14:15	Jyst: DLJ 5/31/22 15:5 5/31/22 15:5 5/31/22 15:5 5/31/22 15:5	51 51 51	1.015 1.015	Not Detected	mg/L	0.000508	0.001015	
5/31/22 14:15 5/31/22 14:15 5/31/22 14:15 5/31/22 14:15 5/31/22 14:15	5/31/22 15:5 5/31/22 15:5 5/31/22 15:5 5/31/22 15:5	51 51	1.015		Ū			U
5/31/22 14:15 5/31/22 14:15 5/31/22 14:15 5/31/22 14:15	5/31/22 15:5 5/31/22 15:5 5/31/22 15:5	51 51	1.015		Ū			U
5/31/22 14:15 5/31/22 14:15 5/31/22 14:15	5/31/22 15:5 5/31/22 15:5	51		Not Detected	mg/L	0.006000		
5/31/22 14:15 5/31/22 14:15	5/31/22 15:5		4 0 4 5		5	0.000090	0.01015	U
5/31/22 14:15		- 4	1.015	0.00414	mg/L	0.000081	0.000203	
		ΓC	1.015	0.282	mg/L	0.000508	0.001015	
	5/31/22 15:5	51	1.015	Not Detected	mg/L	0.000406	0.001015	U
5/31/22 14:15	5/31/22 15:5	51	1.015	Not Detected	mg/L	0.000068	0.000203	U
5/31/22 14:15	5/31/22 15:5	51	1.015	0.00119	mg/L	0.000203	0.001015	
5/31/22 14:15	5/31/22 15:5	51	1.015	0.000941	mg/L	0.000068	0.000203	
5/31/22 14:15	5/31/22 15:5	51	1.015	Not Detected	mg/L	0.000068	0.000203	U
5/31/22 14:15	5/31/22 15:5	51	1.015	0.761	mg/L	0.000152	0.000203	
5/31/22 14:15	5/31/22 15:5	51	1.015	0.000301	mg/L	0.000102	0.000203	
5/31/22 14:15	5/31/22 15:5	51	1.015	2.48	mg/L	0.169505	0.5075	
5/31/22 14:15	5/31/22 15:5	51	1.015	Not Detected	mg/L	0.000508	0.001015	U
5/31/22 14:15	5/31/22 15:5	51	1.015	Not Detected	mg/L	0.000068	0.000203	U
Ana	lyst: CRB							
6/6/22 11:40	6/6/22 14:22	2	1	Not Detected	mg/L	0.0003	0.0005	U
Ana	lyst: CES							
5/26/22 13:12	5/26/22 13:1	2	1	0.298	mg/L as N	0.20	0.3	J
Ana	lyst: ALH							
6/2/22 11:04	6/2/22 15:20)	1	267	mg/L		0.1	
Ana	lyst: CNJ							
5/25/22 16:30	5/31/22 13:5	58	1	331	mg/L		25	
Ana	lyst: ALH							
6/2/22 11:04	6/2/22 15:20)	1	267	mg/L			
6/2/22 11:04	6/2/22 15:20)	1	Not Detected	mg/L		0.5	
Ana	lyst: ELH							
	•	2	1	16.2	ma/L	1.00	2	
	5/31/22 14:15 5/31/22 14:15 5/31/22 14:15 5/31/22 14:15 5/31/22 14:15 5/31/22 14:15 5/31/22 14:15 5/31/22 14:15 5/31/22 14:15 Ana. 6/6/22 11:40 Ana. 5/26/22 13:12 Ana. 6/2/22 11:04 Ana. 6/2/22 11:04 Ana. 6/2/22 11:04 Ana.	5/31/22 14:15 5/31/22 15:5 5/31/22 14:15 5/31/22 15:5 5/31/22 14:15 5/31/22 15:5 5/31/22 14:15 5/31/22 15:5 5/31/22 14:15 5/31/22 15:5 5/31/22 14:15 5/31/22 15:5 5/31/22 14:15 5/31/22 15:5 5/31/22 14:15 5/31/22 15:5 5/31/22 14:15 5/31/22 15:5 Analyst: CRB 6/6/22 11:40 6/6/22 14:22 Analyst: CES 5/26/22 13:12 5/26/22 13:1 Analyst: ALH 6/2/22 11:04 6/2/22 15:20 Analyst: ALH 6/2/22 11:04 6/2/22 15:20 6/2/22 11:04 6/2/22 15:20 Analyst: ELH	5/31/22 14:15 5/31/22 15:51 5/31/22 14:15 5/31/22 15:51 5/31/22 14:15 5/31/22 15:51 5/31/22 14:15 5/31/22 15:51 5/31/22 14:15 5/31/22 15:51 5/31/22 14:15 5/31/22 15:51 5/31/22 14:15 5/31/22 15:51 5/31/22 14:15 5/31/22 15:51 5/31/22 14:15 5/31/22 15:51 6/6/22 14:15 5/31/22 15:51 Analyst: CRB 6/6/22 11:40 6/6/22 14:22 Analyst: CES 5/26/22 13:12 5/26/22 13:12 Analyst: ALH 6/2/22 11:04 6/2/22 15:20 Analyst: ALH 6/2/22 11:04 6/2/22 15:20 6/2/22 11:04 6/2/22 15:20 6/2/22 11:04 6/2/22 15:20	5/31/22 14:15 5/31/22 15:51 1.015 5/31/22 14:15 5/31/22 15:51 1.015 5/31/22 14:15 5/31/22 15:51 1.015 5/31/22 14:15 5/31/22 15:51 1.015 5/31/22 14:15 5/31/22 15:51 1.015 5/31/22 14:15 5/31/22 15:51 1.015 5/31/22 14:15 5/31/22 15:51 1.015 5/31/22 14:15 5/31/22 15:51 1.015 5/31/22 14:15 5/31/22 15:51 1.015 5/31/22 14:15 5/31/22 15:51 1.015 Analyst: CRB 6/6/22 11:40 6/6/22 14:22 1 Analyst: CES 5/26/22 13:12 5/26/22 13:12 1 Analyst: ALH 6/2/22 11:04 6/2/22 15:20 1 Analyst: ALH 6/2/22 11:04 6/2/22 15:20 1 6/2/22 11:04 6/2/22 15:20 1 Analyst: ALH 6/2/22 11:04 6/2/22 15:20 1 6/2/22 11:04 6/2/22 15:20 1 Analyst: ELH	5/31/22 14:15 5/31/22 15:51 1.015 0.000941 5/31/22 14:15 5/31/22 15:51 1.015 0.000941 5/31/22 14:15 5/31/22 15:51 1.015 Not Detected 5/31/22 14:15 5/31/22 15:51 1.015 0.761 5/31/22 14:15 5/31/22 15:51 1.015 0.000301 5/31/22 14:15 5/31/22 15:51 1.015 0.000301 5/31/22 14:15 5/31/22 15:51 1.015 Not Detected 5/31/22 14:15 5/31/22 15:51 1.015 Not Detected 5/31/22 14:15 5/31/22 15:51 1.015 Not Detected Analyst: CRB 6/6/22 11:40 6/6/22 14:22 1 Not Detected Analyst: ALH 6/2/22 11:04 6/2/22 15:20 1 267 Analyst: CNJ 5/25/22 16:30 5/31/22 15:20 1 267 6/2/22 11:04 6/2/22 15:20 1 267 6/2/22 11:04 6/2/22 15:20 1 267 6/2/22 11:04 6/2/22 15:20 1 267 6/2/22 11:04 6/2/22 15:20 1 267 6/2/22 11:04 6/2/22 15:20 1 Not Detected Analyst: ELH	5/31/22 14:15	5/31/22 14:15	5/31/22 14:15 5/31/22 15:51 1.015 0.00119 mg/L 0.000203 0.001015 5/31/22 14:15 5/31/22 15:51 1.015 0.000941 mg/L 0.000068 0.000203 5/31/22 14:15 5/31/22 15:51 1.015 Not Detected mg/L 0.000152 0.000203 5/31/22 14:15 5/31/22 15:51 1.015 0.761 mg/L 0.000152 0.000203 5/31/22 14:15 5/31/22 15:51 1.015 0.000301 mg/L 0.000102 0.000203 5/31/22 14:15 5/31/22 15:51 1.015 0.000301 mg/L 0.000102 0.000203 5/31/22 14:15 5/31/22 15:51 1.015 0.000301 mg/L 0.000102 0.000203 5/31/22 14:15 5/31/22 15:51 1.015 Not Detected mg/L 0.000508 0.001015 5/31/22 14:15 5/31/22 15:51 1.015 Not Detected mg/L 0.00068 0.000203 **Analyst: CRB** 6/6/22 11:40 6/6/22 14:22 1 Not Detected mg/L 0.0003 0.0005 **Analyst: ALH** 6/2/22 13:12 5/26/22 13:12 1 0.298 mg/L as N 0.20 0.3 **Analyst: CNJ** 5/25/22 16:30 5/31/22 13:58 1 331 mg/L 25 **Analyst: CNJ** 5/25/22 16:30 5/31/22 13:58 1 331 mg/L 25 **Analyst: ALH** 6/2/22 11:04 6/2/22 15:20 1 267 mg/L 6/2/22 11:04 6/2/22 15:20 1 267 mg/L 6/2/22 11:04 6/2/22 15:20 1 0.0003 0.0005 **Analyst: ALH** 6/2/22 11:04 6/2/22 15:20 1 0.0006 6/2/22 15:20 1 0.0006 6/2/22 15:20 1 0.0006 6/2/22 15:20 1 0.0006 6/2/22 15:20 1 0.0006 6/2/22 15:20 1 0.0006 6/2/22 15:20 1 0.0006 6/2/22 15:20 1 0.0006 6/2/22 15:20 1 0.0006 6/2/22 15:20 1 0.0006 6/2/22 15:20 1 0.0006 6/2/22 15:20 1 0.0006 6/2/22 15:20 1 0.0006 6/2/22 15:20 1 0.0006 6/

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-8V

Location Code:

WMWBARAP

Collected:

Customer ID: Submittal Date: 5/23/22 17:26

5/25/22 14:50

Laboratory ID Number: BC09975

Laboratory ID Number: BC09975								
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anal	lyst: CES						
* Chloride	5/31/22 13:41	5/31/22 13:4	1 2	22.1	mg/L	1.00	2	
Analytical Method: SM4500F G 2017	Anal	lyst: JCC						
* Fluoride	6/8/22 11:20	6/8/22 11:20	1	0.108	mg/L	0.06	0.125	J
Analytical Method: SM4500SO4 E 2011	Anal	lyst: JCC						
* Sulfate	6/7/22 12:33	6/7/22 12:33	1	8.35	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	lyst: DKG						
Conductivity	5/23/22 17:23	5/23/22 17:2	3	557.51	uS/cm			FA
рН	5/23/22 17:23	5/23/22 17:2	3	6.08	SU			FA
Temperature	5/23/22 17:23	5/23/22 17:2	3	20.86	С			FA
Turbidity	5/23/22 17:23	5/23/22 17:2	3	1.61	NTU			FA
Sulfide	5/23/22 17:23	5/23/22 17:2	3	0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/23/22 17:26

Customer ID:

Delivery Date:

5/25/22 14:50

Description: Barry Ash Pond - MW-8V

Laboratory ID Number: BC09975

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09985	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.105	0.103	0.102	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09983	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.256	0.260	0.108	0.0850 to 0.115	125	70.0 to 130	1.55	20.0
BC09985	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.101	0.0984	0.0949	0.0850 to 0.115	101	70.0 to 130	2.61	20.0
BC09983	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.0985	0.0989	0.0925	0.0850 to 0.115	98.5	70.0 to 130	0.405	20.0
BC09985	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.118	0.117	0.104	0.0850 to 0.115	103	70.0 to 130	0.851	20.0
BC09983	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.116	0.116	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC09985	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.167	0.168	0.102	0.0850 to 0.115	97.3	70.0 to 130	0.597	20.0
BC09983	Barium, Total	mg/L	0.000	0.00100	0.100	0.173	0.173	0.0987	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC09985	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.108	0.103	0.100	0.0850 to 0.115	108	70.0 to 130	4.74	20.0
BC09983	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.109	0.110	0.105	0.0850 to 0.115	109	70.0 to 130	0.913	20.0
BC09985	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.09	1.08	1.01	0.850 to 1.15	103	70.0 to 130	0.922	20.0
BC09983	Boron, Total	mg/L	0.000087	0.0650	1.00	1.05	1.08	1.02	0.850 to 1.15	100	70.0 to 130	2.82	20.0
BC09985	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.104	0.103	0.101	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC09983	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0994	0.0987	0.100	0.0850 to 0.115	99.4	70.0 to 130	0.707	20.0
BC09985	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	31.2	31.0	4.87	4.25 to 5.75	92.0	70.0 to 130	0.643	20.0
BC09983	Calcium, Total	mg/L	0.00617	0.152	5.00	23.9	24.2	4.91	4.25 to 5.75	98.0	70.0 to 130	1.25	20.0
BC09983	Chloride	mg/L	-0.129	1.00	40.0	74.3	75.5	9.80	9.00 to 11.0	90.2	80.0 to 120	1.60	20.0
BC09985	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.104	0.100	0.100	0.0850 to 0.115	101	70.0 to 130	3.92	20.0
BC09983	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.108	0.109	0.101	0.0850 to 0.115	101	70.0 to 130	0.922	20.0
BC09985	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.107	0.104	0.104	0.0850 to 0.115	106	70.0 to 130	2.84	20.0
BC09983	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.103	0.104	0.101	0.0850 to 0.115	101	70.0 to 130	0.966	20.0
BC09983	Fluoride	mg/L	-0.043	0.125	2.50	2.76	2.80	2.53	2.25 to 2.75	105	80.0 to 120	1.44	20.0
BC09985	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	72.2	72.3	0.200	0.170 to 0.230	250	70.0 to 130	0.138	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/23/22 17:26

Customer ID:

Delivery Date: 5/25/22 14:50

Description: Barry Ash Pond - MW-8V

Laboratory ID Number: BC09975

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Iron, Total	mg/L	0.000064	0.0176	0.2	27.0	28.1	0.203	0.170 to 0.230	450	70.0 to 130	3.99	20.0
BC09985	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.105	0.103	0.104	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09983	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.103	0.102	0.102	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC09985	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.234	0.233	0.205	0.170 to 0.230	105	70.0 to 130	0.428	20.0
BC09983	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.198	0.204	0.206	0.170 to 0.230	99.0	70.0 to 130	2.99	20.0
BC09985	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	18.8	18.6	5.09	4.25 to 5.75	102	70.0 to 130	1.07	20.0
BC09983	Magnesium, Total	mg/L	0.00180	0.0462	5.00	11.7	11.9	5.21	4.25 to 5.75	98.2	70.0 to 130	1.69	20.0
BC09985	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	0.716	0.708	0.103	0.0850 to 0.115	95.0	70.0 to 130	1.12	20.0
BC09983	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.541	0.545	0.103	0.0850 to 0.115	104	70.0 to 130	0.737	20.0
BC09983	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00335	0.00348	0.00362	0.00340 to 0.00460	83.8	70.0 to 130	3.81	20.0
BC09985	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.100	0.101	0.0992	0.0850 to 0.115	98.5	70.0 to 130	0.995	20.0
BC09983	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.101	0.102	0.0965	0.0850 to 0.115	97.3	70.0 to 130	0.985	20.0
BC09985	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	18.7	18.6	10.3	8.50 to 11.5	98.1	70.0 to 130	0.536	20.0
BC09983	Potassium, Total	mg/L	-0.0109	0.367	10.0	12.6	12.6	10.5	8.50 to 11.5	101	70.0 to 130	0.00	20.0
BC09985	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.105	0.104	0.106	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09983	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.107	0.106	0.105	0.0850 to 0.115	107	70.0 to 130	0.939	20.0
BC09985	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	8.38	8.34	0.999	0.850 to 1.15	98.0	70.0 to 130	0.478	20.0
BC09983	Silicon, Total	mg/L	0.00083	0.0440	1.00	8.26	8.42	1.04	0.850 to 1.15	114	70.0 to 130	1.92	20.0
BC09985	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	63.1	63.0	5.14	4.25 to 5.75	106	70.0 to 130	0.159	20.0
BC09983	Sodium, Total	mg/L	0.00067	0.0660	5.00	57.9	59.0	5.25	4.25 to 5.75	126	70.0 to 130	1.88	20.0
BC09983	Sulfate	mg/L	-0.231	2.0	20.0	66.4	66.7	18.9	18.0 to 22.0	77.0	80.0 to 120	0.451	20.0
BC09985	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.102	0.102	0.103	0.0850 to 0.115	102	70.0 to 130	0.00	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/23/22 17:26

Customer ID:

Delivery Date: 5/25/22 14:50

Description: Barry Ash Pond - MW-8V

Laboratory ID Number: BC09975

-	•			MB					Standard		Rec		— Prec
0 1		11.2			0 "		1400	0, , ,		_		_	
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.106	0.103	0.107	0.0850 to 0.115	106	70.0 to 130	2.87	20.0
BC09983	Total Organic Carbon	mg/L	0.303	1.00	10.0	33.9	34.2	10.2		105	80.0 to 120	0.881	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/23/22 17:26

Customer ID:

Delivery Date:

5/25/22 14:50

Description: Barry Ash Pond - MW-8V

Laboratory ID Number: BC09975

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09987	Alkalinity, Total as CaCO3	mg/L					34.9	51.7	45.0 to 55.0			4.39	10.0
BC09983	Nitrogen, Nitrate/Nitrite	mg/L as N	0.08	0.200	2.00	2.19	0.161	2.01	1.80 to 2.20	110	90.0 to 110	0.00	15.0
BC09986	Solids, Dissolved	mg/L	1.00	25.0			130	49.0	40.0 to 60.0			2.28	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-22HLocation Code:WMWBARAPCollected:5/24/22 09:14

Customer ID:

Laboratory ID Number: BC09976 Submittal Date: 5/25/22 14:50

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	/st: RDA		Preparati	on Method:	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 09:47	1.015	0.0562	mg/L	0.030000	0.1015	J
* Calcium, Total	5/31/22 10:50	6/2/22 09:47	1.015	14.4	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 10:25	50.75	69.9	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 09:47	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 09:47	1.015	13.4	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 09:47	1	19.5	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 09:47	1.015	9.11	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 10:25	50.75	77.2	mg/L	1.5225	20.3	
Analytical Method: EPA 200.7	Analy	/st: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 10:41	1.015	0.0575	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	5/27/22 09:45	6/1/22 10:41	1.015	14.5	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 11:21	50.75	66.3	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 10:41	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 10:41	1.015	13.1	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 10:41	1	18.8	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 10:41	1.015	8.80	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 11:21	50.75	76.9	mg/L	1.5225	20.3	
Analytical Method: EPA 200.8	Anal	/st: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 16:26	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 16:26	1.015	0.0206	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 16:26	1.015	0.0197	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 16:26	1.015	0.215	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 16:26	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 16:26	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 16:26	1.015	0.000566	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 16:26	1.015	0.00270	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 16:26	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 16:26	1.015	0.552	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 16:26	1.015	0.00145	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 16:26		2.06	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-22HLocation Code:WMWBARAPCollected:5/24/22 09:14

Customer ID:

Laboratory ID Number: BC09976 Submittal Date: 5/25/22 14:50

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 16:26	;	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 16:26	;	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 15:5	54	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 15:5	4	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 15:5	4	1.015	0.0185	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 15:5	4	1.015	0.217	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 15:5	4	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 15:5	4	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 15:5	4	1.015	0.000516	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 15:5	4	1.015	0.00276	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 15:5	4	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 15:5	4	1.015	0.599	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 15:5	4	1.015	0.00138	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 15:5	4	1.015	1.94	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 15:5	4	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 15:5	4	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 11:40	6/6/22 14:24		1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: CES							
* Nitrogen, Nitrate/Nitrite	5/26/22 13:14	5/26/22 13:1	4	1	0.243	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/2/22 11:04	6/2/22 15:20	ı	1	246	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/25/22 16:30	5/31/22 13:5	8	1	372	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/2/22 11:04	6/2/22 15:20)	1	246	mg/L			
Carbonate Alkalinity, (calc.)	6/2/22 11:04	6/2/22 15:20	1	1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		yst: ELH							
* Total Organic Carbon	5/31/22 16:41	•	1	1	17.5	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-22H

Location Code:

WMWBARAP 5/24/22 09:14

Collected:

Customer ID: Submittal Date:

5/25/22 14:50

Laboratory ID Number: BC09976

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anal	yst: CES							
* Chloride	5/31/22 13:52	5/31/22 13:	52	4	57.1	mg/L	2.00	4	
Analytical Method: SM4500F G 2017	Anal	lyst: JCC							
* Fluoride	6/8/22 11:21	6/8/22 11:2	:1	1	0.318	mg/L	0.06	0.125	
Analytical Method: SM4500SO4 E 2011	Anal	lyst: JCC							
* Sulfate	6/7/22 13:20	6/7/22 13:2	:0	4	103	mg/L	2.4	8	
Analytical Method: Field Measurements	Anal	lyst: DKG							
Conductivity	5/24/22 09:11	5/24/22 09:	:11		669.92	uS/cm			FA
рН	5/24/22 09:11	5/24/22 09:	:11		6.57	SU			FA
Temperature	5/24/22 09:11	5/24/22 09:	:11		20.28	С			FA
Turbidity	5/24/22 09:11	5/24/22 09:	:11		2.32	NTU			FA
Sulfide	5/24/22 09:11	5/24/22 09:	:11		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 09:14

Customer ID:

Delivery Date: 5/25/22 14:50

Description: Barry Ash Pond - MW-22H

Laboratory ID Number: BC09976

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09985	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.105	0.103	0.102	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09983	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.256	0.260	0.108	0.0850 to 0.115	125	70.0 to 130	1.55	20.0
BC09985	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.101	0.0984	0.0949	0.0850 to 0.115	101	70.0 to 130	2.61	20.0
BC09983	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.0985	0.0989	0.0925	0.0850 to 0.115	98.5	70.0 to 130	0.405	20.0
BC09985	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.118	0.117	0.104	0.0850 to 0.115	103	70.0 to 130	0.851	20.0
BC09983	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.116	0.116	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC09985	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.167	0.168	0.102	0.0850 to 0.115	97.3	70.0 to 130	0.597	20.0
BC09983	Barium, Total	mg/L	0.000	0.00100	0.100	0.173	0.173	0.0987	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC09985	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.108	0.103	0.100	0.0850 to 0.115	108	70.0 to 130	4.74	20.0
BC09983	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.109	0.110	0.105	0.0850 to 0.115	109	70.0 to 130	0.913	20.0
BC09985	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.09	1.08	1.01	0.850 to 1.15	103	70.0 to 130	0.922	20.0
BC09983	Boron, Total	mg/L	0.000087	0.0650	1.00	1.05	1.08	1.02	0.850 to 1.15	100	70.0 to 130	2.82	20.0
BC09985	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.104	0.103	0.101	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC09983	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0994	0.0987	0.100	0.0850 to 0.115	99.4	70.0 to 130	0.707	20.0
BC09985	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	31.2	31.0	4.87	4.25 to 5.75	92.0	70.0 to 130	0.643	20.0
BC09983	Calcium, Total	mg/L	0.00617	0.152	5.00	23.9	24.2	4.91	4.25 to 5.75	98.0	70.0 to 130	1.25	20.0
BC09983	Chloride	mg/L	-0.129	1.00	40.0	74.3	75.5	9.80	9.00 to 11.0	90.2	80.0 to 120	1.60	20.0
BC09985	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.104	0.100	0.100	0.0850 to 0.115	101	70.0 to 130	3.92	20.0
BC09983	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.108	0.109	0.101	0.0850 to 0.115	101	70.0 to 130	0.922	20.0
BC09985	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.107	0.104	0.104	0.0850 to 0.115	106	70.0 to 130	2.84	20.0
BC09983	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.103	0.104	0.101	0.0850 to 0.115	101	70.0 to 130	0.966	20.0
BC09983	Fluoride	mg/L	-0.043	0.125	2.50	2.76	2.80	2.53	2.25 to 2.75	105	80.0 to 120	1.44	20.0
BC09985	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	72.2	72.3	0.200	0.170 to 0.230	250	70.0 to 130	0.138	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 09:14

Customer ID:

Delivery Date: 5/25/22 14:50

Description: Barry Ash Pond - MW-22H

Laboratory ID Number: BC09976

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Iron, Total	mg/L	0.000064	0.0176	0.2	27.0	28.1	0.203	0.170 to 0.230	450	70.0 to 130	3.99	20.0
BC09985	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.105	0.103	0.104	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09983	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.103	0.102	0.102	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC09985	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.234	0.233	0.205	0.170 to 0.230	105	70.0 to 130	0.428	20.0
BC09983	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.198	0.204	0.206	0.170 to 0.230	99.0	70.0 to 130	2.99	20.0
BC09985	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	18.8	18.6	5.09	4.25 to 5.75	102	70.0 to 130	1.07	20.0
BC09983	Magnesium, Total	mg/L	0.00180	0.0462	5.00	11.7	11.9	5.21	4.25 to 5.75	98.2	70.0 to 130	1.69	20.0
BC09985	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	0.716	0.708	0.103	0.0850 to 0.115	95.0	70.0 to 130	1.12	20.0
BC09983	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.541	0.545	0.103	0.0850 to 0.115	104	70.0 to 130	0.737	20.0
BC09983	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00335	0.00348	0.00362	0.00340 to 0.00460	83.8	70.0 to 130	3.81	20.0
BC09985	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.100	0.101	0.0992	0.0850 to 0.115	98.5	70.0 to 130	0.995	20.0
BC09983	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.101	0.102	0.0965	0.0850 to 0.115	97.3	70.0 to 130	0.985	20.0
BC09985	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	18.7	18.6	10.3	8.50 to 11.5	98.1	70.0 to 130	0.536	20.0
BC09983	Potassium, Total	mg/L	-0.0109	0.367	10.0	12.6	12.6	10.5	8.50 to 11.5	101	70.0 to 130	0.00	20.0
BC09985	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.105	0.104	0.106	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09983	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.107	0.106	0.105	0.0850 to 0.115	107	70.0 to 130	0.939	20.0
BC09985	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	8.38	8.34	0.999	0.850 to 1.15	98.0	70.0 to 130	0.478	20.0
BC09983	Silicon, Total	mg/L	0.00083	0.0440	1.00	8.26	8.42	1.04	0.850 to 1.15	114	70.0 to 130	1.92	20.0
BC09985	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	63.1	63.0	5.14	4.25 to 5.75	106	70.0 to 130	0.159	20.0
BC09983	Sodium, Total	mg/L	0.00067	0.0660	5.00	57.9	59.0	5.25	4.25 to 5.75	126	70.0 to 130	1.88	20.0
BC09983	Sulfate	mg/L	-0.231	2.0	20.0	66.4	66.7	18.9	18.0 to 22.0	77.0	80.0 to 120	0.451	20.0
BC09985	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.102	0.102	0.103	0.0850 to 0.115	102	70.0 to 130	0.00	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 09:14

Customer ID:

Delivery Date: 5/25/22 14:50

Description: Barry Ash Pond - MW-22H

Laboratory ID Number: BC09976

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.106	0.103	0.107	0.0850 to 0.115	106	70.0 to 130	2.87	20.0
BC09983	Total Organic Carbon	mg/L	0.303	1.00	10.0	33.9	34.2	10.2		105	80.0 to 120	0.881	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 09:14

Customer ID:

Delivery Date:

5/25/22 14:50

Description: Barry Ash Pond - MW-22H

Laboratory ID Number: BC09976

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09987	Alkalinity, Total as CaCO3	mg/L					34.9	51.7	45.0 to 55.0			4.39	10.0
BC09983	Nitrogen, Nitrate/Nitrite	mg/L as N	0.08	0.200	2.00	2.19	0.161	2.01	1.80 to 2.20	110	90.0 to 110	0.00	15.0
BC09986	Solids, Dissolved	mg/L	1.00	25.0			130	49.0	40.0 to 60.0			2.28	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-8Location Code:WMWBARAPCollected:5/24/22 10:50

Customer ID:

Submittal Date: 5/25/22 14:50

Laboratory ID Number: BC09977

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	ion Method: I	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 09:50	1.015	1.12	mg/L	0.030000	0.1015	
* Calcium, Total	5/31/22 10:50	6/2/22 09:50	1.015	31.5	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 10:29	50.75	74.0	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 09:50	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 09:50	1.015	10.0	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 09:50	1	32.7	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 09:50	1.015	15.3	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 09:50	1.015	19.4	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 10:44	1.015	1.11	mg/L	0.030000	0.1015	
* Calcium, Dissolved	5/27/22 09:45	6/1/22 10:44	1.015	31.5	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 11:24	50.75	73.6	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 10:44	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 10:44	1.015	9.89	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 10:44	1	32.3	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 10:44	1.015	15.1	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 10:44	1.015	19.5	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Analy	yst: DLJ		Preparati	ion Method: I	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 16:30	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 16:30	1.015	0.00884	mg/L	0.006090	0.01015	J
* Arsenic, Total	6/1/22 11:30	6/1/22 16:30	1.015	0.0583	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 16:30	1.015	0.142	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 16:30	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 16:30	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 16:30	1.015	0.00128	mg/L	0.000203	0.001015	
* Cobalt, Total	6/1/22 11:30	6/1/22 16:30	1.015	0.000666	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 16:30	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 20:50	5.075	1.78	mg/L	0.000761	0.001015	
* Molybdenum, Total	6/1/22 11:30	6/1/22 16:30		0.000234	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 16:30		0.802	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-8

Location Code:

WMWBARAP

Collected:

Customer ID:

5/24/22 10:50

5/25/22 14:50

Laboratory ID Number: BC09977

Submittal Date:

	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Selenium, Total	6/1/22 11:30	6/1/22 16:30)	1.015	Not Detected	mg/L	0.000508	0.001015	U
Thallium, Total	6/1/22 11:30	6/1/22 16:30)	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
Antimony, Dissolved	5/31/22 14:15	5/31/22 15:5	58	1.015	Not Detected	mg/L	0.000508	0.001015	U
Aluminum, Dissolved	5/31/22 14:15	5/31/22 15:5	58	1.015	Not Detected	mg/L	0.006090	0.01015	U
Arsenic, Dissolved	5/31/22 14:15	5/31/22 15:5	58	1.015	0.0591	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 15:5	58	1.015	0.148	mg/L	0.000508	0.001015	
Beryllium, Dissolved	5/31/22 14:15	5/31/22 15:5	58	1.015	Not Detected	mg/L	0.000406	0.001015	U
Cadmium, Dissolved	5/31/22 14:15	5/31/22 15:5	58	1.015	Not Detected	mg/L	0.000068	0.000203	U
Chromium, Dissolved	5/31/22 14:15	5/31/22 15:5	58	1.015	0.00129	mg/L	0.000203	0.001015	
Cobalt, Dissolved	5/31/22 14:15	5/31/22 15:5	58	1.015	0.000710	mg/L	0.000068	0.000203	
Lead, Dissolved	5/31/22 14:15	5/31/22 15:5	58	1.015	Not Detected	mg/L	0.000068	0.000203	U
Manganese, Dissolved	5/31/22 14:15	6/1/22 17:04	ļ.	5.075	1.77	mg/L	0.000761	0.001015	
Molybdenum, Dissolved	5/31/22 14:15	5/31/22 15:5	58	1.015	0.000258	mg/L	0.000102	0.000203	
Potassium, Dissolved	5/31/22 14:15	5/31/22 15:5	58	1.015	0.772	mg/L	0.169505	0.5075	
Selenium, Dissolved	5/31/22 14:15	5/31/22 15:5	58	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 15:5	58	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
Mercury, Total by CVAA	6/6/22 11:40	6/6/22 14:27	,	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: CES							
Nitrogen, Nitrate/Nitrite	5/26/22 13:16	5/26/22 13:1	6	1	0.243	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/2/22 11:04	6/2/22 15:20)	1	238	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
Solids, Dissolved	5/25/22 16:30	5/31/22 13:5	58	1	303	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/2/22 11:04	6/2/22 15:20)	1	238	mg/L			
Carbonate Alkalinity, (calc.)	6/2/22 11:04	6/2/22 15:20		1		mg/L		0.5	
Analytical Method: SM 5310 B		yst: ELH				,			
· Total Organic Carbon	5/31/22 16:59		59	1	13.4	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-8

Location Code:

WMWBARAP

Collected:

Customer ID:

5/24/22 10:50

Submittal Date:

5/25/22 14:50

Laboratory ID Number: BC09977				Subi	miliai Dale:	5/25/22 14	.50	
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anal	yst: CES						
* Chloride	5/31/22 13:44	5/31/22 13:4	4 2	27.2	mg/L	1.00	2	
Analytical Method: SM4500F G 2017	Anal	yst: JCC						
* Fluoride	6/8/22 11:22	6/8/22 11:22	1	0.0713	mg/L	0.06	0.125	J
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC						
* Sulfate	6/7/22 12:35	6/7/22 12:35	1	9.75	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	yst: DKG						
Conductivity	5/24/22 10:46	5/24/22 10:4	6	508.10	uS/cm			FA
рН	5/24/22 10:46	5/24/22 10:4	6	5.60	SU			FA
Temperature	5/24/22 10:46	5/24/22 10:4	6	21.81	С			FA
Turbidity	5/24/22 10:46	5/24/22 10:4	6	3.51	NTU			FA
Sulfide	5/24/22 10:46	5/24/22 10:4	6	0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 10:50

Customer ID:

Delivery Date: 5/25/22 14:50

Description: Barry Ash Pond - MW-8

Laboratory ID Number: BC09977

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	Limi
BC09985	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.105	0.103	0.102	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09983	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.256	0.260	0.108	0.0850 to 0.115	125	70.0 to 130	1.55	20.0
BC09985	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.101	0.0984	0.0949	0.0850 to 0.115	101	70.0 to 130	2.61	20.0
BC09983	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.0985	0.0989	0.0925	0.0850 to 0.115	98.5	70.0 to 130	0.405	20.0
BC09985	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.118	0.117	0.104	0.0850 to 0.115	103	70.0 to 130	0.851	20.0
BC09983	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.116	0.116	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC09985	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.167	0.168	0.102	0.0850 to 0.115	97.3	70.0 to 130	0.597	20.0
BC09983	Barium, Total	mg/L	0.000	0.00100	0.100	0.173	0.173	0.0987	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC09985	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.108	0.103	0.100	0.0850 to 0.115	108	70.0 to 130	4.74	20.0
BC09983	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.109	0.110	0.105	0.0850 to 0.115	109	70.0 to 130	0.913	20.0
BC09985	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.09	1.08	1.01	0.850 to 1.15	103	70.0 to 130	0.922	20.0
BC09983	Boron, Total	mg/L	0.000087	0.0650	1.00	1.05	1.08	1.02	0.850 to 1.15	100	70.0 to 130	2.82	20.0
BC09985	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.104	0.103	0.101	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC09983	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0994	0.0987	0.100	0.0850 to 0.115	99.4	70.0 to 130	0.707	20.0
BC09985	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	31.2	31.0	4.87	4.25 to 5.75	92.0	70.0 to 130	0.643	20.0
BC09983	Calcium, Total	mg/L	0.00617	0.152	5.00	23.9	24.2	4.91	4.25 to 5.75	98.0	70.0 to 130	1.25	20.0
BC09983	Chloride	mg/L	-0.129	1.00	40.0	74.3	75.5	9.80	9.00 to 11.0	90.2	80.0 to 120	1.60	20.0
BC09985	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.104	0.100	0.100	0.0850 to 0.115	101	70.0 to 130	3.92	20.0
BC09983	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.108	0.109	0.101	0.0850 to 0.115	101	70.0 to 130	0.922	20.0
BC09985	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.107	0.104	0.104	0.0850 to 0.115	106	70.0 to 130	2.84	20.0
BC09983	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.103	0.104	0.101	0.0850 to 0.115	101	70.0 to 130	0.966	20.0
BC09983	Fluoride	mg/L	-0.043	0.125	2.50	2.76	2.80	2.53	2.25 to 2.75	105	80.0 to 120	1.44	20.0
BC09985	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	72.2	72.3	0.200	0.170 to 0.230	250	70.0 to 130	0.138	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

te: 5/24/22 10:50

Customer ID: Delivery Date:

5/25/22 14:50

Description: Barry Ash Pond - MW-8

Laboratory ID Number: BC09977

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Iron, Total	mg/L	0.000064	0.0176	0.2	27.0	28.1	0.203	0.170 to 0.230	450	70.0 to 130	3.99	20.0
BC09985	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.105	0.103	0.104	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09983	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.103	0.102	0.102	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC09985	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.234	0.233	0.205	0.170 to 0.230	105	70.0 to 130	0.428	20.0
BC09983	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.198	0.204	0.206	0.170 to 0.230	99.0	70.0 to 130	2.99	20.0
BC09985	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	18.8	18.6	5.09	4.25 to 5.75	102	70.0 to 130	1.07	20.0
BC09983	Magnesium, Total	mg/L	0.00180	0.0462	5.00	11.7	11.9	5.21	4.25 to 5.75	98.2	70.0 to 130	1.69	20.0
BC09985	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	0.716	0.708	0.103	0.0850 to 0.115	95.0	70.0 to 130	1.12	20.0
BC09983	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.541	0.545	0.103	0.0850 to 0.115	104	70.0 to 130	0.737	20.0
BC09983	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00335	0.00348	0.00362	0.00340 to 0.00460	83.8	70.0 to 130	3.81	20.0
BC09985	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.100	0.101	0.0992	0.0850 to 0.115	98.5	70.0 to 130	0.995	20.0
BC09983	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.101	0.102	0.0965	0.0850 to 0.115	97.3	70.0 to 130	0.985	20.0
BC09985	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	18.7	18.6	10.3	8.50 to 11.5	98.1	70.0 to 130	0.536	20.0
BC09983	Potassium, Total	mg/L	-0.0109	0.367	10.0	12.6	12.6	10.5	8.50 to 11.5	101	70.0 to 130	0.00	20.0
BC09985	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.105	0.104	0.106	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09983	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.107	0.106	0.105	0.0850 to 0.115	107	70.0 to 130	0.939	20.0
BC09985	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	8.38	8.34	0.999	0.850 to 1.15	98.0	70.0 to 130	0.478	20.0
BC09983	Silicon, Total	mg/L	0.00083	0.0440	1.00	8.26	8.42	1.04	0.850 to 1.15	114	70.0 to 130	1.92	20.0
BC09985	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	63.1	63.0	5.14	4.25 to 5.75	106	70.0 to 130	0.159	20.0
BC09983	Sodium, Total	mg/L	0.00067	0.0660	5.00	57.9	59.0	5.25	4.25 to 5.75	126	70.0 to 130	1.88	20.0
BC09983	Sulfate	mg/L	-0.231	2.0	20.0	66.4	66.7	18.9	18.0 to 22.0	77.0	80.0 to 120	0.451	20.0
BC09985	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.102	0.102	0.103	0.0850 to 0.115	102	70.0 to 130	0.00	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 10:50

Customer ID:

Delivery Date: 5/25/22 14:50

Description: Barry Ash Pond - MW-8

Laboratory ID Number: BC09977

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.106	0.103	0.107	0.0850 to 0.115	106	70.0 to 130	2.87	20.0
BC09983	Total Organic Carbon	mg/L	0.303	1.00	10.0	33.9	34.2	10.2		105	80.0 to 120	0.881	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 10:50

Customer ID:

Delivery Date:

5/25/22 14:50

Description: Barry Ash Pond - MW-8

Laboratory ID Number: BC09977

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09987	Alkalinity, Total as CaCO3	mg/L					34.9	51.7	45.0 to 55.0			4.39	10.0
BC09983	Nitrogen, Nitrate/Nitrite	mg/L as N	0.08	0.200	2.00	2.19	0.161	2.01	1.80 to 2.20	110	90.0 to 110	0.00	15.0
BC09986	Solids, Dissolved	mg/L	1.00	25.0			130	49.0	40.0 to 60.0			2.28	10.0

Certificate Of Analysis

Description: Barry Ash Pond Field Blank-1Location Code:WMWBARAPFBCollected:5/24/22 11:15

Customer ID:

Submittal Date: 5/25/22 14:51

Laboratory ID Number: BC09978

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	on Method: EP	4 1638		
* Boron, Total	5/31/22 10:50	6/2/22 09:53	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	5/31/22 10:50	6/2/22 09:53	1.015	Not Detected	mg/L	0.070035	0.406	U
* Iron, Total	5/31/22 10:50	6/2/22 09:53	1.015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Total	5/31/22 10:50	6/2/22 09:53	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 09:53	1.015	Not Detected	mg/L	0.021315	0.406	U
Silica, Total (calc.)	5/31/22 10:50	6/2/22 09:53	1	Not Detected	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 09:53	1.015	Not Detected	mg/L	0.02030	0.25375	U
* Sodium, Total	5/31/22 10:50	6/2/22 09:53	1.015	Not Detected	mg/L	0.03045	0.406	U
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	on Method: EP	A 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 16:33	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 16:33	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Total	6/1/22 11:30	6/1/22 16:33	1.015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Total	6/1/22 11:30	6/1/22 16:33	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Beryllium, Total	6/1/22 11:30	6/1/22 16:33	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 16:33	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 16:33	1.015	Not Detected	mg/L	0.000203	0.001015	U
* Cobalt, Total	6/1/22 11:30	6/1/22 16:33	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Total	6/1/22 11:30	6/1/22 16:33	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 16:33	1.015	Not Detected	mg/L	0.000152	0.000203	U
* Molybdenum, Total	6/1/22 11:30	6/1/22 16:33	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/1/22 11:30	6/1/22 16:33	1.015	Not Detected	mg/L	0.169505	0.5075	U
* Selenium, Total	6/1/22 11:30	6/1/22 16:33	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 16:33	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB						
* Mercury, Total by CVAA	6/6/22 11:40	6/6/22 14:29	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: CES						
* Nitrogen, Nitrate/Nitrite	5/26/22 13:18	•	8 1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2540C	Anal	yst: CNJ						
* Solids, Dissolved	5/25/22 16:30	5/31/22 13:5	8 1	Not Detected	mg/L		25	U

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond Field Blank-1

Location Code:

WMWBARAPFB

Collected:

Customer ID:

5/24/22 11:15

Laboratory ID Number: BC09978

Submittal Date: 5/25/22 14:51

ared Analyzed Vio Spec DF Results Units MDL

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM 5310 B	Ana	lyst: ELH						
 * Total Organic Carbon 	5/31/22 17:18	5/31/22 17:	18 1	Not Detected	mg/L	1.00	2	U
Analytical Method: SM4500Cl E	Ana	lyst: CES						
* Chloride	5/31/22 13:38	5/31/22 13:3	38 1	Not Detected	mg/L	0.50	1	U
Analytical Method: SM4500F G 2017	Ana	lyst: JCC						
* Fluoride	6/8/22 11:23	6/8/22 11:23	3 1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC						
* Sulfate	6/7/22 12:36	6/7/22 12:30	6 1	Not Detected	mg/L	0.6	2	U

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAPFB **Sample Date:** 5/24/22 11:15

Customer ID:

Delivery Date: 5/25/22 14:51

Description: Barry Ash Pond Field Blank-1

Laboratory ID Number: BC09978

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.256	0.260	0.108	0.0850 to 0.115	125	70.0 to 130	1.55	20.0
BC09983	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.0985	0.0989	0.0925	0.0850 to 0.115	98.5	70.0 to 130	0.405	20.0
BC09983	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.116	0.116	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC09983	Barium, Total	mg/L	0.000	0.00100	0.100	0.173	0.173	0.0987	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC09983	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.109	0.110	0.105	0.0850 to 0.115	109	70.0 to 130	0.913	20.0
BC09983	Boron, Total	mg/L	0.000087	0.0650	1.00	1.05	1.08	1.02	0.850 to 1.15	100	70.0 to 130	2.82	20.0
BC09983	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0994	0.0987	0.100	0.0850 to 0.115	99.4	70.0 to 130	0.707	20.0
BC09983	Calcium, Total	mg/L	0.00617	0.152	5.00	23.9	24.2	4.91	4.25 to 5.75	98.0	70.0 to 130	1.25	20.0
BC09983	Chloride	mg/L	-0.129	1.00	40.0	74.3	75.5	9.80	9.00 to 11.0	90.2	80.0 to 120	1.60	20.0
BC09983	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.108	0.109	0.101	0.0850 to 0.115	101	70.0 to 130	0.922	20.0
BC09983	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.103	0.104	0.101	0.0850 to 0.115	101	70.0 to 130	0.966	20.0
BC09983	Fluoride	mg/L	-0.043	0.125	2.50	2.76	2.80	2.53	2.25 to 2.75	105	80.0 to 120	1.44	20.0
BC09983	Iron, Total	mg/L	0.000064	0.0176	0.2	27.0	28.1	0.203	0.170 to 0.230	450	70.0 to 130	3.99	20.0
BC09983	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.103	0.102	0.102	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC09983	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.198	0.204	0.206	0.170 to 0.230	99.0	70.0 to 130	2.99	20.0
BC09983	Magnesium, Total	mg/L	0.00180	0.0462	5.00	11.7	11.9	5.21	4.25 to 5.75	98.2	70.0 to 130	1.69	20.0
BC09983	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.541	0.545	0.103	0.0850 to 0.115	104	70.0 to 130	0.737	20.0
BC09983	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00335	0.00348	0.00362	0.00340 to 0.00460	83.8	70.0 to 130	3.81	20.0
BC09983	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.101	0.102	0.0965	0.0850 to 0.115	97.3	70.0 to 130	0.985	20.0
BC09983	Potassium, Total	mg/L	-0.0109	0.367	10.0	12.6	12.6	10.5	8.50 to 11.5	101	70.0 to 130	0.00	20.0
BC09983	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.107	0.106	0.105	0.0850 to 0.115	107	70.0 to 130	0.939	20.0
BC09983	Silicon, Total	mg/L	0.00083	0.0440	1.00	8.26	8.42	1.04	0.850 to 1.15	114	70.0 to 130	1.92	20.0
BC09983	Sodium, Total	mg/L	0.00067	0.0660	5.00	57.9	59.0	5.25	4.25 to 5.75	126	70.0 to 130	1.88	20.0

Batch QC Summary

Customer Account: WMWBARAPFB **Sample Date:** 5/24/22 11:15

Customer ID:

Delivery Date: 5/25/22 14:51

Description: Barry Ash Pond Field Blank-1

Laboratory ID Number: BC09978

	,												
				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Sulfate	mg/L	-0.231	2.0	20.0	66.4	66.7	18.9	18.0 to 22.0	77.0	80.0 to 120	0.451	20.0
BC09983	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.106	0.103	0.107	0.0850 to 0.115	106	70.0 to 130	2.87	20.0
BC09983	Total Organic Carbon	mg/L	0.303	1.00	10.0	33.9	34.2	10.2		105	80.0 to 120	0.881	20.0

Batch QC Summary

Customer Account: WMWBARAPFB

Sample Date: 5/24/2

5/24/22 11:15

Customer ID:

Delivery Date:

5/25/22 14:51

Description: Barry Ash Pond Field Blank-1

Laboratory ID Number: BC09978

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Nitrogen, Nitrate/Nitrite	mg/L as N	0.08	0.200	2.00	2.19	0.161	2.01	1.80 to 2.20	110	90.0 to 110	0.00	15.0
BC09986	Solids, Dissolved	mg/L	1.00	25.0			130	49.0	40.0 to 60.0			2.28	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-10Location Code:WMWBARAPCollected:5/24/22 12:46

Customer ID:

Laboratory ID Number: BC09979 Submittal Date: 5/25/22 14:50

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	on Method: I	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 09:56	1.015	2.34	mg/L	0.030000	0.1015	
* Calcium, Total	5/31/22 10:50	6/2/22 10:32	50.75	63.9	mg/L	3.50175	20.3	
* Iron, Total	5/31/22 10:50	6/2/22 10:32	50.75	68.0	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 09:56	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 09:56	1.015	17.6	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 09:56	1	25.9	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 09:56	1.015	12.1	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 09:56	1.015	26.2	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 10:47	1.015	2.30	mg/L	0.030000	0.1015	
* Calcium, Dissolved	5/27/22 09:45	6/1/22 11:27	50.75	62.6	mg/L	3.50175	20.3	
* Iron, Dissolved	5/27/22 09:45	6/1/22 11:27	50.75	65.2	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 10:47	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 10:47	1.015	17.3	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 10:47	1	25.3	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 10:47	1.015	11.8	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 10:47	1.015	25.4	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	on Method: I	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 16:37	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 16:37	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Total	6/1/22 11:30	6/1/22 16:37	1.015	0.0775	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 16:37	1.015	0.0618	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 16:37	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 16:37	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 16:37	1.015	0.000522	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 16:37	1.015	0.000543	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 16:37		Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 20:54	5.075	1.82	mg/L	0.000761	0.001015	
* Molybdenum, Total	6/1/22 11:30	6/1/22 16:37		Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/1/22 11:30	6/1/22 16:37		1.46	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-10

Location Code:

WMWBARAP 5/24/22 12:46

Collected: Customer ID:

Submittal Date:

5/25/22 14:50

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 16:37	7	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 16:37	7	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 16:0)2	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 16:0)2	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 16:0)2	1.015	0.0780	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 16:0)2	1.015	0.0646	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 16:0)2	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 16:0)2	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 16:0)2	1.015	0.000640	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 16:0)2	1.015	0.000626	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 16:0)2	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	6/1/22 17:07	7	5.075	1.79	mg/L	0.000761	0.001015	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 16:0)2	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Dissolved	5/31/22 14:15	5/31/22 16:0)2	1.015	1.41	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 16:0)2	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 16:0)2	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 11:40	6/6/22 14:31	1	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: CES							
* Nitrogen, Nitrate/Nitrite	5/26/22 13:20	5/26/22 13:2	20	1	0.257	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/6/22 13:15	6/6/22 15:32	2	1	337	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/25/22 16:30	5/31/22 13:5	58	1	398	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32	2	1	337	mg/L			
Carbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32	2	1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B	Anal	yst: ELH							
* Total Organic Carbon	5/31/22 17:37	-	R7	1	12.4	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-10

Location Code:

WMWBARAP

Collected:

Customer ID:

5/24/22 12:46

Laboratory ID Number: BC09979

Submittal Date:

5/25/22 14:50

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500CI E	Anal	yst: CES							
* Chloride	5/31/22 13:45	5/31/22 13:	45	2	30.8	mg/L	1.00	2	
Analytical Method: SM4500F G 2017	Anal	yst: JCC							
* Fluoride	6/8/22 11:24	6/8/22 11:2	4	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC							
* Sulfate	6/7/22 12:37	6/7/22 12:3	7	1	5.93	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	yst: DKG							
Conductivity	5/24/22 12:43	5/24/22 12:	43		680.19	uS/cm			FA
рН	5/24/22 12:43	5/24/22 12:	43		5.81	SU			FA
Temperature	5/24/22 12:43	5/24/22 12:	43		21.37	С			FA
Turbidity	5/24/22 12:43	5/24/22 12:	43		0.2	NTU			FA
Sulfide	5/24/22 12:43	5/24/22 12:	43		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP

Sample Date: 5/24/22 12:46

Customer ID:

Delivery Date: 5/25/22 14:50

Description: Barry Ash Pond - MW-10

Laboratory ID Number: BC09979

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09985	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.105	0.103	0.102	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09983	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.256	0.260	0.108	0.0850 to 0.115	125	70.0 to 130	1.55	20.0
BC09985	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.101	0.0984	0.0949	0.0850 to 0.115	101	70.0 to 130	2.61	20.0
BC09983	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.0985	0.0989	0.0925	0.0850 to 0.115	98.5	70.0 to 130	0.405	20.0
BC09985	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.118	0.117	0.104	0.0850 to 0.115	103	70.0 to 130	0.851	20.0
BC09983	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.116	0.116	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC09985	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.167	0.168	0.102	0.0850 to 0.115	97.3	70.0 to 130	0.597	20.0
BC09983	Barium, Total	mg/L	0.000	0.00100	0.100	0.173	0.173	0.0987	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC09985	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.108	0.103	0.100	0.0850 to 0.115	108	70.0 to 130	4.74	20.0
BC09983	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.109	0.110	0.105	0.0850 to 0.115	109	70.0 to 130	0.913	20.0
BC09985	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.09	1.08	1.01	0.850 to 1.15	103	70.0 to 130	0.922	20.0
BC09983	Boron, Total	mg/L	0.000087	0.0650	1.00	1.05	1.08	1.02	0.850 to 1.15	100	70.0 to 130	2.82	20.0
BC09985	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.104	0.103	0.101	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC09983	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0994	0.0987	0.100	0.0850 to 0.115	99.4	70.0 to 130	0.707	20.0
BC09985	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	31.2	31.0	4.87	4.25 to 5.75	92.0	70.0 to 130	0.643	20.0
BC09983	Calcium, Total	mg/L	0.00617	0.152	5.00	23.9	24.2	4.91	4.25 to 5.75	98.0	70.0 to 130	1.25	20.0
BC09983	Chloride	mg/L	-0.129	1.00	40.0	74.3	75.5	9.80	9.00 to 11.0	90.2	80.0 to 120	1.60	20.0
BC09985	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.104	0.100	0.100	0.0850 to 0.115	101	70.0 to 130	3.92	20.0
BC09983	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.108	0.109	0.101	0.0850 to 0.115	101	70.0 to 130	0.922	20.0
BC09985	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.107	0.104	0.104	0.0850 to 0.115	106	70.0 to 130	2.84	20.0
BC09983	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.103	0.104	0.101	0.0850 to 0.115	101	70.0 to 130	0.966	20.0
BC09983	Fluoride	mg/L	-0.043	0.125	2.50	2.76	2.80	2.53	2.25 to 2.75	105	80.0 to 120	1.44	20.0
BC09985	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	72.2	72.3	0.200	0.170 to 0.230	250	70.0 to 130	0.138	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 12:46

Customer ID:

Delivery Date: 5/25/22 14:50

Description: Barry Ash Pond - MW-10

Laboratory ID Number: BC09979

			MB					Standard		Rec		Prec
Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
Iron, Total	mg/L	0.000064	0.0176	0.2	27.0	28.1	0.203	0.170 to 0.230	450	70.0 to 130	3.99	20.0
Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.105	0.103	0.104	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
Lead, Total	mg/L	0.0000003	0.000147	0.100	0.103	0.102	0.102	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.234	0.233	0.205	0.170 to 0.230	105	70.0 to 130	0.428	20.0
Lithium, Total	mg/L	0.00031	0.0154	0.200	0.198	0.204	0.206	0.170 to 0.230	99.0	70.0 to 130	2.99	20.0
Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	18.8	18.6	5.09	4.25 to 5.75	102	70.0 to 130	1.07	20.0
Magnesium, Total	mg/L	0.00180	0.0462	5.00	11.7	11.9	5.21	4.25 to 5.75	98.2	70.0 to 130	1.69	20.0
Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	0.716	0.708	0.103	0.0850 to 0.115	95.0	70.0 to 130	1.12	20.0
Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.541	0.545	0.103	0.0850 to 0.115	104	70.0 to 130	0.737	20.0
Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00335	0.00348	0.00362	0.00340 to 0.00460	83.8	70.0 to 130	3.81	20.0
Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.100	0.101	0.0992	0.0850 to 0.115	98.5	70.0 to 130	0.995	20.0
Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.101	0.102	0.0965	0.0850 to 0.115	97.3	70.0 to 130	0.985	20.0
Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	18.7	18.6	10.3	8.50 to 11.5	98.1	70.0 to 130	0.536	20.0
Potassium, Total	mg/L	-0.0109	0.367	10.0	12.6	12.6	10.5	8.50 to 11.5	101	70.0 to 130	0.00	20.0
Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.105	0.104	0.106	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
Selenium, Total	mg/L	0.000252	0.00100	0.100	0.107	0.106	0.105	0.0850 to 0.115	107	70.0 to 130	0.939	20.0
Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	8.38	8.34	0.999	0.850 to 1.15	98.0	70.0 to 130	0.478	20.0
Silicon, Total	mg/L	0.00083	0.0440	1.00	8.26	8.42	1.04	0.850 to 1.15	114	70.0 to 130	1.92	20.0
Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	63.1	63.0	5.14	4.25 to 5.75	106	70.0 to 130	0.159	20.0
Sodium, Total	mg/L	0.00067	0.0660	5.00	57.9	59.0	5.25	4.25 to 5.75	126	70.0 to 130	1.88	20.0
Sulfate	mg/L	-0.231	2.0	20.0	66.4	66.7	18.9	18.0 to 22.0	77.0	80.0 to 120	0.451	20.0
Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.102	0.102	0.103	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
	Analysis Iron, Total Lead, Dissolved Lead, Total Lithium, Dissolved Lithium, Total Magnesium, Dissolved Magnesium, Total Manganese, Dissolved Manganese, Total Mercury, Total by CVAA Molybdenum, Dissolved Molybdenum, Total Potassium, Dissolved Potassium, Total Selenium, Dissolved Selenium, Total Silicon, Dissolved Silicon, Total Sodium, Dissolved Sodium, Total Sodium, Total Sodium, Total Sodium, Total	Iron, Total mg/L Lead, Dissolved mg/L Lead, Total mg/L Lithium, Dissolved mg/L Lithium, Total mg/L Magnesium, Dissolved mg/L Manganese, Dissolved mg/L Manganese, Total mg/L Mercury, Total by CVAA mg/L Molybdenum, Dissolved mg/L Potassium, Dissolved mg/L Potassium, Total mg/L Selenium, Dissolved mg/L Silicon, Dissolved mg/L Sodium, Dissolved mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sulfate mg/L	Iron, Total	Iron, Total	Iron, Total	MB	MB	Iron, Total	MB	Iron, Total mg/L 0.000064 0.0176 0.2 27.0 28.1 0.203 0.170 to 0.230 450	MB	Analysis Units MB Limit Spike MS MSD Standard Limit Rec Limit Prec Iron, Total mg/L 0.000064 0.0176 0.2 27.0 28.1 0.203 0.170 to 0.230 450 70.0 to 130 3.99 Lead, Dissolved mg/L 0.000046 0.000147 0.100 0.105 0.103 0.104 0.0850 to 0.115 105 70.0 to 130 0.99 Lead, Total mg/L 0.0000034 0.000147 0.100 0.105 0.102 0.102 0.0850 to 0.115 105 70.0 to 130 0.99 Lithium, Dissolved mg/L 0.000152 0.0154 0.200 0.234 0.233 0.205 0.170 to 0.230 105 70.0 to 130 0.426 Lithium, Total mg/L 0.000152 0.0154 0.200 0.198 0.204 0.206 0.170 to 0.230 105 70.0 to 130 0.956 Lithium, Total mg/L 0.00011 0.0462 5.00 18.8 18.6 5.09 4.25 to 5.75 102 70.0 to 130 1.07 Magnesium, Dissolved mg/L 0.00180 0.0462 5.00 11.7 11.9 5.21 4.25 to 5.75 102 70.0 to 130 1.69 Manganese, Dissolved mg/L 0.000087 0.0002 0.100 0.716 0.708 0.103 0.0850 to 0.115 95.0 70.0 to 130 1.73 Manganese, Total mg/L 0.0000087 0.0002 0.100 0.541 0.545 0.103 0.0850 to 0.115 95.0 70.0 to 130 0.737 Mercury, Total by CVAA mg/L 2.750E-05 0.000500 0.004 0.00352 0.00348 0.00362 0.00340 to 0.00460 83.8 70.0 to 130 0.995 Molybdenum, Dissolved mg/L 0.0000176 0.0002 0.100 0.101 0.102 0.0965 0.0850 to 0.115 95.0 70.0 to 130 0.995 Molybdenum, Dissolved mg/L 0.0000114 0.0002 0.100 0.101 0.102 0.0965 0.0850 to 0.115 95.0 70.0 to 130 0.995 Molybdenum, Dissolved mg/L 0.0000140 0.0002 0.100 0.101 0.102 0.0965 0.0850 to 0.115 95.0 70.0 to 130 0.995 Molybdenum, Dissolved mg/L 0.0000140 0.0002 0.100 0.101 0.102 0.0965 0.0850 to 0.115 95.0 70.0 to 130 0.995 Molybdenum, Dissolved mg/L 0.0000140 0.0002 0.100 0.100 0.105 0.106 0.0850 to 0.115 97.3 70.0 to 130 0.995 Selenium, Dissolved mg/L 0.0000431 0.0440 1.00

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 12:46

Customer ID:

Delivery Date: 5/25/22 14:50

Description: Barry Ash Pond - MW-10

Laboratory ID Number: BC09979

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.106	0.103	0.107	0.0850 to 0.115	106	70.0 to 130	2.87	20.0
BC09983	Total Organic Carbon	mg/L	0.303	1.00	10.0	33.9	34.2	10.2		105	80.0 to 120	0.881	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 12:46

Customer ID:

Delivery Date:

5/25/22 14:50

Description: Barry Ash Pond - MW-10

Laboratory ID Number: BC09979

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10001	Alkalinity, Total as CaCO3	mg/L					12.4	53.2	45.0 to 55.0			3.28	10.0
BC09983	Nitrogen, Nitrate/Nitrite	mg/L as N	0.08	0.200	2.00	2.19	0.161	2.01	1.80 to 2.20	110	90.0 to 110	0.00	15.0
BC09986	Solids, Dissolved	mg/L	1.00	25.0			130	49.0	40.0 to 60.0			2.28	10.0

Certificate Of Analysis

Description: Barry Ash Pond Equipment Blank-1Location Code:WMWBARAPEBCollected:5/24/22 13:43

Customer ID:

Submittal Date: 5/25/22 14:51

Laboratory ID Number: BC09980

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	ion Method: EP	A 1638		
* Boron, Total	5/31/22 10:50	6/2/22 09:59	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	5/31/22 10:50	6/2/22 09:59	1.015	Not Detected	mg/L	0.070035	0.406	U
* Iron, Total	5/31/22 10:50	6/2/22 09:59	1.015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Total	5/31/22 10:50	6/2/22 09:59	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 09:59	1.015	Not Detected	mg/L	0.021315	0.406	U
Silica, Total (calc.)	5/31/22 10:50	6/2/22 09:59	1	Not Detected	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 09:59	1.015	Not Detected	mg/L	0.02030	0.25375	U
* Sodium, Total	5/31/22 10:50	6/2/22 09:59	1.015	Not Detected	mg/L	0.03045	0.406	U
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	ion Method: EP	A 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 16:40	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 16:40	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Total	6/1/22 11:30	6/1/22 16:40	1.015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Total	6/1/22 11:30	6/1/22 16:40	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Beryllium, Total	6/1/22 11:30	6/1/22 16:40	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 16:40	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 16:40	1.015	Not Detected	mg/L	0.000203	0.001015	U
* Cobalt, Total	6/1/22 11:30	6/1/22 16:40	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Total	6/1/22 11:30	6/1/22 16:40	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 16:40	1.015	Not Detected	mg/L	0.000152	0.000203	U
* Molybdenum, Total	6/1/22 11:30	6/1/22 16:40	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/1/22 11:30	6/1/22 16:40	1.015	Not Detected	mg/L	0.169505	0.5075	U
* Selenium, Total	6/1/22 11:30	6/1/22 16:40	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 16:40	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB						
* Mercury, Total by CVAA	6/6/22 11:40	6/6/22 14:34	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: CES						
* Nitrogen, Nitrate/Nitrite	5/26/22 13:22	5/26/22 13:2	2 1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2540C	Anal	yst: CNJ						
* Solids, Dissolved	5/25/22 16:30	5/31/22 13:5	8 1	Not Detected	mg/L		25	U

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond Equipment Blank-1

Location Code:

WMWBARAPEB 5/24/22 13:43

Collected:

Customer ID: Submittal Date:

5/25/22 14:51

Laboratory ID Number: BC09980

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM 5310 B	Anai	yst: ELH						
* Total Organic Carbon	5/31/22 17:58	5/31/22 17:5	58 1	Not Detected	mg/L	1.00	2	U
Analytical Method: SM4500Cl E	Anal	yst: CES						
* Chloride	5/31/22 13:39	5/31/22 13:3	39 1	Not Detected	mg/L	0.50	1	U
Analytical Method: SM4500F G 2017	Anai	lyst: JCC						
* Fluoride	6/8/22 11:26	6/8/22 11:26	5 1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Anal	lyst: JCC						
* Sulfate	6/7/22 12:39	6/7/22 12:39) 1	Not Detected	mg/L	0.6	2	U

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAPEB **Sample Date:** 5/24/22 13:43

Customer ID:

Delivery Date: 5/25

5/25/22 14:51

Description: Barry Ash Pond Equipment Blank-1

Laboratory ID Number: BC09980

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.256	0.260	0.108	0.0850 to 0.115	125	70.0 to 130	1.55	20.0
BC09983	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.0985	0.0989	0.0925	0.0850 to 0.115	98.5	70.0 to 130	0.405	20.0
BC09983	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.116	0.116	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC09983	Barium, Total	mg/L	0.000	0.00100	0.100	0.173	0.173	0.0987	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC09983	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.109	0.110	0.105	0.0850 to 0.115	109	70.0 to 130	0.913	20.0
BC09983	Boron, Total	mg/L	0.000087	0.0650	1.00	1.05	1.08	1.02	0.850 to 1.15	100	70.0 to 130	2.82	20.0
BC09983	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0994	0.0987	0.100	0.0850 to 0.115	99.4	70.0 to 130	0.707	20.0
BC09983	Calcium, Total	mg/L	0.00617	0.152	5.00	23.9	24.2	4.91	4.25 to 5.75	98.0	70.0 to 130	1.25	20.0
BC09983	Chloride	mg/L	-0.129	1.00	40.0	74.3	75.5	9.80	9.00 to 11.0	90.2	80.0 to 120	1.60	20.0
BC09983	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.108	0.109	0.101	0.0850 to 0.115	101	70.0 to 130	0.922	20.0
BC09983	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.103	0.104	0.101	0.0850 to 0.115	101	70.0 to 130	0.966	20.0
BC09983	Fluoride	mg/L	-0.043	0.125	2.50	2.76	2.80	2.53	2.25 to 2.75	105	80.0 to 120	1.44	20.0
BC09983	Iron, Total	mg/L	0.000064	0.0176	0.2	27.0	28.1	0.203	0.170 to 0.230	450	70.0 to 130	3.99	20.0
BC09983	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.103	0.102	0.102	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC09983	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.198	0.204	0.206	0.170 to 0.230	99.0	70.0 to 130	2.99	20.0
BC09983	Magnesium, Total	mg/L	0.00180	0.0462	5.00	11.7	11.9	5.21	4.25 to 5.75	98.2	70.0 to 130	1.69	20.0
BC09983	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.541	0.545	0.103	0.0850 to 0.115	104	70.0 to 130	0.737	20.0
BC09983	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00335	0.00348	0.00362	0.00340 to 0.00460	83.8	70.0 to 130	3.81	20.0
BC09983	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.101	0.102	0.0965	0.0850 to 0.115	97.3	70.0 to 130	0.985	20.0
BC09983	Potassium, Total	mg/L	-0.0109	0.367	10.0	12.6	12.6	10.5	8.50 to 11.5	101	70.0 to 130	0.00	20.0
BC09983	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.107	0.106	0.105	0.0850 to 0.115	107	70.0 to 130	0.939	20.0
BC09983	Silicon, Total	mg/L	0.00083	0.0440	1.00	8.26	8.42	1.04	0.850 to 1.15	114	70.0 to 130	1.92	20.0
BC09983	Sodium, Total	mg/L	0.00067	0.0660	5.00	57.9	59.0	5.25	4.25 to 5.75	126	70.0 to 130	1.88	20.0

Batch QC Summary

Customer Account: WMWBARAPEB **Sample Date:** 5/24/22 13:43

Customer ID:

Delivery Date: 5/25/22 14:51

Description: Barry Ash Pond Equipment Blank-1

Laboratory ID Number: BC09980

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Sulfate	mg/L	-0.231	2.0	20.0	66.4	66.7	18.9	18.0 to 22.0	77.0	80.0 to 120	0.451	20.0
BC09983	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.106	0.103	0.107	0.0850 to 0.115	106	70.0 to 130	2.87	20.0
BC09983	Total Organic Carbon	mg/L	0.303	1.00	10.0	33.9	34.2	10.2		105	80.0 to 120	0.881	20.0

Batch QC Summary

Customer Account: WMWBARAPEB

Sample Date: 5/2

5/24/22 13:43

Customer ID:

Delivery Date: 5/25/22 14:51

Description: Barry Ash Pond Equipment Blank-1

Laboratory ID Number: BC09980

					MB			Sample		Standard		Rec		Prec
5	Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
ВС	09983	Nitrogen, Nitrate/Nitrite	mg/L as N	0.08	0.200	2.00	2.19	0.161	2.01	1.80 to 2.20	110	90.0 to 110	0.00	15.0
ВС	09986	Solids, Dissolved	mg/L	1.00	25.0			130	49.0	40.0 to 60.0			2.28	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-10VLocation Code:WMWBARAPCollected:5/24/22 14:44

Customer ID:

Submittal Date: 5/25/22 14:50

Laboratory ID Number: BC09981

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	ion Method: I	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 10:01	1.015	0.938	mg/L	0.030000	0.1015	
* Calcium, Total	5/31/22 10:50	6/2/22 10:35	50.75	65.0	mg/L	3.50175	20.3	
* Iron, Total	5/31/22 10:50	6/2/22 10:35	50.75	106	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 10:01	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 10:01	1.015	11.4	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 10:01	1	29.7	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 10:01	1.015	13.9	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 10:01	1.015	22.7	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 10:50	1.015	0.939	mg/L	0.030000	0.1015	
* Calcium, Dissolved	5/27/22 09:45	6/1/22 11:31	50.75	64.2	mg/L	3.50175	20.3	
* Iron, Dissolved	5/27/22 09:45	6/1/22 11:31	50.75	101	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 10:50	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 10:50	1.015	11.5	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 10:50	1	29.5	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 10:50	1.015	13.8	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 10:50	1.015	22.8	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	ion Method: I	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 16:44	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 16:44	1.015	0.00682	mg/L	0.006090	0.01015	J
* Arsenic, Total	6/1/22 11:30	6/1/22 16:44	1.015	0.000362	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 16:44	1.015	0.188	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 16:44	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 16:44	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 16:44	1.015	0.000493	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 16:44	1.015	0.000618	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 16:44		Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 16:44	1.015	0.812	mg/L	0.000152	0.000203	
Molybdenum, Total	6/1/22 11:30	6/1/22 16:44		0.000111	mg/L	0.000102	0.000203	J
* Potassium, Total	6/1/22 11:30	6/1/22 16:44		2.12	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-10VLocation Code:WMWBARAPCollected:5/24/22 14:44

Customer ID:

Laboratory ID Number: BC09981 Submittal Date: 5/25/22 14:50

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 16:44		1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 16:44	,	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 16:0	5	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 16:0	5	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 16:0	5	1.015	0.000320	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 16:0	5	1.015	0.194	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 16:0	5	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 16:0	5	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 16:0	5	1.015	0.000624	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 16:0	5	1.015	0.000670	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 16:0	5	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 16:0	5	1.015	0.811	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 16:0	5	1.015	0.000148	mg/L	0.000102	0.000203	J
* Potassium, Dissolved	5/31/22 14:15	5/31/22 16:0	5	1.015	1.99	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 16:0	5	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 16:0	5	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 11:40	6/6/22 14:36	;	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: CES							
* Nitrogen, Nitrate/Nitrite	5/26/22 13:23	5/26/22 13:2	3	1	0.271	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/6/22 13:15	6/6/22 15:32		1	351	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: JS							
* Solids, Dissolved	5/27/22 11:00	6/2/22 15:15	;	1	403	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32		1	351	mg/L			
Carbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32		1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		yst: ELH							
* Total Organic Carbon	5/31/22 18:17	-	7	1	12.0	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-10V

Location Code:

WMWBARAP

Collected:

Customer ID: Submittal Date: 5/24/22 14:44

5/25/22 14:50

Laboratory ID Number: BC09981								
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anal	lyst: CES						
* Chloride	5/31/22 13:46	5/31/22 13:4	6 2	19.4	mg/L	1.00	2	
Analytical Method: SM4500F G 2017	Anal	lyst: JCC						
* Fluoride	6/8/22 11:27	6/8/22 11:27	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Anal	lyst: JCC						
* Sulfate	6/7/22 12:40	6/7/22 12:40	1	5.73	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	lyst: DKG						
Conductivity	5/24/22 14:41	5/24/22 14:4	1	726.04	uS/cm			FA
рН	5/24/22 14:41	5/24/22 14:4	1	5.77	SU			FA
Temperature	5/24/22 14:41	5/24/22 14:4	1	21.44	С			FA
Turbidity	5/24/22 14:41	5/24/22 14:4	1	1.76	NTU			FA
Sulfide	5/24/22 14:41	5/24/22 14:4	1	0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 14:44

Customer ID:

Delivery Date: 5/25/22 14:50

Description: Barry Ash Pond - MW-10V

Laboratory ID Number: BC09981

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09985	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.105	0.103	0.102	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09983	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.256	0.260	0.108	0.0850 to 0.115	125	70.0 to 130	1.55	20.0
BC09985	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.101	0.0984	0.0949	0.0850 to 0.115	101	70.0 to 130	2.61	20.0
BC09983	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.0985	0.0989	0.0925	0.0850 to 0.115	98.5	70.0 to 130	0.405	20.0
BC09985	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.118	0.117	0.104	0.0850 to 0.115	103	70.0 to 130	0.851	20.0
BC09983	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.116	0.116	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC09985	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.167	0.168	0.102	0.0850 to 0.115	97.3	70.0 to 130	0.597	20.0
BC09983	Barium, Total	mg/L	0.000	0.00100	0.100	0.173	0.173	0.0987	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC09985	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.108	0.103	0.100	0.0850 to 0.115	108	70.0 to 130	4.74	20.0
BC09983	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.109	0.110	0.105	0.0850 to 0.115	109	70.0 to 130	0.913	20.0
BC09985	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.09	1.08	1.01	0.850 to 1.15	103	70.0 to 130	0.922	20.0
BC09983	Boron, Total	mg/L	0.000087	0.0650	1.00	1.05	1.08	1.02	0.850 to 1.15	100	70.0 to 130	2.82	20.0
BC09985	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.104	0.103	0.101	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC09983	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0994	0.0987	0.100	0.0850 to 0.115	99.4	70.0 to 130	0.707	20.0
BC09985	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	31.2	31.0	4.87	4.25 to 5.75	92.0	70.0 to 130	0.643	20.0
BC09983	Calcium, Total	mg/L	0.00617	0.152	5.00	23.9	24.2	4.91	4.25 to 5.75	98.0	70.0 to 130	1.25	20.0
BC09983	Chloride	mg/L	-0.129	1.00	40.0	74.3	75.5	9.80	9.00 to 11.0	90.2	80.0 to 120	1.60	20.0
BC09985	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.104	0.100	0.100	0.0850 to 0.115	101	70.0 to 130	3.92	20.0
BC09983	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.108	0.109	0.101	0.0850 to 0.115	101	70.0 to 130	0.922	20.0
BC09985	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.107	0.104	0.104	0.0850 to 0.115	106	70.0 to 130	2.84	20.0
BC09983	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.103	0.104	0.101	0.0850 to 0.115	101	70.0 to 130	0.966	20.0
BC09983	Fluoride	mg/L	-0.043	0.125	2.50	2.76	2.80	2.53	2.25 to 2.75	105	80.0 to 120	1.44	20.0
BC09985	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	72.2	72.3	0.200	0.170 to 0.230	250	70.0 to 130	0.138	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/24/22 14:44

Customer ID:

Delivery Date: 5/25/22 14:50

Description: Barry Ash Pond - MW-10V

Laboratory ID Number: BC09981

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Iron, Total	mg/L	0.000064	0.0176	0.2	27.0	28.1	0.203	0.170 to 0.230	450	70.0 to 130	3.99	20.0
BC09985	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.105	0.103	0.104	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09983	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.103	0.102	0.102	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC09985	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.234	0.233	0.205	0.170 to 0.230	105	70.0 to 130	0.428	20.0
BC09983	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.198	0.204	0.206	0.170 to 0.230	99.0	70.0 to 130	2.99	20.0
BC09985	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	18.8	18.6	5.09	4.25 to 5.75	102	70.0 to 130	1.07	20.0
BC09983	Magnesium, Total	mg/L	0.00180	0.0462	5.00	11.7	11.9	5.21	4.25 to 5.75	98.2	70.0 to 130	1.69	20.0
BC09985	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	0.716	0.708	0.103	0.0850 to 0.115	95.0	70.0 to 130	1.12	20.0
BC09983	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.541	0.545	0.103	0.0850 to 0.115	104	70.0 to 130	0.737	20.0
BC09983	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00335	0.00348	0.00362	0.00340 to 0.00460	83.8	70.0 to 130	3.81	20.0
BC09985	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.100	0.101	0.0992	0.0850 to 0.115	98.5	70.0 to 130	0.995	20.0
BC09983	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.101	0.102	0.0965	0.0850 to 0.115	97.3	70.0 to 130	0.985	20.0
BC09985	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	18.7	18.6	10.3	8.50 to 11.5	98.1	70.0 to 130	0.536	20.0
BC09983	Potassium, Total	mg/L	-0.0109	0.367	10.0	12.6	12.6	10.5	8.50 to 11.5	101	70.0 to 130	0.00	20.0
BC09985	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.105	0.104	0.106	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09983	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.107	0.106	0.105	0.0850 to 0.115	107	70.0 to 130	0.939	20.0
BC09985	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	8.38	8.34	0.999	0.850 to 1.15	98.0	70.0 to 130	0.478	20.0
BC09983	Silicon, Total	mg/L	0.00083	0.0440	1.00	8.26	8.42	1.04	0.850 to 1.15	114	70.0 to 130	1.92	20.0
BC09985	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	63.1	63.0	5.14	4.25 to 5.75	106	70.0 to 130	0.159	20.0
BC09983	Sodium, Total	mg/L	0.00067	0.0660	5.00	57.9	59.0	5.25	4.25 to 5.75	126	70.0 to 130	1.88	20.0
BC09983	Sulfate	mg/L	-0.231	2.0	20.0	66.4	66.7	18.9	18.0 to 22.0	77.0	80.0 to 120	0.451	20.0
BC09985	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.102	0.102	0.103	0.0850 to 0.115	102	70.0 to 130	0.00	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 14:44

Customer ID:

Delivery Date: 5

5/25/22 14:50

Description: Barry Ash Pond - MW-10V

Laboratory ID Number: BC09981

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.106	0.103	0.107	0.0850 to 0.115	106	70.0 to 130	2.87	20.0
BC09983	Total Organic Carbon	mg/L	0.303	1.00	10.0	33.9	34.2	10.2		105	80.0 to 120	0.881	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 14:44

Customer ID:

Delivery Date:

5/25/22 14:50

Description: Barry Ash Pond - MW-10V

Laboratory ID Number: BC09981

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10001	Alkalinity, Total as CaCO3	mg/L					12.4	53.2	45.0 to 55.0			3.28	10.0
BC09983	Nitrogen, Nitrate/Nitrite	mg/L as N	0.08	0.200	2.00	2.19	0.161	2.01	1.80 to 2.20	110	90.0 to 110	0.00	15.0
BC09982	Solids, Dissolved	mg/L	0.0000	25.0			271	53.0	40.0 to 60.0			5.30	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-13

Collected:

Location Code: WMWBARAP **Collected:** 5/24/22 15:55

Customer ID:

Submittal Date: 5/25/22 14:50

Laboratory ID Number: BC09982				Submit	tal Date:	5/25/22 14:5	0	
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparat	ion Method: I	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 10:04	1.015	0.0457	mg/L	0.030000	0.1015	J
* Calcium, Total	5/31/22 10:50	6/2/22 10:04	1.015	19.2	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 10:39	50.75	27.1	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 10:04	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 10:04	1.015	6.94	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 10:04	1	15.6	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 10:04	1.015	7.28	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 10:39	50.75	53.9	mg/L	1.5225	20.3	
Analytical Method: EPA 200.7	Analy	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 10:53	1.015	0.0448	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	5/27/22 09:45	6/1/22 10:53	1.015	19.2	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 11:34	50.75	26.2	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 10:53	1.015	Not Detected	mg/L	0.007105	0.01999956	U
Magnesium, Dissolved	5/27/22 09:45	6/1/22 10:53	1.015	6.79	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 10:53	3 1	15.1	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 10:53	1.015	7.07	mg/L	0.02030	0.25375	
Sodium, Dissolved	5/27/22 09:45	6/1/22 11:34	50.75	54.5	mg/L	1.5225	20.3	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	ion Method: I	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 16:48	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 16:48	1.015	0.116	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 16:48	1.015	0.0128	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 16:48	1.015	0.0723	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 16:48	1.015	Not Detected	mg/L	0.000406	0.001015	U
· Cadmium, Total	6/1/22 11:30	6/1/22 16:48	3 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 16:48	3 1.015	0.00685	mg/L	0.000203	0.001015	
* Cobalt, Total	6/1/22 11:30	6/1/22 16:48	3 1.015	0.00189	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 16:48	3 1.015	0.000146	mg/L	0.000068	0.000203	J
* Manganese, Total	6/1/22 11:30	6/1/22 16:48	3 1.015	0.451	mg/L	0.000152	0.000203	
Molybdenum, Total	6/1/22 11:30	6/1/22 16:48		0.00356	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 16:48		2.52	mg/L	0.169505	0.5075	
	0/1/22 11.30	5/ 1/22 10.4C	, 1.010	2.02	9, =	0.100000	0.0070	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Location Code: WMWBARAP Description: Barry Ash Pond - MW-13 Collected:

5/24/22 15:55

Customer ID:

Submittal Date: 5/25/22 14:50

Laboratory ID Number: BC09982					Submit	iai Date:	5/25/22 14:5	0	
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 16:48	3	1.015	0.000558	mg/L	0.000508	0.001015	J
* Thallium, Total	6/1/22 11:30	6/1/22 16:48	3	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anai	lyst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 16:0)9	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 16:0	09	1.015	0.0115	mg/L	0.006090	0.01015	
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 16:0	09	1.015	0.0132	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 16:0	09	1.015	0.0718	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 16:0	09	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 16:0	09	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 16:0	09	1.015	0.00634	mg/L	0.000203	0.001015	
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 16:0	09	1.015	0.00202	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 16:0	09	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 16:0	09	1.015	0.455	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 16:0	09	1.015	0.00341	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 16:0	09	1.015	2.43	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 16:0	09	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 16:0	09	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anai	lyst: CRB							
* Mercury, Total by CVAA	6/6/22 11:40	6/6/22 14:38	3	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anai	lyst: CES							
* Nitrogen, Nitrate/Nitrite	5/26/22 13:25	5/26/22 13:2	25	1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Anai	lyst: ALH							
Alkalinity, Total as CaCO3	6/6/22 13:15	6/6/22 15:32	2	1	166	mg/L		0.1	
Analytical Method: SM 2540C	Anai	lyst: JS							
* Solids, Dissolved	5/27/22 11:00	6/2/22 15:15	5	1	257	mg/L		25	
Analytical Method: SM 4500CO2 D	Anai	lyst: ALH							
Bicarbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32	2	1	166	mg/L			
Carbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32	2	1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		lyst: ELH							
* Total Organic Carbon		5/31/22 18:4	40	1	24.0	mg/L	1.00	2	
		_				-			

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-13

Location Code:

WMWBARAP

Collected:

Customer ID:

5/24/22 15:55

Laboratory ID Number: BC09982

Submittal Date:

Date: 5/25/22 14:50

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500CI E	Anal	yst: CES							
* Chloride	5/31/22 13:47	5/31/22 13:4	47 4		43.5	mg/L	2.00	4	
Analytical Method: SM4500F G 2017	Anal	yst: JCC							
* Fluoride	6/8/22 11:28	6/8/22 11:28	8 1		0.0769	mg/L	0.06	0.125	J
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC							
* Sulfate	6/7/22 12:41	6/7/22 12:4	1 1		38.3	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	yst: DKG							
Conductivity	5/24/22 15:52	5/24/22 15:	52		445.45	uS/cm			FA
рН	5/24/22 15:52	5/24/22 15:	52		5.50	SU			FA
Temperature	5/24/22 15:52	5/24/22 15:	52		20.79	С			FA
Turbidity	5/24/22 15:52	5/24/22 15:	52		4.94	NTU			FA
Sulfide	5/24/22 15:52	5/24/22 15:	52		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP 5/24/22 15:55

Sample Date:

Customer ID:

Delivery Date: 5/25/22 14:50

Description: Barry Ash Pond - MW-13

Laboratory ID Number: BC09982

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09985	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.105	0.103	0.102	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09983	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.256	0.260	0.108	0.0850 to 0.115	125	70.0 to 130	1.55	20.0
BC09985	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.101	0.0984	0.0949	0.0850 to 0.115	101	70.0 to 130	2.61	20.0
BC09983	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.0985	0.0989	0.0925	0.0850 to 0.115	98.5	70.0 to 130	0.405	20.0
BC09985	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.118	0.117	0.104	0.0850 to 0.115	103	70.0 to 130	0.851	20.0
BC09983	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.116	0.116	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC09985	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.167	0.168	0.102	0.0850 to 0.115	97.3	70.0 to 130	0.597	20.0
BC09983	Barium, Total	mg/L	0.000	0.00100	0.100	0.173	0.173	0.0987	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC09985	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.108	0.103	0.100	0.0850 to 0.115	108	70.0 to 130	4.74	20.0
BC09983	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.109	0.110	0.105	0.0850 to 0.115	109	70.0 to 130	0.913	20.0
BC09985	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.09	1.08	1.01	0.850 to 1.15	103	70.0 to 130	0.922	20.0
BC09983	Boron, Total	mg/L	0.000087	0.0650	1.00	1.05	1.08	1.02	0.850 to 1.15	100	70.0 to 130	2.82	20.0
BC09985	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.104	0.103	0.101	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC09983	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0994	0.0987	0.100	0.0850 to 0.115	99.4	70.0 to 130	0.707	20.0
BC09985	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	31.2	31.0	4.87	4.25 to 5.75	92.0	70.0 to 130	0.643	20.0
BC09983	Calcium, Total	mg/L	0.00617	0.152	5.00	23.9	24.2	4.91	4.25 to 5.75	98.0	70.0 to 130	1.25	20.0
BC09983	Chloride	mg/L	-0.129	1.00	40.0	74.3	75.5	9.80	9.00 to 11.0	90.2	80.0 to 120	1.60	20.0
BC09985	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.104	0.100	0.100	0.0850 to 0.115	101	70.0 to 130	3.92	20.0
BC09983	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.108	0.109	0.101	0.0850 to 0.115	101	70.0 to 130	0.922	20.0
BC09985	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.107	0.104	0.104	0.0850 to 0.115	106	70.0 to 130	2.84	20.0
BC09983	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.103	0.104	0.101	0.0850 to 0.115	101	70.0 to 130	0.966	20.0
BC09983	Fluoride	mg/L	-0.043	0.125	2.50	2.76	2.80	2.53	2.25 to 2.75	105	80.0 to 120	1.44	20.0
BC09985	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	72.2	72.3	0.200	0.170 to 0.230	250	70.0 to 130	0.138	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 15:55

Customer ID:

-4-----ID-

Delivery Date:

5/25/22 14:50

Description: Barry Ash Pond - MW-13

Laboratory ID Number: BC09982

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Iron, Total	mg/L	0.000064	0.0176	0.2	27.0	28.1	0.203	0.170 to 0.230	450	70.0 to 130	3.99	20.0
BC09985	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.105	0.103	0.104	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09983	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.103	0.102	0.102	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC09985	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.234	0.233	0.205	0.170 to 0.230	105	70.0 to 130	0.428	20.0
BC09983	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.198	0.204	0.206	0.170 to 0.230	99.0	70.0 to 130	2.99	20.0
BC09985	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	18.8	18.6	5.09	4.25 to 5.75	102	70.0 to 130	1.07	20.0
BC09983	Magnesium, Total	mg/L	0.00180	0.0462	5.00	11.7	11.9	5.21	4.25 to 5.75	98.2	70.0 to 130	1.69	20.0
BC09985	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	0.716	0.708	0.103	0.0850 to 0.115	95.0	70.0 to 130	1.12	20.0
BC09983	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.541	0.545	0.103	0.0850 to 0.115	104	70.0 to 130	0.737	20.0
BC09983	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00335	0.00348	0.00362	0.00340 to 0.00460	83.8	70.0 to 130	3.81	20.0
BC09985	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.100	0.101	0.0992	0.0850 to 0.115	98.5	70.0 to 130	0.995	20.0
BC09983	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.101	0.102	0.0965	0.0850 to 0.115	97.3	70.0 to 130	0.985	20.0
BC09985	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	18.7	18.6	10.3	8.50 to 11.5	98.1	70.0 to 130	0.536	20.0
BC09983	Potassium, Total	mg/L	-0.0109	0.367	10.0	12.6	12.6	10.5	8.50 to 11.5	101	70.0 to 130	0.00	20.0
BC09985	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.105	0.104	0.106	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09983	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.107	0.106	0.105	0.0850 to 0.115	107	70.0 to 130	0.939	20.0
BC09985	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	8.38	8.34	0.999	0.850 to 1.15	98.0	70.0 to 130	0.478	20.0
BC09983	Silicon, Total	mg/L	0.00083	0.0440	1.00	8.26	8.42	1.04	0.850 to 1.15	114	70.0 to 130	1.92	20.0
BC09985	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	63.1	63.0	5.14	4.25 to 5.75	106	70.0 to 130	0.159	20.0
BC09983	Sodium, Total	mg/L	0.00067	0.0660	5.00	57.9	59.0	5.25	4.25 to 5.75	126	70.0 to 130	1.88	20.0
BC09983	Sulfate	mg/L	-0.231	2.0	20.0	66.4	66.7	18.9	18.0 to 22.0	77.0	80.0 to 120	0.451	20.0
BC09985	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.102	0.102	0.103	0.0850 to 0.115	102	70.0 to 130	0.00	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 15:55

Customer ID:

Delivery Date: 5/25/22 14:50

Description: Barry Ash Pond - MW-13

Laboratory ID Number: BC09982

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.106	0.103	0.107	0.0850 to 0.115	106	70.0 to 130	2.87	20.0
BC09983	Total Organic Carbon	mg/L	0.303	1.00	10.0	33.9	34.2	10.2		105	80.0 to 120	0.881	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date: 5

5/24/22 15:55

Customer ID:

Delivery Date:

5/25/22 14:50

Description: Barry Ash Pond - MW-13

Laboratory ID Number: BC09982

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10001	Alkalinity, Total as CaCO3	mg/L					12.4	53.2	45.0 to 55.0			3.28	10.0
BC09983	Nitrogen, Nitrate/Nitrite	mg/L as N	0.08	0.200	2.00	2.19	0.161	2.01	1.80 to 2.20	110	90.0 to 110	0.00	15.0
BC09982	Solids, Dissolved	mg/L	0.0000	25.0			271	53.0	40.0 to 60.0			5.30	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-13 DupLocation Code:WMWBARAPCollected:5/24/22 15:55

Customer ID:

Laboratory ID Number: BC09983 Submittal Date: 5/25/22 14:50

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q	
Analytical Method: EPA 200.7	Anal	Analyst: RDA			Preparation Method: EPA 1638				
* Boron, Total	5/31/22 10:50	6/2/22 10:07	1.015	0.0453	mg/L	0.030000	0.1015	J	
* Calcium, Total	5/31/22 10:50	6/2/22 10:07	1.015	19.0	mg/L	0.070035	0.406		
* Iron, Total	5/31/22 10:50	6/2/22 10:42	50.75	26.1	mg/L	0.40600	2.03	RA	
* Lithium, Total	5/31/22 10:50	6/2/22 10:07	1.015	Not Detected	mg/L	0.007105	0.01999956	U	
* Magnesium, Total	5/31/22 10:50	6/2/22 10:07	1.015	6.79	mg/L	0.021315	0.406		
Silica, Total (calc.)	5/31/22 10:50	6/2/22 10:07	1	15.2	mg/L				
Silicon, Total	5/31/22 10:50	6/2/22 10:07	1.015	7.12	mg/L	0.02030	0.25375		
* Sodium, Total	5/31/22 10:50	6/2/22 10:42	50.75	51.6	mg/L	1.5225	20.3	RA	
Analytical Method: EPA 200.7	Anal	yst: RDA							
* Boron, Dissolved	5/27/22 09:45	6/1/22 10:56	1.015	0.0451	mg/L	0.030000	0.1015	J	
* Calcium, Dissolved	5/27/22 09:45	6/1/22 10:56	1.015	19.0	mg/L	0.070035	0.406		
* Iron, Dissolved	5/27/22 09:45	6/1/22 11:38	50.75	26.2	mg/L	0.40600	2.03		
* Lithium, Dissolved	5/27/22 09:45	6/1/22 10:56	1.015	Not Detected	mg/L	0.007105	0.01999956	U	
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 10:56	1.015	6.89	mg/L	0.021315	0.406		
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 10:56	1	15.2	mg/L				
Silicon, Dissolved	5/27/22 09:45	6/1/22 10:56	1.015	7.11	mg/L	0.02030	0.25375		
* Sodium, Dissolved	5/27/22 09:45	6/1/22 11:38	50.75	54.8	mg/L	1.5225	20.3		
Analytical Method: EPA 200.8	Anal	Analyst: DLJ		Preparation Method: EPA 1638					
* Antimony, Total	6/1/22 11:30	6/1/22 16:51	1.015	Not Detected	mg/L	0.000508	0.001015	U	
* Aluminum, Total	6/1/22 11:30	6/1/22 16:51	1.015	0.131	mg/L	0.006090	0.01015		
* Arsenic, Total	6/1/22 11:30	6/1/22 16:51	1.015	0.0131	mg/L	0.000081	0.000203		
* Barium, Total	6/1/22 11:30	6/1/22 16:51	1.015	0.0721	mg/L	0.000508	0.001015		
* Beryllium, Total	6/1/22 11:30	6/1/22 16:51	1.015	Not Detected	mg/L	0.000406	0.001015	U	
* Cadmium, Total	6/1/22 11:30	6/1/22 16:51	1.015	Not Detected	mg/L	0.000068	0.000203	U	
* Chromium, Total	6/1/22 11:30	6/1/22 16:51	1.015	0.00665	mg/L	0.000203	0.001015		
* Cobalt, Total	6/1/22 11:30	6/1/22 16:51	1.015	0.00187	mg/L	0.000068	0.000203		
* Lead, Total	6/1/22 11:30	6/1/22 16:51	1.015	0.000170	mg/L	0.000068	0.000203	J	
* Manganese, Total	6/1/22 11:30	6/1/22 16:51	1.015	0.437	mg/L	0.000152	0.000203		
* Molybdenum, Total	6/1/22 11:30	6/1/22 16:51	1.015	0.00369	mg/L	0.000102	0.000203		
* Potassium, Total	6/1/22 11:30	6/1/22 16:51		2.46	mg/L	0.169505	0.5075		

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-13 DupLocation Code:WMWBARAPCollected:5/24/22 15:55

Customer ID:

Submittal Date: 5/25/22 14:50

Laboratory ID Number: BC09983

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 16:51		1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 16:51	Ì	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 16:1	13	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 16:1	13	1.015	0.0112	mg/L	0.006090	0.01015	
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 16:1	13	1.015	0.0130	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 16:1	13	1.015	0.0713	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 16:1	13	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 16:1	13	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 16:1	13	1.015	0.00632	mg/L	0.000203	0.001015	
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 16:1	13	1.015	0.00184	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 16:1	13	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 16:1	13	1.015	0.440	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 16:1	13	1.015	0.00350	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 16:1	13	1.015	2.28	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 16:1	13	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 16:1	13	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 11:40	6/6/22 14:41	I	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: CES							
* Nitrogen, Nitrate/Nitrite	5/26/22 13:27	5/26/22 13:2	27	1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/6/22 13:15	6/6/22 15:32	2	1	182	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: JS							
* Solids, Dissolved	5/27/22 11:00	6/2/22 15:15	5	1	259	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32	2	1	182	mg/L			
Carbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32	2	1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		yst: ELH							
* Total Organic Carbon	5/31/22 18:58		58	1	23.4	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-13 Dup

Location Code:

WMWBARAP

Collected:

Customer ID: Submittal Date:

5/24/22 15:55

5/25/22 14:50

Laboratory ID Number: BC09983

Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Anal	yst: CES							
5/31/22 13:49	5/31/22 13:4	49 4	4	38.2	mg/L	2.00	4	
Anal	lyst: JCC							
6/8/22 11:29	6/8/22 11:29	9 -	1	0.124	mg/L	0.06	0.125	J
Anal	lyst: JCC							
6/7/22 13:22	6/7/22 13:22	2 2	2	51.0	mg/L	1.2	4	R
Anal	lyst: DKG							
5/24/22 15:52	5/24/22 15:	52		445.45	uS/cm			FA
5/24/22 15:52	5/24/22 15:	52		5.50	SU			FA
5/24/22 15:52	5/24/22 15:	52		20.79	С			FA
5/24/22 15:52	5/24/22 15:	52		4.94	NTU			FA
5/24/22 15:52	5/24/22 15:	52		0	mg/L			FA
	Anai 5/31/22 13:49 Anai 6/8/22 11:29 Anai 6/7/22 13:22 Anai 5/24/22 15:52 5/24/22 15:52 5/24/22 15:52 5/24/22 15:52	Analyst: CES 5/31/22 13:49 5/31/22 13:4 Analyst: JCC 6/8/22 11:29 6/8/22 11:29 Analyst: JCC 6/7/22 13:22 6/7/22 13:2: Analyst: DKG 5/24/22 15:52 5/24/22 15:5 5/24/22 15:52 5/24/22 15:5 5/24/22 15:52 5/24/22 15:5 5/24/22 15:52 5/24/22 15:5	Analyst: CES 5/31/22 13:49	Analyst: CES 5/31/22 13:49 5/31/22 13:49 4 Analyst: JCC 6/8/22 11:29 6/8/22 11:29 1 Analyst: JCC 6/7/22 13:22 6/7/22 13:22 2 Analyst: DKG 5/24/22 15:52 5/24/22 15:52 5/24/22 15:52 5/24/22 15:52 5/24/22 15:52 5/24/22 15:52 5/24/22 15:52 5/24/22 15:52	Analyst: CES 5/31/22 13:49 5/31/22 13:49 4 38.2 Analyst: JCC 6/8/22 11:29 6/8/22 11:29 1 0.124 Analyst: JCC 6/7/22 13:22 6/7/22 13:22 2 51.0 Analyst: DKG 5/24/22 15:52 5/24/22 15:52 445.45 5/24/22 15:52 5/24/22 15:52 5.50 5/24/22 15:52 5/24/22 15:52 20.79 5/24/22 15:52 5/24/22 15:52 4.94	Analyst: CES 5/31/22 13:49 5/31/22 13:49 4 38.2 mg/L Analyst: JCC 6/8/22 11:29 6/8/22 11:29 1 0.124 mg/L Analyst: JCC 6/7/22 13:22 6/7/22 13:22 2 51.0 mg/L Analyst: DKG 5/24/22 15:52 5/24/22 15:52 445.45 uS/cm 5/24/22 15:52 5/24/22 15:52 5.50 SU 5/24/22 15:52 5/24/22 15:52 20.79 C 5/24/22 15:52 5/24/22 15:52 4.94 NTU	Analyst: CES 5/31/22 13:49 5/31/22 13:49 4 38.2 mg/L 2.00 Analyst: JCC 6/8/22 11:29 6/8/22 11:29 1 0.124 mg/L 0.06 Analyst: JCC 6/7/22 13:22 6/7/22 13:22 2 51.0 mg/L 1.2 Analyst: DKG 5/24/22 15:52 5/24/22 15:52 445.45 uS/cm 5/24/22 15:52 5/24/22 15:52 5.50 SU 5/24/22 15:52 5/24/22 15:52 20.79 C 5/24/22 15:52 5/24/22 15:52 4.94 NTU	Analyst: CES 5/31/22 13:49 5/31/22 13:49 4 38.2 mg/L 2.00 4 Analyst: JCC 6/8/22 11:29 6/8/22 11:29 1 0.124 mg/L 0.06 0.125 Analyst: JCC 6/7/22 13:22 6/7/22 13:22 2 51.0 mg/L 1.2 4 Analyst: DKG 5/24/22 15:52 5/24/22 15:52 445.45 uS/cm 5/24/22 15:52 5/24/22 15:52 5.50 SU 5/24/22 15:52 5/24/22 15:52 20.79 C 5/24/22 15:52 5/24/22 15:52 4.94 NTU

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 15:55

Customer ID:

Delivery Date: 5/25/22 14:50

Description: Barry Ash Pond - MW-13 Dup

Laboratory ID Number: BC09983

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	l Limit	Rec	Limit	Prec	Limit
BC09985	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.105	0.103	0.102	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09983	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.256	0.260	0.108	0.0850 to 0.115	125	70.0 to 130	1.55	20.0
BC09985	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.101	0.0984	0.0949	0.0850 to 0.115	101	70.0 to 130	2.61	20.0
BC09983	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.0985	0.0989	0.0925	0.0850 to 0.115	98.5	70.0 to 130	0.405	20.0
BC09985	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.118	0.117	0.104	0.0850 to 0.115	103	70.0 to 130	0.851	20.0
BC09983	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.116	0.116	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC09985	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.167	0.168	0.102	0.0850 to 0.115	97.3	70.0 to 130	0.597	20.0
BC09983	Barium, Total	mg/L	0.000	0.00100	0.100	0.173	0.173	0.0987	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC09985	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.108	0.103	0.100	0.0850 to 0.115	108	70.0 to 130	4.74	20.0
BC09983	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.109	0.110	0.105	0.0850 to 0.115	109	70.0 to 130	0.913	20.0
BC09985	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.09	1.08	1.01	0.850 to 1.15	103	70.0 to 130	0.922	20.0
BC09983	Boron, Total	mg/L	0.000087	0.0650	1.00	1.05	1.08	1.02	0.850 to 1.15	100	70.0 to 130	2.82	20.0
BC09985	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.104	0.103	0.101	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC09983	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0994	0.0987	0.100	0.0850 to 0.115	99.4	70.0 to 130	0.707	20.0
BC09985	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	31.2	31.0	4.87	4.25 to 5.75	92.0	70.0 to 130	0.643	20.0
BC09983	Calcium, Total	mg/L	0.00617	0.152	5.00	23.9	24.2	4.91	4.25 to 5.75	98.0	70.0 to 130	1.25	20.0
BC09983	Chloride	mg/L	-0.129	1.00	40.0	74.3	75.5	9.80	9.00 to 11.0	90.2	80.0 to 120	1.60	20.0
BC09985	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.104	0.100	0.100	0.0850 to 0.115	101	70.0 to 130	3.92	20.0
BC09983	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.108	0.109	0.101	0.0850 to 0.115	101	70.0 to 130	0.922	20.0
BC09985	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.107	0.104	0.104	0.0850 to 0.115	106	70.0 to 130	2.84	20.0
BC09983	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.103	0.104	0.101	0.0850 to 0.115	101	70.0 to 130	0.966	20.0
BC09983	Fluoride	mg/L	-0.043	0.125	2.50	2.76	2.80	2.53	2.25 to 2.75	105	80.0 to 120	1.44	20.0
BC09985	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	72.2	72.3	0.200	0.170 to 0.230	250	70.0 to 130	0.138	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 15:55

Customer ID:

ustomer ID:

Delivery Date: 5/25/22 14:50

Description: Barry Ash Pond - MW-13 Dup

Laboratory ID Number: BC09983

	•			MB					Standard		Rec		— Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Iron, Total	mg/L	0.000064	0.0176	0.2	27.0	28.1	0.203	0.170 to 0.230	450	70.0 to 130	3.99	20.0
BC09985	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.105	0.103	0.104	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09983	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.103	0.102	0.102	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC09985	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.234	0.233	0.205	0.170 to 0.230	105	70.0 to 130	0.428	20.0
BC09983	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.198	0.204	0.206	0.170 to 0.230	99.0	70.0 to 130	2.99	20.0
BC09985	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	18.8	18.6	5.09	4.25 to 5.75	102	70.0 to 130	1.07	20.0
BC09983	Magnesium, Total	mg/L	0.00180	0.0462	5.00	11.7	11.9	5.21	4.25 to 5.75	98.2	70.0 to 130	1.69	20.0
BC09985	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	0.716	0.708	0.103	0.0850 to 0.115	95.0	70.0 to 130	1.12	20.0
BC09983	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.541	0.545	0.103	0.0850 to 0.115	104	70.0 to 130	0.737	20.0
BC09983	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00335	0.00348	0.00362	0.00340 to 0.00460	83.8	70.0 to 130	3.81	20.0
BC09985	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.100	0.101	0.0992	0.0850 to 0.115	98.5	70.0 to 130	0.995	20.0
BC09983	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.101	0.102	0.0965	0.0850 to 0.115	97.3	70.0 to 130	0.985	20.0
BC09985	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	18.7	18.6	10.3	8.50 to 11.5	98.1	70.0 to 130	0.536	20.0
BC09983	Potassium, Total	mg/L	-0.0109	0.367	10.0	12.6	12.6	10.5	8.50 to 11.5	101	70.0 to 130	0.00	20.0
BC09985	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.105	0.104	0.106	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09983	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.107	0.106	0.105	0.0850 to 0.115	107	70.0 to 130	0.939	20.0
BC09985	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	8.38	8.34	0.999	0.850 to 1.15	98.0	70.0 to 130	0.478	20.0
BC09983	Silicon, Total	mg/L	0.00083	0.0440	1.00	8.26	8.42	1.04	0.850 to 1.15	114	70.0 to 130	1.92	20.0
BC09985	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	63.1	63.0	5.14	4.25 to 5.75	106	70.0 to 130	0.159	20.0
BC09983	Sodium, Total	mg/L	0.00067	0.0660	5.00	57.9	59.0	5.25	4.25 to 5.75	126	70.0 to 130	1.88	20.0
BC09983	Sulfate	mg/L	-0.231	2.0	20.0	66.4	66.7	18.9	18.0 to 22.0	77.0	80.0 to 120	0.451	20.0
BC09985	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.102	0.102	0.103	0.0850 to 0.115	102	70.0 to 130	0.00	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 15:55

Customer ID:

Delivery Date: 5/25/22 14:50

Description: Barry Ash Pond - MW-13 Dup

Laboratory ID Number: BC09983

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09983	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.106	0.103	0.107	0.0850 to 0.115	106	70.0 to 130	2.87	20.0
BC09983	Total Organic Carbon	mg/L	0.303	1.00	10.0	33.9	34.2	10.2		105	80.0 to 120	0.881	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 15:55

Customer ID:

Delivery Date:

5/25/22 14:50

Description: Barry Ash Pond - MW-13 Dup

Laboratory ID Number: BC09983

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10001	Alkalinity, Total as CaCO3	mg/L					12.4	53.2	45.0 to 55.0			3.28	10.0
BC09983	Nitrogen, Nitrate/Nitrite	mg/L as N	0.08	0.200	2.00	2.19	0.161	2.01	1.80 to 2.20	110	90.0 to 110	0.00	15.0
BC10001	Solids, Dissolved	mg/L	0.0000	25.0			40.0	53.0	40.0 to 60.0			1.73	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-18HLocation Code:WMWBARAPCollected:5/23/22 16:14

Customer ID:

Laboratory ID Number: BC09984 Submittal Date: 5/25/22 14:54

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analy	yst: RDA		Preparati	on Method: E	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 10:22	1.015	0.910	mg/L	0.030000	0.1015	
* Calcium, Total	5/31/22 10:50	6/2/22 10:22	1.015	25.5	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 11:01	50.75	84.1	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 10:22	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 10:22	1.015	10.7	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 10:22	1	22.0	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 10:22	1.015	10.3	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 10:22	1.015	17.2	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analy	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 10:59	1.015	0.899	mg/L	0.030000	0.1015	
* Calcium, Dissolved	5/27/22 09:45	6/1/22 10:59	1.015	25.3	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 11:41	50.75	85.0	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 10:59	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 10:59	1.015	10.5	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 10:59	1	21.6	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 10:59	1.015	10.1	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 10:59	1.015	17.4	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	on Method: L	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 17:13	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 17:13	1.015	0.0211	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 17:13	1.015	0.0143	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 17:13	1.015	0.127	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 17:13	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 17:13	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 17:13	1.015	0.00133	mg/L	0.000203	0.001015	
* Cobalt, Total	6/1/22 11:30	6/1/22 17:13	1.015	0.00108	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 17:13	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 20:57	5.075	1.29	mg/L	0.000761	0.001015	
* Molybdenum, Total	6/1/22 11:30	6/1/22 17:13	1.015	0.000361	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 17:13	1.015	1.28	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-18HLocation Code:WMWBARAPCollected:5/23/22 16:14

Customer ID:

Laboratory ID Number: BC09984 Submittal Date: 5/25/22 14:54

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 17:13	3	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 17:13	3	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 16:1	16	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 16:1	16	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 16:1	16	1.015	0.0142	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 16:1	16	1.015	0.128	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 16:1	16	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 16:1	16	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 16:1	16	1.015	0.00139	mg/L	0.000203	0.001015	
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 16:1	16	1.015	0.00114	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 16:1	16	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	6/1/22 17:11	l :	5.075	1.30	mg/L	0.000761	0.001015	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 16:1	16	1.015	0.000389	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 16:1	16	1.015	1.29	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 16:1	16	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 16:1	16	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 11:40	6/6/22 14:53	3	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: CES							
* Nitrogen, Nitrate/Nitrite	5/26/22 13:36	5/26/22 13:3	36	1	0.579	mg/L as N	0.20	0.3	
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/2/22 11:04	6/2/22 15:20)	1	213	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/25/22 16:30	5/31/22 13:5	58	1	292	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/2/22 11:04	6/2/22 15:20)	1	213	mg/L			
Carbonate Alkalinity, (calc.)	6/2/22 11:04	6/2/22 15:20)	1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B	Anal	yst: ELH							
* Total Organic Carbon	5/31/22 20:30		30	1	14.4	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-18H

Location Code:

WMWBARAP

Collected:

Customer ID:

5/23/22 16:14

5/25/22 14:54

Laboratory ID Number: BC09984

Submittal Date:

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Ana	lyst: CES							
* Chloride	5/31/22 14:05	5/31/22 14:0	05	1	18.9	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	6/8/22 11:41	6/8/22 11:41	1	1	0.0857	mg/L	0.06	0.125	J
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	6/7/22 13:36	6/7/22 13:36	6	1	9.46	mg/L	0.6	2	
Analytical Method: Field Measurements	Ana	lyst: AWG							
Conductivity	5/23/22 16:12	5/23/22 16:	12		495.93	uS/cm			FA
рН	5/23/22 16:12	5/23/22 16:	12		6.24	SU			FA
Temperature	5/23/22 16:12	5/23/22 16:	12		20.29	С			FA
Turbidity	5/23/22 16:12	5/23/22 16:	12		1.58	NTU			FA
Sulfide	5/23/22 16:12	5/23/22 16:1	12		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP Sample Date:

Customer ID:

5/23/22 16:14

Delivery Date:

5/25/22 14:54

Description: Barry Ash Pond - MW-18H

Laboratory ID Number: BC09984

				MB	·	·			Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09985	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.105	0.103	0.102	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09993	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.122	0.122	0.108	0.0850 to 0.115	107	70.0 to 130	0.00	20.0
BC09985	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.101	0.0984	0.0949	0.0850 to 0.115	101	70.0 to 130	2.61	20.0
BC09993	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.100	0.101	0.0925	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
BC09985	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.118	0.117	0.104	0.0850 to 0.115	103	70.0 to 130	0.851	20.0
BC09993	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.109	0.107	0.102	0.0850 to 0.115	103	70.0 to 130	1.85	20.0
BC09985	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.167	0.168	0.102	0.0850 to 0.115	97.3	70.0 to 130	0.597	20.0
BC09993	Barium, Total	mg/L	0.000	0.00100	0.100	0.169	0.169	0.0987	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC09985	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.108	0.103	0.100	0.0850 to 0.115	108	70.0 to 130	4.74	20.0
BC09993	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.107	0.112	0.105	0.0850 to 0.115	107	70.0 to 130	4.57	20.0
BC09985	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.09	1.08	1.01	0.850 to 1.15	103	70.0 to 130	0.922	20.0
BC09993	Boron, Total	mg/L	0.000087	0.0650	1.00	1.40	1.41	1.02	0.850 to 1.15	102	70.0 to 130	0.712	20.0
BC09985	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.104	0.103	0.101	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC09993	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0990	0.100	0.100	0.0850 to 0.115	99.0	70.0 to 130	1.01	20.0
BC09985	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	31.2	31.0	4.87	4.25 to 5.75	92.0	70.0 to 130	0.643	20.0
BC09993	Calcium, Total	mg/L	0.00617	0.152	5.00	11.7	11.8	4.91	4.25 to 5.75	93.4	70.0 to 130	0.851	20.0
BC09993	Chloride	mg/L	-0.137	1.00	200	391	388	10.3	9.00 to 11.0	104	80.0 to 120	0.770	20.0
BC09985	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.104	0.100	0.100	0.0850 to 0.115	101	70.0 to 130	3.92	20.0
BC09993	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.101	0.0997	0.101	0.0850 to 0.115	100	70.0 to 130	1.30	20.0
BC09985	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.107	0.104	0.104	0.0850 to 0.115	106	70.0 to 130	2.84	20.0
BC09993	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.105	0.103	0.101	0.0850 to 0.115	102	70.0 to 130	1.92	20.0
BC09993	Fluoride	mg/L	-0.0283	0.125	2.50	3.11	3.13	2.58	2.25 to 2.75	113	80.0 to 120	0.641	20.0
BC09985	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	72.2	72.3	0.200	0.170 to 0.230	250	70.0 to 130	0.138	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date:

Customer ID:

5/23/22 16:14

Delivery Date:

5/25/22 14:54

Description: Barry Ash Pond - MW-18H

Laboratory ID Number: BC09984

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Iron, Total	mg/L	0.000064	0.0176	0.2	25.2	26.1	0.203	0.170 to 0.230	-150	70.0 to 130	3.51	20.0
BC09985	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.105	0.103	0.104	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09993	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.102	0.104	0.102	0.0850 to 0.115	102	70.0 to 130	1.94	20.0
BC09985	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.234	0.233	0.205	0.170 to 0.230	105	70.0 to 130	0.428	20.0
BC09993	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.212	0.211	0.206	0.170 to 0.230	106	70.0 to 130	0.473	20.0
BC09985	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	18.8	18.6	5.09	4.25 to 5.75	102	70.0 to 130	1.07	20.0
BC09993	Magnesium, Total	mg/L	0.00180	0.0462	5.00	8.62	8.57	5.21	4.25 to 5.75	101	70.0 to 130	0.582	20.0
BC09985	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	0.716	0.708	0.103	0.0850 to 0.115	95.0	70.0 to 130	1.12	20.0
BC09993	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.451	0.444	0.103	0.0850 to 0.115	102	70.0 to 130	1.56	20.0
BC09993	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00341	0.00338	0.00362	0.00340 to 0.00460	85.2	70.0 to 130	0.884	20.0
BC09985	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.100	0.101	0.0992	0.0850 to 0.115	98.5	70.0 to 130	0.995	20.0
BC09993	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.102	0.100	0.0965	0.0850 to 0.115	98.9	70.0 to 130	1.98	20.0
BC09985	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	18.7	18.6	10.3	8.50 to 11.5	98.1	70.0 to 130	0.536	20.0
BC09993	Potassium, Total	mg/L	-0.0109	0.367	10.0	17.9	17.7	10.5	8.50 to 11.5	99.9	70.0 to 130	1.12	20.0
BC09985	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.105	0.104	0.106	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09993	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.105	0.104	0.105	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09985	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	8.38	8.34	0.999	0.850 to 1.15	98.0	70.0 to 130	0.478	20.0
BC09993	Silicon, Total	mg/L	0.00083	0.0440	1.00	7.62	7.60	1.04	0.850 to 1.15	94.0	70.0 to 130	0.263	20.0
BC09985	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	63.1	63.0	5.14	4.25 to 5.75	106	70.0 to 130	0.159	20.0
BC09993	Sodium, Total	mg/L	0.00067	0.0660	5.00	176	180	5.25	4.25 to 5.75	40.0	70.0 to 130	2.25	20.0
BC09993	Sulfate	mg/L	-0.278	2.0	20.0	33.5	33.5	19.1	18.0 to 22.0	99.5	80.0 to 120	0.00	20.0
BC09985	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.102	0.102	0.103	0.0850 to 0.115	102	70.0 to 130	0.00	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/23/22 16:14

Customer ID:

Delivery Date: 5/25

5/25/22 14:54

Description: Barry Ash Pond - MW-18H

Laboratory ID Number: BC09984

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.103	0.105	0.107	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC09993	Total Organic Carbon	mg/L	0.256	1.00	10.0	13.7	13.9	9.85		93.3	80.0 to 120	1.45	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/23/22 16:14

Customer ID:

Delivery Date:

5/25/22 14:54

Description: Barry Ash Pond - MW-18H

Laboratory ID Number: BC09984

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09987	Alkalinity, Total as CaCO3	mg/L					34.9	51.7	45.0 to 55.0			4.39	10.0
BC09993	Nitrogen, Nitrate/Nitrite	mg/L as N	0.05	0.200	2.00	2.12	0.146	1.97	1.80 to 2.20	106	90.0 to 110	0.00	15.0
BC09986	Solids, Dissolved	mg/L	1.00	25.0			130	49.0	40.0 to 60.0			2.28	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-11

Location Code:

WMWBARAP 5/23/22 17:20

Collected: Customer ID:

Submittal Date:

5/25/22 14:54

Laboratory ID Number: BC09985

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	ion Method:	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 10:25	1.015	0.0558	mg/L	0.030000	0.1015	J
* Calcium, Total	5/31/22 10:50	6/2/22 10:25	1.015	26.0	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 11:04	50.75	80.0	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 10:25	1.015	0.0269	mg/L	0.007105	0.01999956	
* Magnesium, Total	5/31/22 10:50	6/2/22 10:25	1.015	13.8	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 10:25	1	16.2	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 10:25	1.015	7.55	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 11:04	50.75	61.0	mg/L	1.5225	20.3	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 11:02	1.015	0.0560	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	5/27/22 09:45	6/1/22 11:02	1.015	26.6	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 11:44	50.75	71.7	mg/L	0.40600	2.03	RA
* Lithium, Dissolved	5/27/22 09:45	6/1/22 11:02	1.015	0.0248	mg/L	0.007105	0.01999956	
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 11:02	1.015	13.7	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 11:02	. 1	15.8	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 11:02	1.015	7.40	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 11:44	50.75	57.8	mg/L	1.5225	20.3	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	ion Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 17:16	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 17:16	1.015	0.0586	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 17:16	1.015	0.0142	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 17:16	1.015	0.0691	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 17:16	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 17:16	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 17:16	1.015	0.00474	mg/L	0.000203	0.001015	
* Cobalt, Total	6/1/22 11:30	6/1/22 17:16	1.015	0.00118	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 17:16	1.015	0.0000932	mg/L	0.000068	0.000203	J
* Manganese, Total	6/1/22 11:30	6/1/22 17:16	1.015	0.625	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 17:16	1.015	0.00141	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 17:16		9.56	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-11

Location Code: Collected: WMWBARAP 5/23/22 17:20

Customer ID:

Submittal Date:

5/25/22 14:54

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Selenium, Total	6/1/22 11:30	6/1/22 17:10	6 ′	1.015	Not Detected	mg/L	0.000508	0.001015	U
Thallium, Total	6/1/22 11:30	6/1/22 17:10	6 ′	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ							
Antimony, Dissolved	5/31/22 14:15	5/31/22 16:2	20	1.015	Not Detected	mg/L	0.000508	0.001015	U
Aluminum, Dissolved	5/31/22 14:15	5/31/22 16:2	20	1.015	Not Detected	mg/L	0.006090	0.01015	U
Arsenic, Dissolved	5/31/22 14:15	5/31/22 16:2	20	1.015	0.0149	mg/L	0.000081	0.000203	
Barium, Dissolved	5/31/22 14:15	5/31/22 16:2	20	1.015	0.0697	mg/L	0.000508	0.001015	
Beryllium, Dissolved	5/31/22 14:15	5/31/22 16:2	20	1.015	Not Detected	mg/L	0.000406	0.001015	U
Cadmium, Dissolved	5/31/22 14:15	5/31/22 16:2	20 ′	1.015	Not Detected	mg/L	0.000068	0.000203	U
Chromium, Dissolved	5/31/22 14:15	5/31/22 16:2	20 ′	1.015	0.00255	mg/L	0.000203	0.001015	
Cobalt, Dissolved	5/31/22 14:15	5/31/22 16:2	20 ′	1.015	0.00121	mg/L	0.000068	0.000203	
Lead, Dissolved	5/31/22 14:15	5/31/22 16:2	20	1.015	0.000107	mg/L	0.000068	0.000203	J
Manganese, Dissolved	5/31/22 14:15	5/31/22 16:2	20	1.015	0.621	mg/L	0.000152	0.000203	
Molybdenum, Dissolved	5/31/22 14:15	5/31/22 16:2	20	1.015	0.00149	mg/L	0.000102	0.000203	
Potassium, Dissolved	5/31/22 14:15	5/31/22 16:2	20 ′	1.015	8.89	mg/L	0.169505	0.5075	
Selenium, Dissolved	5/31/22 14:15	5/31/22 16:2	20 ′	1.015	Not Detected	mg/L	0.000508	0.001015	U
Thallium, Dissolved	5/31/22 14:15	5/31/22 16:2	20 ′	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	lyst: CRB							
Mercury, Total by CVAA	6/6/22 11:40	6/6/22 14:5	5 ′	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Ana	lyst: CES							
Nitrogen, Nitrate/Nitrite	5/26/22 13:38	5/26/22 13:3	38	1	0.279	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Ana	lyst: ALH							
Alkalinity, Total as CaCO3	6/2/22 11:04	6/2/22 15:20) ^	1	318	mg/L		0.1	
Analytical Method: SM 2540C	Ana	lyst: CNJ							
Solids, Dissolved	5/25/22 16:30	5/31/22 13:	58	I	404	mg/L		25	
Analytical Method: SM 4500CO2 D	Ana	lyst: ALH							
Bicarbonate Alkalinity, (calc.)	6/2/22 11:04	6/2/22 15:20) ,	1	318	mg/L			
Carbonate Alkalinity, (calc.)	6/2/22 11:04	6/2/22 15:20) ,	1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B	Ana	lyst: ELH							
Total Organic Carbon		5/31/22 20:4	49 <i>'</i>	1	28.6	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-11

Location Code:

WMWBARAP 5/23/22 17:20

Collected:

Customer ID:

Submittal Date: 5/25/22 14:54

Laboratory ID Number: BC09985

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anal	yst: CES							
* Chloride	5/31/22 14:19	5/31/22 14:1	19	4	25.1	mg/L	2.00	4	
Analytical Method: SM4500F G 2017	Anal	lyst: JCC							
* Fluoride	6/8/22 11:42	6/8/22 11:42	2	1	0.0709	mg/L	0.06	0.125	J
Analytical Method: SM4500SO4 E 2011	Anal	lyst: JCC							
* Sulfate	6/7/22 13:37	6/7/22 13:37	7	1	29.3	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	lyst: AWG							
Conductivity	5/23/22 17:17	5/23/22 17:1	17		555.51	uS/cm			FA
рН	5/23/22 17:17	5/23/22 17:1	17		6.32	SU			FA
Temperature	5/23/22 17:17	5/23/22 17:1	17		21.18	С			FA
Turbidity	5/23/22 17:17	5/23/22 17:1	17		3.74	NTU			FA
Sulfide	5/23/22 17:17	5/23/22 17:1	17		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/23/22 17:20

Customer ID:

Delivery Date:

5/25/22 14:54

Description: Barry Ash Pond - MW-11

Laboratory ID Number: BC09985

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09985	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.105	0.103	0.102	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09993	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.122	0.122	0.108	0.0850 to 0.115	107	70.0 to 130	0.00	20.0
BC09985	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.101	0.0984	0.0949	0.0850 to 0.115	101	70.0 to 130	2.61	20.0
BC09993	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.100	0.101	0.0925	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
BC09985	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.118	0.117	0.104	0.0850 to 0.115	103	70.0 to 130	0.851	20.0
BC09993	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.109	0.107	0.102	0.0850 to 0.115	103	70.0 to 130	1.85	20.0
BC09985	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.167	0.168	0.102	0.0850 to 0.115	97.3	70.0 to 130	0.597	20.0
BC09993	Barium, Total	mg/L	0.000	0.00100	0.100	0.169	0.169	0.0987	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC09985	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.108	0.103	0.100	0.0850 to 0.115	108	70.0 to 130	4.74	20.0
BC09993	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.107	0.112	0.105	0.0850 to 0.115	107	70.0 to 130	4.57	20.0
BC09985	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.09	1.08	1.01	0.850 to 1.15	103	70.0 to 130	0.922	20.0
BC09993	Boron, Total	mg/L	0.000087	0.0650	1.00	1.40	1.41	1.02	0.850 to 1.15	102	70.0 to 130	0.712	20.0
BC09985	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.104	0.103	0.101	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC09993	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0990	0.100	0.100	0.0850 to 0.115	99.0	70.0 to 130	1.01	20.0
BC09985	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	31.2	31.0	4.87	4.25 to 5.75	92.0	70.0 to 130	0.643	20.0
BC09993	Calcium, Total	mg/L	0.00617	0.152	5.00	11.7	11.8	4.91	4.25 to 5.75	93.4	70.0 to 130	0.851	20.0
BC09993	Chloride	mg/L	-0.137	1.00	200	391	388	10.3	9.00 to 11.0	104	80.0 to 120	0.770	20.0
BC09985	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.104	0.100	0.100	0.0850 to 0.115	101	70.0 to 130	3.92	20.0
BC09993	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.101	0.0997	0.101	0.0850 to 0.115	100	70.0 to 130	1.30	20.0
BC09985	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.107	0.104	0.104	0.0850 to 0.115	106	70.0 to 130	2.84	20.0
BC09993	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.105	0.103	0.101	0.0850 to 0.115	102	70.0 to 130	1.92	20.0
BC09993	Fluoride	mg/L	-0.0283	0.125	2.50	3.11	3.13	2.58	2.25 to 2.75	113	80.0 to 120	0.641	20.0
BC09985	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	72.2	72.3	0.200	0.170 to 0.230	250	70.0 to 130	0.138	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/23/22 17:20

Customer ID: Delivery Date:

Customer ID:

5/25/22 14:54

Description: Barry Ash Pond - MW-11

Laboratory ID Number: BC09985

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Iron, Total	mg/L	0.000064	0.0176	0.2	25.2	26.1	0.203	0.170 to 0.230	-150	70.0 to 130	3.51	20.0
BC09985	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.105	0.103	0.104	0.0850 to 0.115	105	70.0 to 130	1.92	20.0
BC09993	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.102	0.104	0.102	0.0850 to 0.115	102	70.0 to 130	1.94	20.0
BC09985	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.234	0.233	0.205	0.170 to 0.230	105	70.0 to 130	0.428	20.0
BC09993	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.212	0.211	0.206	0.170 to 0.230	106	70.0 to 130	0.473	20.0
BC09985	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	18.8	18.6	5.09	4.25 to 5.75	102	70.0 to 130	1.07	20.0
BC09993	Magnesium, Total	mg/L	0.00180	0.0462	5.00	8.62	8.57	5.21	4.25 to 5.75	101	70.0 to 130	0.582	20.0
BC09985	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	0.716	0.708	0.103	0.0850 to 0.115	95.0	70.0 to 130	1.12	20.0
BC09993	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.451	0.444	0.103	0.0850 to 0.115	102	70.0 to 130	1.56	20.0
BC09993	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00341	0.00338	0.00362	0.00340 to 0.00460	85.2	70.0 to 130	0.884	20.0
BC09985	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.100	0.101	0.0992	0.0850 to 0.115	98.5	70.0 to 130	0.995	20.0
BC09993	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.102	0.100	0.0965	0.0850 to 0.115	98.9	70.0 to 130	1.98	20.0
BC09985	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	18.7	18.6	10.3	8.50 to 11.5	98.1	70.0 to 130	0.536	20.0
BC09993	Potassium, Total	mg/L	-0.0109	0.367	10.0	17.9	17.7	10.5	8.50 to 11.5	99.9	70.0 to 130	1.12	20.0
BC09985	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.105	0.104	0.106	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09993	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.105	0.104	0.105	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09985	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	8.38	8.34	0.999	0.850 to 1.15	98.0	70.0 to 130	0.478	20.0
BC09993	Silicon, Total	mg/L	0.00083	0.0440	1.00	7.62	7.60	1.04	0.850 to 1.15	94.0	70.0 to 130	0.263	20.0
BC09985	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	63.1	63.0	5.14	4.25 to 5.75	106	70.0 to 130	0.159	20.0
BC09993	Sodium, Total	mg/L	0.00067	0.0660	5.00	176	180	5.25	4.25 to 5.75	40.0	70.0 to 130	2.25	20.0
BC09993	Sulfate	mg/L	-0.278	2.0	20.0	33.5	33.5	19.1	18.0 to 22.0	99.5	80.0 to 120	0.00	20.0
BC09985	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.102	0.102	0.103	0.0850 to 0.115	102	70.0 to 130	0.00	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/23/22 17:20

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-11

Laboratory ID Number: BC09985

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.103	0.105	0.107	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC09993	Total Organic Carbon	mg/L	0.256	1.00	10.0	13.7	13.9	9.85		93.3	80.0 to 120	1.45	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date: 5/23/22 17:20

Customer ID:

Delivery Date: 5

5/25/22 14:54

Description: Barry Ash Pond - MW-11

Laboratory ID Number: BC09985

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09987	Alkalinity, Total as CaCO3	mg/L					34.9	51.7	45.0 to 55.0			4.39	10.0
BC09993	Nitrogen, Nitrate/Nitrite	mg/L as N	0.05	0.200	2.00	2.12	0.146	1.97	1.80 to 2.20	106	90.0 to 110	0.00	15.0
BC09986	Solids, Dissolved	mg/L	1.00	25.0			130	49.0	40.0 to 60.0			2.28	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-19HLocation Code:WMWBARAPCollected:5/24/22 09:27

Customer ID:

Laboratory ID Number: BC09986 Submittal Date: 5/25/22 14:54

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	on Method	: EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 10:28	1.015	0.159	mg/L	0.030000	0.1015	
* Calcium, Total	5/31/22 10:50	6/2/22 10:28	1.015	18.6	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 11:08	50.75	13.4	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 10:28	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 10:28	1.015	3.82	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 10:28	3 1	19.0	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 10:28	1.015	8.90	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 10:28	1.015	11.4	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 11:16	1.015	0.165	mg/L	0.030000	0.1015	
* Calcium, Dissolved	5/27/22 09:45	6/1/22 11:16	1.015	19.2	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 12:13	50.75	13.0	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 11:16	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 11:16	1.015	3.91	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 11:16	5 1	18.9	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 11:16	1.015	8.84	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 11:16	1.015	11.7	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	on Method	: EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 17:20	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 17:20	1.015	0.0482	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 17:20	1.015	0.000993	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 17:20	1.015	0.0796	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 17:20	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 17:20	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 17:20	1.015	0.000423	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 17:20	1.015	0.00513	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 17:20	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 17:20	1.015	1.11	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 17:20	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/1/22 11:30	6/1/22 17:20	1.015	1.19	mg/L	0.169505	0.5075	
	2, == 7 1100		- ·· ·	-	ŭ			

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-19HLocation Code:WMWBARAPCollected:5/24/22 09:27

Customer ID:

Submittal Date: 5/25/22 14:54

Laboratory ID Number: BC09986

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Selenium, Total	6/1/22 11:30	6/1/22 17:20)	1.015	Not Detected	mg/L	0.000508	0.001015	U
Thallium, Total	6/1/22 11:30	6/1/22 17:20)	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
Antimony, Dissolved	5/31/22 14:15	5/31/22 16:4	2	1.015	Not Detected	mg/L	0.000508	0.001015	U
Aluminum, Dissolved	5/31/22 14:15	5/31/22 16:4	2	1.015	0.0155	mg/L	0.006090	0.01015	
Arsenic, Dissolved	5/31/22 14:15	5/31/22 16:4	2	1.015	0.00104	mg/L	0.000081	0.000203	
Barium, Dissolved	5/31/22 14:15	5/31/22 16:4	2	1.015	0.0819	mg/L	0.000508	0.001015	
Beryllium, Dissolved	5/31/22 14:15	5/31/22 16:4	2	1.015	Not Detected	mg/L	0.000406	0.001015	U
Cadmium, Dissolved	5/31/22 14:15	5/31/22 16:4	2	1.015	Not Detected	mg/L	0.000068	0.000203	U
Chromium, Dissolved	5/31/22 14:15	5/31/22 16:4	2	1.015	0.000454	mg/L	0.000203	0.001015	J
Cobalt, Dissolved	5/31/22 14:15	5/31/22 16:4	2	1.015	0.00546	mg/L	0.000068	0.000203	
Lead, Dissolved	5/31/22 14:15	5/31/22 16:4	2	1.015	Not Detected	mg/L	0.000068	0.000203	U
Manganese, Dissolved	5/31/22 14:15	5/31/22 16:4	2	1.015	1.16	mg/L	0.000152	0.000203	
Molybdenum, Dissolved	5/31/22 14:15	5/31/22 16:4	2	1.015	Not Detected	mg/L	0.000102	0.000203	U
Potassium, Dissolved	5/31/22 14:15	5/31/22 16:4	2	1.015	1.17	mg/L	0.169505	0.5075	
Selenium, Dissolved	5/31/22 14:15	5/31/22 16:4	2	1.015	0.000636	mg/L	0.000508	0.001015	J
Thallium, Dissolved	5/31/22 14:15	5/31/22 16:4	2	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
Mercury, Total by CVAA	6/6/22 11:40	6/6/22 14:57	•	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: CES							
Nitrogen, Nitrate/Nitrite	5/26/22 13:40	5/26/22 13:4	10	1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/2/22 11:04	6/2/22 15:20)	1	78.0	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
Solids, Dissolved	5/25/22 16:30	5/31/22 13:5	58	1	133	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/2/22 11:04	6/2/22 15:20)	1	78.0	mg/L			
Carbonate Alkalinity, (calc.)	6/2/22 11:04	6/2/22 15:20)	1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B	Anal	yst: ELH							
Total Organic Carbon	5/31/22 21:10	-	0	1	3.99	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-19H

Location Code:

WMWBARAP

Collected:

5/24/22 09:27

Customer ID:

Submittal Date: 5/25/22 14:54

Laboratory ID Number: BC09986								
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500CI E	Anal	yst: CES						
* Chloride	5/31/22 14:07	5/31/22 14:0	7 1	10.4	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Anal	lyst: JCC						
* Fluoride	6/8/22 11:43	6/8/22 11:43	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC						
* Sulfate	6/7/22 13:38	6/7/22 13:38	1	34.7	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	lyst: AWG						
Conductivity	5/24/22 09:24	5/24/22 09:2	4	206.31	uS/cm			FA
рН	5/24/22 09:24	5/24/22 09:2	4	5.80	SU			FA
Temperature	5/24/22 09:24	5/24/22 09:2	4	20.19	С			FA
Turbidity	5/24/22 09:24	5/24/22 09:2	4	1.65	NTU			FA
Sulfide	5/24/22 09:24	5/24/22 09:2	4	0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 09:27

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-19H

Laboratory ID Number: BC09986

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09996	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.100	0.102	0.102	0.0850 to 0.115	100	70.0 to 130	1.98	20.0
BC09993	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.122	0.122	0.108	0.0850 to 0.115	107	70.0 to 130	0.00	20.0
BC09996	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.0992	0.100	0.0949	0.0850 to 0.115	99.2	70.0 to 130	0.803	20.0
BC09993	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.100	0.101	0.0925	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
BC09996	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.124	0.119	0.104	0.0850 to 0.115	105	70.0 to 130	4.12	20.0
BC09993	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.109	0.107	0.102	0.0850 to 0.115	103	70.0 to 130	1.85	20.0
BC09996	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.189	0.186	0.102	0.0850 to 0.115	97.2	70.0 to 130	1.60	20.0
BC09993	Barium, Total	mg/L	0.000	0.00100	0.100	0.169	0.169	0.0987	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC09996	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.115	0.106	0.100	0.0850 to 0.115	115	70.0 to 130	8.14	20.0
BC09993	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.107	0.112	0.105	0.0850 to 0.115	107	70.0 to 130	4.57	20.0
BC09996	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.12	1.12	1.01	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC09993	Boron, Total	mg/L	0.000087	0.0650	1.00	1.40	1.41	1.02	0.850 to 1.15	102	70.0 to 130	0.712	20.0
BC09996	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC09993	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0990	0.100	0.100	0.0850 to 0.115	99.0	70.0 to 130	1.01	20.0
BC09996	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	19.3	19.2	4.87	4.25 to 5.75	96.0	70.0 to 130	0.519	20.0
BC09993	Calcium, Total	mg/L	0.00617	0.152	5.00	11.7	11.8	4.91	4.25 to 5.75	93.4	70.0 to 130	0.851	20.0
BC09993	Chloride	mg/L	-0.137	1.00	200	391	388	10.3	9.00 to 11.0	104	80.0 to 120	0.770	20.0
BC09996	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.0986	0.0997	0.100	0.0850 to 0.115	98.1	70.0 to 130	1.11	20.0
BC09993	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.101	0.0997	0.101	0.0850 to 0.115	100	70.0 to 130	1.30	20.0
BC09996	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.128	0.132	0.104	0.0850 to 0.115	101	70.0 to 130	3.08	20.0
BC09993	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.105	0.103	0.101	0.0850 to 0.115	102	70.0 to 130	1.92	20.0
BC09993	Fluoride	mg/L	-0.0283	0.125	2.50	3.11	3.13	2.58	2.25 to 2.75	113	80.0 to 120	0.641	20.0
BC09996	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	79.1	79.2	0.200	0.170 to 0.230	-400	70.0 to 130	0.126	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 09:27

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-19H

Laboratory ID Number: BC09986

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Iron, Total	mg/L	0.000064	0.0176	0.2	25.2	26.1	0.203	0.170 to 0.230	-150	70.0 to 130	3.51	20.0
BC09996	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.102	0.103	0.104	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC09993	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.102	0.104	0.102	0.0850 to 0.115	102	70.0 to 130	1.94	20.0
BC09996	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.206	0.206	0.205	0.170 to 0.230	103	70.0 to 130	0.00	20.0
BC09993	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.212	0.211	0.206	0.170 to 0.230	106	70.0 to 130	0.473	20.0
BC09996	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	13.7	13.7	5.09	4.25 to 5.75	101	70.0 to 130	0.00	20.0
BC09993	Magnesium, Total	mg/L	0.00180	0.0462	5.00	8.62	8.57	5.21	4.25 to 5.75	101	70.0 to 130	0.582	20.0
BC09996	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	2.10	2.03	0.103	0.0850 to 0.115	150	70.0 to 130	3.39	20.0
BC09993	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.451	0.444	0.103	0.0850 to 0.115	102	70.0 to 130	1.56	20.0
BC09993	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00341	0.00338	0.00362	0.00340 to 0.00460	85.2	70.0 to 130	0.884	20.0
BC09996	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.103	0.102	0.0992	0.0850 to 0.115	101	70.0 to 130	0.976	20.0
BC09993	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.102	0.100	0.0965	0.0850 to 0.115	98.9	70.0 to 130	1.98	20.0
BC09996	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	11.9	12.1	10.3	8.50 to 11.5	97.2	70.0 to 130	1.67	20.0
BC09993	Potassium, Total	mg/L	-0.0109	0.367	10.0	17.9	17.7	10.5	8.50 to 11.5	99.9	70.0 to 130	1.12	20.0
BC09996	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.104	0.105	0.106	0.0850 to 0.115	104	70.0 to 130	0.957	20.0
BC09993	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.105	0.104	0.105	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09996	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	7.33	7.33	0.999	0.850 to 1.15	97.0	70.0 to 130	0.00	20.0
BC09993	Silicon, Total	mg/L	0.00083	0.0440	1.00	7.62	7.60	1.04	0.850 to 1.15	94.0	70.0 to 130	0.263	20.0
BC09996	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	49.6	49.7	5.14	4.25 to 5.75	86.0	70.0 to 130	0.201	20.0
BC09993	Sodium, Total	mg/L	0.00067	0.0660	5.00	176	180	5.25	4.25 to 5.75	40.0	70.0 to 130	2.25	20.0
BC09993	Sulfate	mg/L	-0.278	2.0	20.0	33.5	33.5	19.1	18.0 to 22.0	99.5	80.0 to 120	0.00	20.0
BC09996	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.101	0.102	0.103	0.0850 to 0.115	101	70.0 to 130	0.985	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/24/22 09:27

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-19H

Laboratory ID Number: BC09986

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.103	0.105	0.107	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC09993	Total Organic Carbon	mg/L	0.256	1.00	10.0	13.7	13.9	9.85		93.3	80.0 to 120	1.45	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 09:27

Customer ID:

Delivery Date:

5/25/22 14:54

Description: Barry Ash Pond - MW-19H

Laboratory ID Number: BC09986

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09987	Alkalinity, Total as CaCO3	mg/L					34.9	51.7	45.0 to 55.0			4.39	10.0
BC09993	Nitrogen, Nitrate/Nitrite	mg/L as N	0.05	0.200	2.00	2.12	0.146	1.97	1.80 to 2.20	106	90.0 to 110	0.00	15.0
BC09986	Solids, Dissolved	mg/L	1.00	25.0			130	49.0	40.0 to 60.0			2.28	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-15VLocation Code:WMWBARAPCollected:5/24/22 10:57

Customer ID:

Laboratory ID Number: BC09987 Submittal Date: 5/25/22 14:54

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analy	/st: RDA		Preparati	on Method:	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 10:30	1.015	0.0376	mg/L	0.030000	0.1015	J
* Calcium, Total	5/31/22 10:50	6/2/22 10:30	1.015	8.10	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 11:11	50.75	53.7	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 10:30	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 10:30	1.015	5.58	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 10:30	1	17.2	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 10:30	1.015	8.04	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 11:11	50.75	77.9	mg/L	1.5225	20.3	
Analytical Method: EPA 200.7	Analy	/st: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 11:19	1.015	0.0350	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	5/27/22 09:45	6/1/22 11:19	1.015	8.26	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 12:17	50.75	47.7	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 11:19	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 11:19	1.015	5.55	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 11:19	1	16.7	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 11:19	1.015	7.79	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 12:17	50.75	77.9	mg/L	1.5225	20.3	
Analytical Method: EPA 200.8	Analy	/st: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 17:23	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 17:23	1.015	0.0497	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 17:23	1.015	0.0333	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 17:23	1.015	0.156	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 17:23	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 17:23	1.015	0.000180	mg/L	0.000068	0.000203	J
* Chromium, Total	6/1/22 11:30	6/1/22 17:23	1.015	0.000234	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 17:23	1.015	0.0764	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 17:23	1.015	0.000111	mg/L	0.000068	0.000203	J
* Manganese, Total	6/1/22 11:30	6/1/22 17:23	1.015	1.13	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 17:23	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/1/22 11:30	6/1/22 17:23	1.015	3.25	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-15V

Location Code:

WMWBARAP 5/24/22 10:57

Collected:

Customer ID:

Submittal Date:

5/25/22 14:54

Laboratory ID Number: BC09987				Submit	tal Date:	5/25/22 14:5	4	
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 17:23	3 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 17:23	3 1.015	0.000140	mg/L	0.000068	0.000203	J
Analytical Method: EPA 200.8	Anal	lyst: DLJ						
* Antimony, Dissolved	5/31/22 14:15	5/31/22 16:4	45 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 16:4	45 1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 16:4	45 1.015	0.0255	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 16:4	45 1.015	0.159	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 16:4	45 1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 16:4	45 1.015	0.000201	mg/L	0.000068	0.000203	J
* Chromium, Dissolved	5/31/22 14:15	5/31/22 16:4	45 1.015	0.000207	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 16:4	45 1.015	0.0788	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 16:4	45 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 16:4	45 1.015	1.09	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 16:4	45 1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Dissolved	5/31/22 14:15	5/31/22 16:4	45 1.015	3.20	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 16:4	45 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 16:4	45 1.015	0.000140	mg/L	0.000068	0.000203	J
Analytical Method: EPA 245.1	Anai	lyst: CRB						
* Mercury, Total by CVAA	6/6/22 11:40	6/6/22 15:00	0 1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	lyst: CES						
* Nitrogen, Nitrate/Nitrite	5/26/22 13:42	5/26/22 13:4	42 1	0.255	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Anai	lyst: ALH						
Alkalinity, Total as CaCO3	6/2/22 11:04	6/2/22 15:20	0 1	33.4	mg/L		0.1	
Analytical Method: SM 2540C	Anai	lyst: CNJ						
* Solids, Dissolved	5/25/22 16:30	5/31/22 13:	58 1	348	mg/L		25	
Analytical Method: SM 4500CO2 D	Anai	lyst: ALH						
Bicarbonate Alkalinity, (calc.)	6/2/22 11:04	6/2/22 15:20	0 1	33.4	mg/L			
Carbonate Alkalinity, (calc.)	6/2/22 11:04	6/2/22 15:20		Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		lyst: ELH						
* Total Organic Carbon		-	30 1	1.37	mg/L	1.00	2	J
* Total Organic Carbon	5/31/22 21:30	5/31/22 21:3	30 1	1.37	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-15V

Location Code:

WMWBARAP

Collected:

Customer ID: Submittal Date:

5/24/22 10:57 5/25/22 14:54

Laboratory ID Number: BC09987

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anal	yst: CES							
* Chloride	5/31/22 14:21	5/31/22 14:2	21	20	191	mg/L	10.00	20	
Analytical Method: SM4500F G 2017	Anal	yst: JCC							
* Fluoride	6/8/22 11:44	6/8/22 11:44	1	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC							
* Sulfate	6/7/22 13:41	6/7/22 13:41	l	1	1.77	mg/L	0.6	2	J
Analytical Method: Field Measurements	Anal	yst: AWG							
Conductivity	5/24/22 10:54	5/24/22 10:5	54		594.35	uS/cm			FA
рН	5/24/22 10:54	5/24/22 10:5	54		5.70	SU			FA
Temperature	5/24/22 10:54	5/24/22 10:5	54		21.14	С			FA
Turbidity	5/24/22 10:54	5/24/22 10:5	54		6.89	NTU			FA
Sulfide	5/24/22 10:54	5/24/22 10:5	54		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 10:57

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-15V

Laboratory ID Number: BC09987

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09996	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.100	0.102	0.102	0.0850 to 0.115	100	70.0 to 130	1.98	20.0
BC09993	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.122	0.122	0.108	0.0850 to 0.115	107	70.0 to 130	0.00	20.0
BC09996	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.0992	0.100	0.0949	0.0850 to 0.115	99.2	70.0 to 130	0.803	20.0
BC09993	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.100	0.101	0.0925	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
BC09996	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.124	0.119	0.104	0.0850 to 0.115	105	70.0 to 130	4.12	20.0
BC09993	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.109	0.107	0.102	0.0850 to 0.115	103	70.0 to 130	1.85	20.0
BC09996	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.189	0.186	0.102	0.0850 to 0.115	97.2	70.0 to 130	1.60	20.0
BC09993	Barium, Total	mg/L	0.000	0.00100	0.100	0.169	0.169	0.0987	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC09996	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.115	0.106	0.100	0.0850 to 0.115	115	70.0 to 130	8.14	20.0
BC09993	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.107	0.112	0.105	0.0850 to 0.115	107	70.0 to 130	4.57	20.0
BC09996	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.12	1.12	1.01	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC09993	Boron, Total	mg/L	0.000087	0.0650	1.00	1.40	1.41	1.02	0.850 to 1.15	102	70.0 to 130	0.712	20.0
BC09996	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC09993	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0990	0.100	0.100	0.0850 to 0.115	99.0	70.0 to 130	1.01	20.0
BC09996	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	19.3	19.2	4.87	4.25 to 5.75	96.0	70.0 to 130	0.519	20.0
BC09993	Calcium, Total	mg/L	0.00617	0.152	5.00	11.7	11.8	4.91	4.25 to 5.75	93.4	70.0 to 130	0.851	20.0
BC09993	Chloride	mg/L	-0.137	1.00	200	391	388	10.3	9.00 to 11.0	104	80.0 to 120	0.770	20.0
BC09996	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.0986	0.0997	0.100	0.0850 to 0.115	98.1	70.0 to 130	1.11	20.0
BC09993	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.101	0.0997	0.101	0.0850 to 0.115	100	70.0 to 130	1.30	20.0
BC09996	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.128	0.132	0.104	0.0850 to 0.115	101	70.0 to 130	3.08	20.0
BC09993	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.105	0.103	0.101	0.0850 to 0.115	102	70.0 to 130	1.92	20.0
BC09993	Fluoride	mg/L	-0.0283	0.125	2.50	3.11	3.13	2.58	2.25 to 2.75	113	80.0 to 120	0.641	20.0
BC09996	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	79.1	79.2	0.200	0.170 to 0.230	-400	70.0 to 130	0.126	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 10:57

Customer ID: Delivery Date:

Customer ID:

5/25/22 14:54

Description: Barry Ash Pond - MW-15V

Laboratory ID Number: BC09987

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Iron, Total	mg/L	0.000064	0.0176	0.2	25.2	26.1	0.203	0.170 to 0.230	-150	70.0 to 130	3.51	20.0
BC09996	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.102	0.103	0.104	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC09993	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.102	0.104	0.102	0.0850 to 0.115	102	70.0 to 130	1.94	20.0
BC09996	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.206	0.206	0.205	0.170 to 0.230	103	70.0 to 130	0.00	20.0
BC09993	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.212	0.211	0.206	0.170 to 0.230	106	70.0 to 130	0.473	20.0
BC09996	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	13.7	13.7	5.09	4.25 to 5.75	101	70.0 to 130	0.00	20.0
BC09993	Magnesium, Total	mg/L	0.00180	0.0462	5.00	8.62	8.57	5.21	4.25 to 5.75	101	70.0 to 130	0.582	20.0
BC09996	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	2.10	2.03	0.103	0.0850 to 0.115	150	70.0 to 130	3.39	20.0
BC09993	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.451	0.444	0.103	0.0850 to 0.115	102	70.0 to 130	1.56	20.0
BC09993	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00341	0.00338	0.00362	0.00340 to 0.00460	85.2	70.0 to 130	0.884	20.0
BC09996	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.103	0.102	0.0992	0.0850 to 0.115	101	70.0 to 130	0.976	20.0
BC09993	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.102	0.100	0.0965	0.0850 to 0.115	98.9	70.0 to 130	1.98	20.0
BC09996	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	11.9	12.1	10.3	8.50 to 11.5	97.2	70.0 to 130	1.67	20.0
BC09993	Potassium, Total	mg/L	-0.0109	0.367	10.0	17.9	17.7	10.5	8.50 to 11.5	99.9	70.0 to 130	1.12	20.0
BC09996	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.104	0.105	0.106	0.0850 to 0.115	104	70.0 to 130	0.957	20.0
BC09993	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.105	0.104	0.105	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09996	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	7.33	7.33	0.999	0.850 to 1.15	97.0	70.0 to 130	0.00	20.0
BC09993	Silicon, Total	mg/L	0.00083	0.0440	1.00	7.62	7.60	1.04	0.850 to 1.15	94.0	70.0 to 130	0.263	20.0
BC09996	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	49.6	49.7	5.14	4.25 to 5.75	86.0	70.0 to 130	0.201	20.0
BC09993	Sodium, Total	mg/L	0.00067	0.0660	5.00	176	180	5.25	4.25 to 5.75	40.0	70.0 to 130	2.25	20.0
BC09993	Sulfate	mg/L	-0.278	2.0	20.0	33.5	33.5	19.1	18.0 to 22.0	99.5	80.0 to 120	0.00	20.0
BC09996	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.101	0.102	0.103	0.0850 to 0.115	101	70.0 to 130	0.985	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 10:57

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-15V

Laboratory ID Number: BC09987

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.103	0.105	0.107	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC09993	Total Organic Carbon	mg/L	0.256	1.00	10.0	13.7	13.9	9.85		93.3	80.0 to 120	1.45	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 10:57

Customer ID:

Delivery Date:

5/25/22 14:54

Description: Barry Ash Pond - MW-15V

Laboratory ID Number: BC09987

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09987	Alkalinity, Total as CaCO3	mg/L					34.9	51.7	45.0 to 55.0			4.39	10.0
BC09993	Nitrogen, Nitrate/Nitrite	mg/L as N	0.05	0.200	2.00	2.12	0.146	1.97	1.80 to 2.20	106	90.0 to 110	0.00	15.0
BC09999	Solids, Dissolved	mg/L	1.00	25.0			468	49.0	40.0 to 60.0			0.858	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-7Location Code:WMWBARAPCollected:5/24/22 13:10

Customer ID:

Laboratory ID Number: BC09988 Submittal Date: 5/25/22 14:54

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	ion Method: I	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 10:33	1.015	0.0369	mg/L	0.030000	0.1015	J
* Calcium, Total	5/31/22 10:50	6/2/22 10:33	1.015	10.5	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 11:15	50.75	19.8	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 10:33	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 10:33	1.015	8.61	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 10:33	1	14.0	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 10:33	1.015	6.54	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 10:33	1.015	23.1	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 11:22	1.015	0.0371	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	5/27/22 09:45	6/1/22 11:22	1.015	10.9	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 12:20	50.75	18.4	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 11:22	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 11:22	1.015	8.61	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 11:22	1	14.0	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 11:22	1.015	6.52	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 11:22	1.015	22.9	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	ion Method: I	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 17:27	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 17:27	1.015	0.00839	mg/L	0.006090	0.01015	J
* Arsenic, Total	6/1/22 11:30	6/1/22 17:27	1.015	0.0197	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 17:27	1.015	0.0717	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 17:27	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 17:27	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 17:27	1.015	0.000584	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 17:27	1.015	0.0230	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 17:27	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 17:27	1.015	0.420	mg/L	0.000152	0.000203	
Molybdenum, Total	6/1/22 11:30	6/1/22 17:27		0.000178	mg/L	0.000102	0.000203	J
* Potassium, Total	6/1/22 11:30	6/1/22 17:27		1.34	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-7

Location Code:

WMWBARAP

Collected:

Customer ID: Submittal Date:

5/24/22 13:10 5/25/22 14:54

Laboratory ID Number: BC09988

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 17:27	,	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 17:27		1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 16:4	·9	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 16:4	· 9	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 16:4	9	1.015	0.0195	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 16:4	9	1.015	0.0731	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 16:4	9	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 16:4	9	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 16:4	9	1.015	0.000340	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 16:4	9	1.015	0.0238	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 16:4	9	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 16:4	9	1.015	0.421	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 16:4	9	1.015	0.000223	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 16:4	9	1.015	1.28	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 16:4	9	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 16:4	9	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 11:40	6/6/22 15:02	2	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: CES							
* Nitrogen, Nitrate/Nitrite	5/26/22 13:44	5/26/22 13:4	4	1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/6/22 13:15	6/6/22 15:32	·	1	124	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/25/22 16:30	5/31/22 13:5	i8 ·	1	148	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32		1	124	mg/L			
Carbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32		1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		yst: ELH							
* Total Organic Carbon	5/31/22 21:48		18	1	5.15	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-7

Location Code:

WMWBARAP

Collected:

Customer ID:

5/24/22 13:10

Laboratory ID Number: BC09988

Submittal Date:

5/25/22 14:54

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anal	yst: CES						
* Chloride	5/31/22 14:10	5/31/22 14:	10 1	13.2	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Anal	lyst: JCC						
* Fluoride	6/8/22 11:46	6/8/22 11:46	5 1	0.0724	mg/L	0.06	0.125	J
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC						
* Sulfate	6/7/22 13:42	6/7/22 13:42	2 1	7.14	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	lyst: AWG						
Conductivity	5/24/22 13:08	5/24/22 13:0	08	243.46	uS/cm			FA
рН	5/24/22 13:08	5/24/22 13:0	08	6.32	SU			FA
Temperature	5/24/22 13:08	5/24/22 13:0	08	21.47	С			FA
Turbidity	5/24/22 13:08	5/24/22 13:0	08	3.47	NTU			FA
Sulfide	5/24/22 13:08	5/24/22 13:0	08	0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/24/22 13:10

Customer ID:

Delivery Date:

5/25/22 14:54

Description: Barry Ash Pond - MW-7

Laboratory ID Number: BC09988

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09996	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.100	0.102	0.102	0.0850 to 0.115	100	70.0 to 130	1.98	20.0
3C09993	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.122	0.122	0.108	0.0850 to 0.115	107	70.0 to 130	0.00	20.0
3C09996	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.0992	0.100	0.0949	0.0850 to 0.115	99.2	70.0 to 130	0.803	20.0
BC09993	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.100	0.101	0.0925	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
3C09996	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.124	0.119	0.104	0.0850 to 0.115	105	70.0 to 130	4.12	20.0
3C09993	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.109	0.107	0.102	0.0850 to 0.115	103	70.0 to 130	1.85	20.0
BC09996	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.189	0.186	0.102	0.0850 to 0.115	97.2	70.0 to 130	1.60	20.0
BC09993	Barium, Total	mg/L	0.000	0.00100	0.100	0.169	0.169	0.0987	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
3C09996	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.115	0.106	0.100	0.0850 to 0.115	115	70.0 to 130	8.14	20.0
BC09993	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.107	0.112	0.105	0.0850 to 0.115	107	70.0 to 130	4.57	20.0
BC09996	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.12	1.12	1.01	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC09993	Boron, Total	mg/L	0.000087	0.0650	1.00	1.40	1.41	1.02	0.850 to 1.15	102	70.0 to 130	0.712	20.0
BC09996	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC09993	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0990	0.100	0.100	0.0850 to 0.115	99.0	70.0 to 130	1.01	20.0
BC09996	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	19.3	19.2	4.87	4.25 to 5.75	96.0	70.0 to 130	0.519	20.0
BC09993	Calcium, Total	mg/L	0.00617	0.152	5.00	11.7	11.8	4.91	4.25 to 5.75	93.4	70.0 to 130	0.851	20.0
BC09993	Chloride	mg/L	-0.137	1.00	200	391	388	10.3	9.00 to 11.0	104	80.0 to 120	0.770	20.0
BC09996	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.0986	0.0997	0.100	0.0850 to 0.115	98.1	70.0 to 130	1.11	20.0
3C09993	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.101	0.0997	0.101	0.0850 to 0.115	100	70.0 to 130	1.30	20.0
3C09996	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.128	0.132	0.104	0.0850 to 0.115	101	70.0 to 130	3.08	20.0
3C09993	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.105	0.103	0.101	0.0850 to 0.115	102	70.0 to 130	1.92	20.0
3C09993	Fluoride	mg/L	-0.0283	0.125	2.50	3.11	3.13	2.58	2.25 to 2.75	113	80.0 to 120	0.641	20.0
BC09996	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	79.1	79.2	0.200	0.170 to 0.230	-400	70.0 to 130	0.126	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 13:10

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-7

Laboratory ID Number: BC09988

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Iron, Total	mg/L	0.000064	0.0176	0.2	25.2	26.1	0.203	0.170 to 0.230	-150	70.0 to 130	3.51	20.0
BC09996	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.102	0.103	0.104	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC09993	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.102	0.104	0.102	0.0850 to 0.115	102	70.0 to 130	1.94	20.0
BC09996	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.206	0.206	0.205	0.170 to 0.230	103	70.0 to 130	0.00	20.0
BC09993	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.212	0.211	0.206	0.170 to 0.230	106	70.0 to 130	0.473	20.0
BC09996	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	13.7	13.7	5.09	4.25 to 5.75	101	70.0 to 130	0.00	20.0
BC09993	Magnesium, Total	mg/L	0.00180	0.0462	5.00	8.62	8.57	5.21	4.25 to 5.75	101	70.0 to 130	0.582	20.0
BC09996	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	2.10	2.03	0.103	0.0850 to 0.115	150	70.0 to 130	3.39	20.0
BC09993	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.451	0.444	0.103	0.0850 to 0.115	102	70.0 to 130	1.56	20.0
BC09993	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00341	0.00338	0.00362	0.00340 to 0.00460	85.2	70.0 to 130	0.884	20.0
BC09996	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.103	0.102	0.0992	0.0850 to 0.115	101	70.0 to 130	0.976	20.0
BC09993	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.102	0.100	0.0965	0.0850 to 0.115	98.9	70.0 to 130	1.98	20.0
BC09996	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	11.9	12.1	10.3	8.50 to 11.5	97.2	70.0 to 130	1.67	20.0
BC09993	Potassium, Total	mg/L	-0.0109	0.367	10.0	17.9	17.7	10.5	8.50 to 11.5	99.9	70.0 to 130	1.12	20.0
BC09996	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.104	0.105	0.106	0.0850 to 0.115	104	70.0 to 130	0.957	20.0
BC09993	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.105	0.104	0.105	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09996	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	7.33	7.33	0.999	0.850 to 1.15	97.0	70.0 to 130	0.00	20.0
BC09993	Silicon, Total	mg/L	0.00083	0.0440	1.00	7.62	7.60	1.04	0.850 to 1.15	94.0	70.0 to 130	0.263	20.0
BC09996	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	49.6	49.7	5.14	4.25 to 5.75	86.0	70.0 to 130	0.201	20.0
BC09993	Sodium, Total	mg/L	0.00067	0.0660	5.00	176	180	5.25	4.25 to 5.75	40.0	70.0 to 130	2.25	20.0
BC09993	Sulfate	mg/L	-0.278	2.0	20.0	33.5	33.5	19.1	18.0 to 22.0	99.5	80.0 to 120	0.00	20.0
BC09996	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.101	0.102	0.103	0.0850 to 0.115	101	70.0 to 130	0.985	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 13:10

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-7

Laboratory ID Number: BC09988

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.103	0.105	0.107	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC09993	Total Organic Carbon	mg/L	0.256	1.00	10.0	13.7	13.9	9.85		93.3	80.0 to 120	1.45	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 13:10

Customer ID:

Delivery Date:

5/25/22 14:54

Description: Barry Ash Pond - MW-7

Laboratory ID Number: BC09988

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10001	Alkalinity, Total as CaCO3	mg/L					12.4	53.2	45.0 to 55.0			3.28	10.0
BC09993	Nitrogen, Nitrate/Nitrite	mg/L as N	0.05	0.200	2.00	2.12	0.146	1.97	1.80 to 2.20	106	90.0 to 110	0.00	15.0
BC09999	Solids, Dissolved	mg/L	1.00	25.0			468	49.0	40.0 to 60.0			0.858	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-7 DupLocation Code:WMWBARAPCollected:5/24/22 13:10

Customer ID:

Laboratory ID Number: BC09989 Submittal Date: 5/25/22 14:54

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analy	/st: RDA		Preparati	on Method:	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 10:36	1.015	0.0368	mg/L	0.030000	0.1015	J
* Calcium, Total	5/31/22 10:50	6/2/22 10:36	1.015	10.7	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 11:18	50.75	19.8	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 10:36	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 10:36	1.015	8.60	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 10:36	1	14.1	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 10:36	1.015	6.59	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 10:36	1.015	22.9	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Anal	/st: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 11:25	1.015	0.0366	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	5/27/22 09:45	6/1/22 11:25	1.015	10.9	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 12:24	50.75	18.1	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 11:25	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 11:25	1.015	8.66	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 11:25	1	13.8	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 11:25	1.015	6.47	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 11:25	1.015	22.9	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Anal	/st: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 17:30	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 17:30	1.015	0.00725	mg/L	0.006090	0.01015	J
* Arsenic, Total	6/1/22 11:30	6/1/22 17:30	1.015	0.0192	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 17:30	1.015	0.0715	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 17:30	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 17:30	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 17:30	1.015	0.000587	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 17:30	1.015	0.0234	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 17:30	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 17:30		0.421	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 17:30	1.015	0.000181	mg/L	0.000102	0.000203	J
* Potassium, Total	6/1/22 11:30	6/1/22 17:30		1.34	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-7 DupLocation Code:WMWBARAPCollected:5/24/22 13:10

Customer ID:

Submittal Date: 5/25/22 14:54

Laboratory ID Number: BC09989

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 17:30)	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 17:30)	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 16:5	3	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 16:5	3	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 16:5	3	1.015	0.0204	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 16:5	3	1.015	0.0721	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 16:5	3	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 16:5	i3	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 16:5	3	1.015	0.000295	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 16:5	3	1.015	0.0237	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 16:5	i3	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 16:5	i3	1.015	0.421	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 16:5	i3	1.015	0.000176	mg/L	0.000102	0.000203	J
* Potassium, Dissolved	5/31/22 14:15	5/31/22 16:5	3	1.015	1.25	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 16:5	3	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 16:5	3	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 11:40	6/6/22 15:04		1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: CES							
* Nitrogen, Nitrate/Nitrite	5/26/22 13:46	5/26/22 13:4	6	1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/6/22 13:15	6/6/22 15:32	2	1	117	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/25/22 16:30	5/31/22 13:5	58	1	154	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32		1	117	mg/L			
Carbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32		1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		yst: ELH							
* Total Organic Carbon	5/31/22 22:06	-	16	1	5.24	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-7 Dup

Location Code:

WMWBARAP 5/24/22 13:10

Collected: Customer ID:

Submittal Date:

5/25/22 14:54

Laboratory ID Number: BC09989

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anal	yst: CES							
* Chloride	5/31/22 14:11	5/31/22 14:	11	1	12.9	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Anal	yst: JCC							
* Fluoride	6/8/22 11:47	6/8/22 11:47	7	1	0.0916	mg/L	0.06	0.125	J
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC							
* Sulfate	6/7/22 13:43	6/7/22 13:43	3	1	7.53	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	yst: AWG							
Conductivity	5/24/22 13:08	5/24/22 13:0	08		243.46	uS/cm			FA
рН	5/24/22 13:08	5/24/22 13:0	08		6.32	SU			FA
Temperature	5/24/22 13:08	5/24/22 13:0	08		21.47	С			FA
Turbidity	5/24/22 13:08	5/24/22 13:0	08		3.47	NTU			FA
Sulfide	5/24/22 13:08	5/24/22 13:0	08		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP Sample Date:

Customer ID:

5/24/22 13:10

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-7 Dup

Laboratory ID Number: BC09989

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09996	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.100	0.102	0.102	0.0850 to 0.115	100	70.0 to 130	1.98	20.0
BC09993	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.122	0.122	0.108	0.0850 to 0.115	107	70.0 to 130	0.00	20.0
BC09996	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.0992	0.100	0.0949	0.0850 to 0.115	99.2	70.0 to 130	0.803	20.0
BC09993	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.100	0.101	0.0925	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
BC09996	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.124	0.119	0.104	0.0850 to 0.115	105	70.0 to 130	4.12	20.0
BC09993	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.109	0.107	0.102	0.0850 to 0.115	103	70.0 to 130	1.85	20.0
BC09996	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.189	0.186	0.102	0.0850 to 0.115	97.2	70.0 to 130	1.60	20.0
BC09993	Barium, Total	mg/L	0.000	0.00100	0.100	0.169	0.169	0.0987	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC09996	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.115	0.106	0.100	0.0850 to 0.115	115	70.0 to 130	8.14	20.0
BC09993	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.107	0.112	0.105	0.0850 to 0.115	107	70.0 to 130	4.57	20.0
BC09996	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.12	1.12	1.01	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC09993	Boron, Total	mg/L	0.000087	0.0650	1.00	1.40	1.41	1.02	0.850 to 1.15	102	70.0 to 130	0.712	20.0
BC09996	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC09993	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0990	0.100	0.100	0.0850 to 0.115	99.0	70.0 to 130	1.01	20.0
BC09996	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	19.3	19.2	4.87	4.25 to 5.75	96.0	70.0 to 130	0.519	20.0
BC09993	Calcium, Total	mg/L	0.00617	0.152	5.00	11.7	11.8	4.91	4.25 to 5.75	93.4	70.0 to 130	0.851	20.0
BC09993	Chloride	mg/L	-0.137	1.00	200	391	388	10.3	9.00 to 11.0	104	80.0 to 120	0.770	20.0
BC09996	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.0986	0.0997	0.100	0.0850 to 0.115	98.1	70.0 to 130	1.11	20.0
BC09993	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.101	0.0997	0.101	0.0850 to 0.115	100	70.0 to 130	1.30	20.0
BC09996	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.128	0.132	0.104	0.0850 to 0.115	101	70.0 to 130	3.08	20.0
BC09993	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.105	0.103	0.101	0.0850 to 0.115	102	70.0 to 130	1.92	20.0
BC09993	Fluoride	mg/L	-0.0283	0.125	2.50	3.11	3.13	2.58	2.25 to 2.75	113	80.0 to 120	0.641	20.0
BC09996	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	79.1	79.2	0.200	0.170 to 0.230	-400	70.0 to 130	0.126	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 13:10

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-7 Dup

Laboratory ID Number: BC09989

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Iron, Total	mg/L	0.000064	0.0176	0.2	25.2	26.1	0.203	0.170 to 0.230	-150	70.0 to 130	3.51	20.0
BC09996	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.102	0.103	0.104	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC09993	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.102	0.104	0.102	0.0850 to 0.115	102	70.0 to 130	1.94	20.0
BC09996	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.206	0.206	0.205	0.170 to 0.230	103	70.0 to 130	0.00	20.0
BC09993	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.212	0.211	0.206	0.170 to 0.230	106	70.0 to 130	0.473	20.0
BC09996	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	13.7	13.7	5.09	4.25 to 5.75	101	70.0 to 130	0.00	20.0
BC09993	Magnesium, Total	mg/L	0.00180	0.0462	5.00	8.62	8.57	5.21	4.25 to 5.75	101	70.0 to 130	0.582	20.0
BC09996	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	2.10	2.03	0.103	0.0850 to 0.115	150	70.0 to 130	3.39	20.0
BC09993	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.451	0.444	0.103	0.0850 to 0.115	102	70.0 to 130	1.56	20.0
BC09993	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00341	0.00338	0.00362	0.00340 to 0.00460	85.2	70.0 to 130	0.884	20.0
BC09996	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.103	0.102	0.0992	0.0850 to 0.115	101	70.0 to 130	0.976	20.0
BC09993	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.102	0.100	0.0965	0.0850 to 0.115	98.9	70.0 to 130	1.98	20.0
BC09996	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	11.9	12.1	10.3	8.50 to 11.5	97.2	70.0 to 130	1.67	20.0
BC09993	Potassium, Total	mg/L	-0.0109	0.367	10.0	17.9	17.7	10.5	8.50 to 11.5	99.9	70.0 to 130	1.12	20.0
BC09996	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.104	0.105	0.106	0.0850 to 0.115	104	70.0 to 130	0.957	20.0
BC09993	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.105	0.104	0.105	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09996	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	7.33	7.33	0.999	0.850 to 1.15	97.0	70.0 to 130	0.00	20.0
BC09993	Silicon, Total	mg/L	0.00083	0.0440	1.00	7.62	7.60	1.04	0.850 to 1.15	94.0	70.0 to 130	0.263	20.0
BC09996	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	49.6	49.7	5.14	4.25 to 5.75	86.0	70.0 to 130	0.201	20.0
BC09993	Sodium, Total	mg/L	0.00067	0.0660	5.00	176	180	5.25	4.25 to 5.75	40.0	70.0 to 130	2.25	20.0
BC09993	Sulfate	mg/L	-0.278	2.0	20.0	33.5	33.5	19.1	18.0 to 22.0	99.5	80.0 to 120	0.00	20.0
BC09996	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.101	0.102	0.103	0.0850 to 0.115	101	70.0 to 130	0.985	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 13:10

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-7 Dup

Laboratory ID Number: BC09989

	•			MB					Standard		Rec		— Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	Limit
BC09993	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.103	0.105	0.107	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC09993	Total Organic Carbon	mg/L	0.256	1.00	10.0	13.7	13.9	9.85		93.3	80.0 to 120	1.45	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date: 5/24/22 13:10

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-7 Dup

Laboratory ID Number: BC09989

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10001	Alkalinity, Total as CaCO3	mg/L					12.4	53.2	45.0 to 55.0			3.28	10.0
BC09993	Nitrogen, Nitrate/Nitrite	mg/L as N	0.05	0.200	2.00	2.12	0.146	1.97	1.80 to 2.20	106	90.0 to 110	0.00	15.0
BC09999	Solids, Dissolved	mg/L	1.00	25.0			468	49.0	40.0 to 60.0			0.858	10.0

Certificate Of Analysis

Description: Barry Ash Pond Field Blank-3Location Code:WMWBARAPFBCollected:5/24/22 14:05

Customer ID:

Submittal Date: 5/25/22 14:54

Laboratory ID Number: BC09990

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	on Method: EP.	4 1638		
* Boron, Total	5/31/22 10:50	6/2/22 10:39	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	5/31/22 10:50	6/2/22 10:39	1.015	Not Detected	mg/L	0.070035	0.406	U
* Iron, Total	5/31/22 10:50	6/2/22 10:39	1.015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Total	5/31/22 10:50	6/2/22 10:39	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 10:39	1.015	Not Detected	mg/L	0.021315	0.406	U
Silica, Total (calc.)	5/31/22 10:50	6/2/22 10:39	1	Not Detected	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 10:39	1.015	Not Detected	mg/L	0.02030	0.25375	U
* Sodium, Total	5/31/22 10:50	6/2/22 10:39	1.015	Not Detected	mg/L	0.03045	0.406	U
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	on Method: EP	A 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 17:34	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 17:34	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Total	6/1/22 11:30	6/1/22 17:34	1.015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Total	6/1/22 11:30	6/1/22 17:34	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Beryllium, Total	6/1/22 11:30	6/1/22 17:34	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 17:34	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 17:34	1.015	Not Detected	mg/L	0.000203	0.001015	U
* Cobalt, Total	6/1/22 11:30	6/1/22 17:34	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Total	6/1/22 11:30	6/1/22 17:34	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 17:34	1.015	Not Detected	mg/L	0.000152	0.000203	U
* Molybdenum, Total	6/1/22 11:30	6/1/22 17:34	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/1/22 11:30	6/1/22 17:34	1.015	Not Detected	mg/L	0.169505	0.5075	U
* Selenium, Total	6/1/22 11:30	6/1/22 17:34	1.015	Not Detected	mg/L	0.000508	0.001015	U
 Thallium, Total 	6/1/22 11:30	6/1/22 17:34	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB						
 Mercury, Total by CVAA 	6/6/22 11:40	6/6/22 15:07	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: CES						
* Nitrogen, Nitrate/Nitrite	5/26/22 13:47	5/26/22 13:4	7 1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2540C	Anal	yst: CNJ						
* Solids, Dissolved	5/25/22 16:30	5/31/22 13:5	8 1	Not Detected	mg/L		25	U

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond Field Blank-3

Location Code:

WMWBARAPFB

Collected:

Not Detected mg/L

Customer ID: Submittal Date:

5/24/22 14:05 5/25/22 14:54

0.6

2

U

Laboratory ID Number: BC09990

* Sulfate

MDL Q Analyzed Vio Spec DF Results Units RL Name Prepared Analytical Method: SM 5310 B Analyst: ELH * Total Organic Carbon U 5/31/22 22:27 5/31/22 22:27 Not Detected mg/L 1.00 1 Analytical Method: SM4500CI E Analyst: CES 0.50 U * Chloride 5/31/22 14:18 5/31/22 14:18 Not Detected mg/L Analytical Method: SM4500F G 2017 Analyst: JCC U Not Detected mg/L 0.06 0.125 * Fluoride 6/8/22 11:48 6/8/22 11:48 Analytical Method: SM4500SO4 E 2011 Analyst: JCC

6/7/22 13:44 6/7/22 13:44

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAPFB

Sample Date:

5/24/22 14:05

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond Field Blank-3

Laboratory ID Number: BC09990

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.122	0.122	0.108	0.0850 to 0.115	107	70.0 to 130	0.00	20.0
BC09993	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.100	0.101	0.0925	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
BC09993	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.109	0.107	0.102	0.0850 to 0.115	103	70.0 to 130	1.85	20.0
BC09993	Barium, Total	mg/L	0.000	0.00100	0.100	0.169	0.169	0.0987	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC09993	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.107	0.112	0.105	0.0850 to 0.115	107	70.0 to 130	4.57	20.0
BC09993	Boron, Total	mg/L	0.000087	0.0650	1.00	1.40	1.41	1.02	0.850 to 1.15	102	70.0 to 130	0.712	20.0
BC09993	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0990	0.100	0.100	0.0850 to 0.115	99.0	70.0 to 130	1.01	20.0
BC09993	Calcium, Total	mg/L	0.00617	0.152	5.00	11.7	11.8	4.91	4.25 to 5.75	93.4	70.0 to 130	0.851	20.0
BC09993	Chloride	mg/L	-0.137	1.00	200	391	388	10.3	9.00 to 11.0	104	80.0 to 120	0.770	20.0
BC09993	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.101	0.0997	0.101	0.0850 to 0.115	100	70.0 to 130	1.30	20.0
BC09993	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.105	0.103	0.101	0.0850 to 0.115	102	70.0 to 130	1.92	20.0
BC09993	Fluoride	mg/L	-0.0283	0.125	2.50	3.11	3.13	2.58	2.25 to 2.75	113	80.0 to 120	0.641	20.0
BC09993	Iron, Total	mg/L	0.000064	0.0176	0.2	25.2	26.1	0.203	0.170 to 0.230	-150	70.0 to 130	3.51	20.0
BC09993	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.102	0.104	0.102	0.0850 to 0.115	102	70.0 to 130	1.94	20.0
BC09993	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.212	0.211	0.206	0.170 to 0.230	106	70.0 to 130	0.473	20.0
BC09993	Magnesium, Total	mg/L	0.00180	0.0462	5.00	8.62	8.57	5.21	4.25 to 5.75	101	70.0 to 130	0.582	20.0
BC09993	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.451	0.444	0.103	0.0850 to 0.115	102	70.0 to 130	1.56	20.0
BC09993	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00341	0.00338	0.00362	0.00340 to 0.00460	85.2	70.0 to 130	0.884	20.0
BC09993	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.102	0.100	0.0965	0.0850 to 0.115	98.9	70.0 to 130	1.98	20.0
BC09993	Potassium, Total	mg/L	-0.0109	0.367	10.0	17.9	17.7	10.5	8.50 to 11.5	99.9	70.0 to 130	1.12	20.0
BC09993	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.105	0.104	0.105	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09993	Silicon, Total	mg/L	0.00083	0.0440	1.00	7.62	7.60	1.04	0.850 to 1.15	94.0	70.0 to 130	0.263	20.0
BC09993	Sodium, Total	mg/L	0.00067	0.0660	5.00	176	180	5.25	4.25 to 5.75	40.0	70.0 to 130	2.25	20.0

Batch QC Summary

Customer Account: WMWBARAPFB **Sample Date:** 5/24/22 14:05

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond Field Blank-3

Laboratory ID Number: BC09990

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Sulfate	mg/L	-0.278	2.0	20.0	33.5	33.5	19.1	18.0 to 22.0	99.5	80.0 to 120	0.00	20.0
BC09993	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.103	0.105	0.107	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC09993	Total Organic Carbon	mg/L	0.256	1.00	10.0	13.7	13.9	9.85		93.3	80.0 to 120	1.45	20.0

Batch QC Summary

Customer Account: WMWBARAPFB

Sample Date:

5/24/22 14:05

Customer ID:

Delivery Date:

5/25/22 14:54

Description: Barry Ash Pond Field Blank-3

Laboratory ID Number: BC09990

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Nitrogen, Nitrate/Nitrite	mg/L as N	0.05	0.200	2.00	2.12	0.146	1.97	1.80 to 2.20	106	90.0 to 110	0.00	15.0
BC09999	Solids, Dissolved	mg/L	1.00	25.0			468	49.0	40.0 to 60.0			0.858	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-7VLocation Code:WMWBARAPCollected:5/24/22 14:14

Customer ID:

Submittal Date: 5/25/22 14:54

Laboratory ID Number: BC09991

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analy	yst: RDA		Preparati	on Method:	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 10:42	1.015	0.165	mg/L	0.030000	0.1015	
* Calcium, Total	5/31/22 10:50	6/2/22 10:42	1.015	8.84	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 11:21	50.75	19.3	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 10:42	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 10:42	1.015	4.88	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 10:42	. 1	18.6	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 10:42	1.015	8.68	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 11:21	50.75	76.8	mg/L	1.5225	20.3	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 11:28	1.015	0.162	mg/L	0.030000	0.1015	
* Calcium, Dissolved	5/27/22 09:45	6/1/22 11:28	1.015	7.22	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 12:27	50.75	17.0	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 11:28	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 11:28	1.015	4.68	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 11:28	1	17.3	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 11:28	1.015	8.07	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 12:27	50.75	76.8	mg/L	1.5225	20.3	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 17:38	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 17:38	1.015	0.0309	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 17:38	1.015	0.00218	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 17:38	1.015	0.0803	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 17:38	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 17:38	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 17:38	1.015	0.000226	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 17:38	1.015	0.000110	mg/L	0.000068	0.000203	J
* Lead, Total	6/1/22 11:30	6/1/22 17:38	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 17:38	1.015	0.245	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 17:38	1.015	0.000740	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 17:38	1.015	1.99	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-7VLocation Code:WMWBARAPCollected:5/24/22 14:14

Customer ID:

Laboratory ID Number: BC09991 Submittal Date: 5/25/22 14:54

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 17:38	3	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 17:38	3	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 16:5	56	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 16:5	56	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 16:5	56	1.015	0.00212	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 16:5	56	1.015	0.0797	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 16:5	56	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 16:5	56	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 16:5	56	1.015	0.000317	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 16:5	56	1.015	0.000106	mg/L	0.000068	0.000203	J
* Lead, Dissolved	5/31/22 14:15	5/31/22 16:5	56	1.015	0.0000813	mg/L	0.000068	0.000203	J
* Manganese, Dissolved	5/31/22 14:15	5/31/22 16:5	56	1.015	0.239	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 16:5	56	1.015	0.000705	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 16:5	56	1.015	1.96	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 16:5	56	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 16:5	56	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 11:40	6/6/22 15:09)	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: CES							
* Nitrogen, Nitrate/Nitrite	5/26/22 13:49	5/26/22 13:4	19	1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/6/22 13:15	6/6/22 15:32	2	1	160	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: JS							
* Solids, Dissolved	5/27/22 11:00	6/2/22 15:15	5	1	228	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32	2	1	160	mg/L			
Carbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32	2	1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		yst: ELH							
* Total Organic Carbon	5/31/22 22:45		15	1	4.26	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-7V

Location Code:

WMWBARAP

Collected:

Customer ID: Submittal Date: 5/24/22 14:14

5/25/22 14:54

Laboratory ID Number: BC09991

Name	Prepared	Analyzed	Vio Spec D	F Res	sults Un	its MDL	RL	Q
Analytical Method: SM4500CI E	Anal	yst: CES						
* Chloride	5/31/22 14:22	5/31/22 14:2	22 10	40.	4 mg	/L 5.00	10	
Analytical Method: SM4500F G 2017	Anal	lyst: JCC						
* Fluoride	6/8/22 11:49	6/8/22 11:49	9 1	0.0	869 mg	/L 0.06	0.125	J
Analytical Method: SM4500SO4 E 2011	Anal	lyst: JCC						
* Sulfate	6/7/22 13:46	6/7/22 13:46	5 1	6.0	6 mg	/L 0.6	2	
Analytical Method: Field Measurements	Anal	lyst: AWG						
Conductivity	5/24/22 14:09	5/24/22 14:0	09	424	l.17 uS/	/cm		FA
рН	5/24/22 14:09	5/24/22 14:0	09	6.9	2 SU			FA
Temperature	5/24/22 14:09	5/24/22 14:0	09	22.	25 C			FA
Turbidity	5/24/22 14:09	5/24/22 14:0	09	1.73	3 NT	U		FA
Sulfide	5/24/22 14:09	5/24/22 14:0	09	0	mg	/L		FA
Sulfide	5/24/22 14:09	5/24/22 14:0	09	0	mg	/L		

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP

Sample Date: 5/24/22 14:14

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-7V

Laboratory ID Number: BC09991

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09996	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.100	0.102	0.102	0.0850 to 0.115	100	70.0 to 130	1.98	20.0
BC09993	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.122	0.122	0.108	0.0850 to 0.115	107	70.0 to 130	0.00	20.0
BC09996	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.0992	0.100	0.0949	0.0850 to 0.115	99.2	70.0 to 130	0.803	20.0
BC09993	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.100	0.101	0.0925	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
BC09996	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.124	0.119	0.104	0.0850 to 0.115	105	70.0 to 130	4.12	20.0
BC09993	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.109	0.107	0.102	0.0850 to 0.115	103	70.0 to 130	1.85	20.0
BC09996	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.189	0.186	0.102	0.0850 to 0.115	97.2	70.0 to 130	1.60	20.0
BC09993	Barium, Total	mg/L	0.000	0.00100	0.100	0.169	0.169	0.0987	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC09996	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.115	0.106	0.100	0.0850 to 0.115	115	70.0 to 130	8.14	20.0
BC09993	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.107	0.112	0.105	0.0850 to 0.115	107	70.0 to 130	4.57	20.0
BC09996	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.12	1.12	1.01	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC09993	Boron, Total	mg/L	0.000087	0.0650	1.00	1.40	1.41	1.02	0.850 to 1.15	102	70.0 to 130	0.712	20.0
BC09996	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC09993	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0990	0.100	0.100	0.0850 to 0.115	99.0	70.0 to 130	1.01	20.0
BC09996	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	19.3	19.2	4.87	4.25 to 5.75	96.0	70.0 to 130	0.519	20.0
BC09993	Calcium, Total	mg/L	0.00617	0.152	5.00	11.7	11.8	4.91	4.25 to 5.75	93.4	70.0 to 130	0.851	20.0
BC09993	Chloride	mg/L	-0.137	1.00	200	391	388	10.3	9.00 to 11.0	104	80.0 to 120	0.770	20.0
BC09996	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.0986	0.0997	0.100	0.0850 to 0.115	98.1	70.0 to 130	1.11	20.0
BC09993	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.101	0.0997	0.101	0.0850 to 0.115	100	70.0 to 130	1.30	20.0
BC09996	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.128	0.132	0.104	0.0850 to 0.115	101	70.0 to 130	3.08	20.0
BC09993	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.105	0.103	0.101	0.0850 to 0.115	102	70.0 to 130	1.92	20.0
BC09993	Fluoride	mg/L	-0.0283	0.125	2.50	3.11	3.13	2.58	2.25 to 2.75	113	80.0 to 120	0.641	20.0
BC09996	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	79.1	79.2	0.200	0.170 to 0.230	-400	70.0 to 130	0.126	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date: 5/24/22 14:14

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-7V

Laboratory ID Number: BC09991

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Iron, Total	mg/L	0.000064	0.0176	0.2	25.2	26.1	0.203	0.170 to 0.230	-150	70.0 to 130	3.51	20.0
BC09996	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.102	0.103	0.104	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC09993	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.102	0.104	0.102	0.0850 to 0.115	102	70.0 to 130	1.94	20.0
BC09996	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.206	0.206	0.205	0.170 to 0.230	103	70.0 to 130	0.00	20.0
BC09993	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.212	0.211	0.206	0.170 to 0.230	106	70.0 to 130	0.473	20.0
BC09996	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	13.7	13.7	5.09	4.25 to 5.75	101	70.0 to 130	0.00	20.0
BC09993	Magnesium, Total	mg/L	0.00180	0.0462	5.00	8.62	8.57	5.21	4.25 to 5.75	101	70.0 to 130	0.582	20.0
BC09996	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	2.10	2.03	0.103	0.0850 to 0.115	150	70.0 to 130	3.39	20.0
BC09993	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.451	0.444	0.103	0.0850 to 0.115	102	70.0 to 130	1.56	20.0
BC09993	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00341	0.00338	0.00362	0.00340 to 0.00460	85.2	70.0 to 130	0.884	20.0
BC09996	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.103	0.102	0.0992	0.0850 to 0.115	101	70.0 to 130	0.976	20.0
BC09993	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.102	0.100	0.0965	0.0850 to 0.115	98.9	70.0 to 130	1.98	20.0
BC09996	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	11.9	12.1	10.3	8.50 to 11.5	97.2	70.0 to 130	1.67	20.0
BC09993	Potassium, Total	mg/L	-0.0109	0.367	10.0	17.9	17.7	10.5	8.50 to 11.5	99.9	70.0 to 130	1.12	20.0
BC09996	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.104	0.105	0.106	0.0850 to 0.115	104	70.0 to 130	0.957	20.0
BC09993	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.105	0.104	0.105	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09996	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	7.33	7.33	0.999	0.850 to 1.15	97.0	70.0 to 130	0.00	20.0
BC09993	Silicon, Total	mg/L	0.00083	0.0440	1.00	7.62	7.60	1.04	0.850 to 1.15	94.0	70.0 to 130	0.263	20.0
BC09996	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	49.6	49.7	5.14	4.25 to 5.75	86.0	70.0 to 130	0.201	20.0
BC09993	Sodium, Total	mg/L	0.00067	0.0660	5.00	176	180	5.25	4.25 to 5.75	40.0	70.0 to 130	2.25	20.0
BC09993	Sulfate	mg/L	-0.278	2.0	20.0	33.5	33.5	19.1	18.0 to 22.0	99.5	80.0 to 120	0.00	20.0
BC09996	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.101	0.102	0.103	0.0850 to 0.115	101	70.0 to 130	0.985	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 14:14

Customer ID:

Delivery Date:

5/25/22 14:54

Description: Barry Ash Pond - MW-7V

Laboratory ID Number: BC09991

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.103	0.105	0.107	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC09993	Total Organic Carbon	mg/L	0.256	1.00	10.0	13.7	13.9	9.85		93.3	80.0 to 120	1.45	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 14:14

Customer ID:

Delivery Date:

5/25/22 14:54

Description: Barry Ash Pond - MW-7V

Laboratory ID Number: BC09991

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10001	Alkalinity, Total as CaCO3	mg/L					12.4	53.2	45.0 to 55.0			3.28	10.0
BC09993	Nitrogen, Nitrate/Nitrite	mg/L as N	0.05	0.200	2.00	2.12	0.146	1.97	1.80 to 2.20	106	90.0 to 110	0.00	15.0
BC09982	Solids, Dissolved	mg/L	0.0000	25.0			271	53.0	40.0 to 60.0			5.30	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-9Location Code:WMWBARAPCollected:5/24/22 15:15

Customer ID:

Laboratory ID Number: BC09992 Submittal Date: 5/25/22 14:54

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	ion Method: I	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 10:45	1.015	2.01	mg/L	0.030000	0.1015	
* Calcium, Total	5/31/22 10:50	6/2/22 10:45	1.015	38.3	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 11:25	50.75	81.4	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 10:45	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 10:45	1.015	11.6	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 10:45	1	24.6	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 10:45	1.015	11.5	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 10:45	1.015	19.6	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 11:31	1.015	1.98	mg/L	0.030000	0.1015	
* Calcium, Dissolved	5/27/22 09:45	6/1/22 11:31	1.015	39.6	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 12:30	50.75	77.8	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 11:31	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 11:31	1.015	11.4	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 11:31	1	24.4	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 11:31	1.015	11.4	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 11:31	1.015	19.3	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	ion Method: I	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 17:41	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 17:41	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Total	6/1/22 11:30	6/1/22 17:41	1.015	0.0404	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 17:41	1.015	0.117	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 17:41	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 17:41	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 17:41	1.015	0.000701	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 17:41	1.015	0.000695	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 17:41	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 21:01	5.075	2.16	mg/L	0.000761	0.001015	
* Molybdenum, Total	6/1/22 11:30	6/1/22 17:41	1.015	0.000240	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 17:41	1.015	1.03	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Location Code: WMWBARAP Description: Barry Ash Pond - MW-9 Collected:

5/24/22 15:15

Customer ID:

Submittal Date: 5/25/22 14:54

Laboratory ID Number: BC09992									
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 17:41		1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 17:41		1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 17:0	00	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 17:0	00	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 17:0	00	1.015	0.0414	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 17:0	00	1.015	0.122	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 17:0	00	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 17:0	00	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 17:0	00	1.015	0.000800	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 17:0	00	1.015	0.000753	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 17:0	00	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	6/1/22 17:15	5	5.075	2.12	mg/L	0.000761	0.001015	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 17:0	00	1.015	0.000206	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 17:0	00	1.015	0.931	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 17:0	00	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 17:0	00	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	lyst: CRB							
* Mercury, Total by CVAA	6/6/22 11:40	6/6/22 15:12	2	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Ana	lyst: CES							
* Nitrogen, Nitrate/Nitrite	5/26/22 13:51	5/26/22 13:5	51	1	0.300	mg/L as N	0.20	0.3	
Analytical Method: SM 2320 B	Ana	lyst: ALH							
Alkalinity, Total as CaCO3	6/6/22 13:15	6/6/22 15:32	2	1	255	mg/L		0.1	
Analytical Method: SM 2540C	Ana	lyst: JS							
* Solids, Dissolved	5/27/22 11:00	6/2/22 15:15	;	1	268	mg/L		25	
Analytical Method: SM 4500CO2 D	Ana	lyst: ALH							
Bicarbonate Alkalinity, (calc.)	6/6/22 13:15	<i>6</i> /6/22 15:32	•	1	255	mg/L			
Carbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32		1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		lyst: ELH				•			
* Total Organic Carbon		5/31/22 23:0	м	1	12.3	mg/L	1.00	2	
	3/31/22 23.04	0/01/22 20.0	' ¬	•	12.0	g/ L	1.00	-	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-9

Laboratory ID Number: BC09992

Location Code:

WMWBARAP

Collected:

Customer ID:

5/24/22 15:15

.

Submittal Date:

e: 5/25/22 14:54

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anal	yst: CES							
* Chloride	5/31/22 14:13	5/31/22 14:	13	1	17.3	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Anal	yst: JCC							
* Fluoride	6/8/22 11:50	6/8/22 11:50)	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC							
* Sulfate	6/7/22 13:47	6/7/22 13:47	7	1	5.76	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	yst: AWG							
Conductivity	5/24/22 15:12	5/24/22 15:	12		543.47	uS/cm			FA
рН	5/24/22 15:12	5/24/22 15:	12		6.03	SU			FA
Temperature	5/24/22 15:12	5/24/22 15:	12		22.35	С			FA
Turbidity	5/24/22 15:12	5/24/22 15:	12		1.63	NTU			FA
Sulfide	5/24/22 15:12	5/24/22 15:	12		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 15:15

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-9

Laboratory ID Number: BC09992

	_			MB				•	Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	l Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09996	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.100	0.102	0.102	0.0850 to 0.115	100	70.0 to 130	1.98	20.0
BC09993	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.122	0.122	0.108	0.0850 to 0.115	107	70.0 to 130	0.00	20.0
BC09996	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.0992	0.100	0.0949	0.0850 to 0.115	99.2	70.0 to 130	0.803	20.0
BC09993	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.100	0.101	0.0925	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
BC09996	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.124	0.119	0.104	0.0850 to 0.115	105	70.0 to 130	4.12	20.0
BC09993	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.109	0.107	0.102	0.0850 to 0.115	103	70.0 to 130	1.85	20.0
BC09996	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.189	0.186	0.102	0.0850 to 0.115	97.2	70.0 to 130	1.60	20.0
BC09993	Barium, Total	mg/L	0.000	0.00100	0.100	0.169	0.169	0.0987	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC09996	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.115	0.106	0.100	0.0850 to 0.115	115	70.0 to 130	8.14	20.0
BC09993	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.107	0.112	0.105	0.0850 to 0.115	107	70.0 to 130	4.57	20.0
BC09996	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.12	1.12	1.01	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC09993	Boron, Total	mg/L	0.000087	0.0650	1.00	1.40	1.41	1.02	0.850 to 1.15	102	70.0 to 130	0.712	20.0
BC09996	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC09993	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0990	0.100	0.100	0.0850 to 0.115	99.0	70.0 to 130	1.01	20.0
BC09996	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	19.3	19.2	4.87	4.25 to 5.75	96.0	70.0 to 130	0.519	20.0
BC09993	Calcium, Total	mg/L	0.00617	0.152	5.00	11.7	11.8	4.91	4.25 to 5.75	93.4	70.0 to 130	0.851	20.0
BC09993	Chloride	mg/L	-0.137	1.00	200	391	388	10.3	9.00 to 11.0	104	80.0 to 120	0.770	20.0
BC09996	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.0986	0.0997	0.100	0.0850 to 0.115	98.1	70.0 to 130	1.11	20.0
BC09993	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.101	0.0997	0.101	0.0850 to 0.115	100	70.0 to 130	1.30	20.0
BC09996	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.128	0.132	0.104	0.0850 to 0.115	101	70.0 to 130	3.08	20.0
BC09993	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.105	0.103	0.101	0.0850 to 0.115	102	70.0 to 130	1.92	20.0
BC09993	Fluoride	mg/L	-0.0283	0.125	2.50	3.11	3.13	2.58	2.25 to 2.75	113	80.0 to 120	0.641	20.0
BC09996	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	79.1	79.2	0.200	0.170 to 0.230	-400	70.0 to 130	0.126	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date:

5/24/22 15:15

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-9

Laboratory ID Number: BC09992

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Iron, Total	mg/L	0.000064	0.0176	0.2	25.2	26.1	0.203	0.170 to 0.230	-150	70.0 to 130	3.51	20.0
BC09996	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.102	0.103	0.104	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC09993	Lead, Total	mg/L	0.0000003	0.000147	0.100	0.102	0.104	0.102	0.0850 to 0.115	102	70.0 to 130	1.94	20.0
BC09996	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.206	0.206	0.205	0.170 to 0.230	103	70.0 to 130	0.00	20.0
BC09993	Lithium, Total	mg/L	0.00031	0.0154	0.200	0.212	0.211	0.206	0.170 to 0.230	106	70.0 to 130	0.473	20.0
BC09996	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	13.7	13.7	5.09	4.25 to 5.75	101	70.0 to 130	0.00	20.0
BC09993	Magnesium, Total	mg/L	0.00180	0.0462	5.00	8.62	8.57	5.21	4.25 to 5.75	101	70.0 to 130	0.582	20.0
BC09996	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	2.10	2.03	0.103	0.0850 to 0.115	150	70.0 to 130	3.39	20.0
BC09993	Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.451	0.444	0.103	0.0850 to 0.115	102	70.0 to 130	1.56	20.0
BC09993	Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00341	0.00338	0.00362	0.00340 to 0.00460	85.2	70.0 to 130	0.884	20.0
BC09996	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.103	0.102	0.0992	0.0850 to 0.115	101	70.0 to 130	0.976	20.0
BC09993	Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.102	0.100	0.0965	0.0850 to 0.115	98.9	70.0 to 130	1.98	20.0
BC09996	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	11.9	12.1	10.3	8.50 to 11.5	97.2	70.0 to 130	1.67	20.0
BC09993	Potassium, Total	mg/L	-0.0109	0.367	10.0	17.9	17.7	10.5	8.50 to 11.5	99.9	70.0 to 130	1.12	20.0
BC09996	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.104	0.105	0.106	0.0850 to 0.115	104	70.0 to 130	0.957	20.0
BC09993	Selenium, Total	mg/L	0.000252	0.00100	0.100	0.105	0.104	0.105	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09996	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	7.33	7.33	0.999	0.850 to 1.15	97.0	70.0 to 130	0.00	20.0
BC09993	Silicon, Total	mg/L	0.00083	0.0440	1.00	7.62	7.60	1.04	0.850 to 1.15	94.0	70.0 to 130	0.263	20.0
BC09996	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	49.6	49.7	5.14	4.25 to 5.75	86.0	70.0 to 130	0.201	20.0
BC09993	Sodium, Total	mg/L	0.00067	0.0660	5.00	176	180	5.25	4.25 to 5.75	40.0	70.0 to 130	2.25	20.0
BC09993	Sulfate	mg/L	-0.278	2.0	20.0	33.5	33.5	19.1	18.0 to 22.0	99.5	80.0 to 120	0.00	20.0
BC09996	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.101	0.102	0.103	0.0850 to 0.115	101	70.0 to 130	0.985	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 15:15

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-9

Laboratory ID Number: BC09992

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.103	0.105	0.107	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC09993	Total Organic Carbon	mg/L	0.256	1.00	10.0	13.7	13.9	9.85		93.3	80.0 to 120	1.45	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 15:15

Customer ID:

Delivery Date:

5/25/22 14:54

Description: Barry Ash Pond - MW-9

Laboratory ID Number: BC09992

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10001	Alkalinity, Total as CaCO3	mg/L					12.4	53.2	45.0 to 55.0			3.28	10.0
BC09993	Nitrogen, Nitrate/Nitrite	mg/L as N	0.05	0.200	2.00	2.12	0.146	1.97	1.80 to 2.20	106	90.0 to 110	0.00	15.0
BC09982	Solids, Dissolved	mg/L	0.0000	25.0			271	53.0	40.0 to 60.0			5.30	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-14VLocation Code:WMWBARAPCollected:5/24/22 16:24

Customer ID:

Laboratory ID Number: BC09993 Submittal Date: 5/25/22 14:54

Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Anal	yst: RDA		Prepara	tion Method:	EPA 1638		_
5/31/22 10:50	6/2/22 10:48	1.015	0.376	mg/L	0.030000	0.1015	
5/31/22 10:50	6/2/22 10:48	1.015	7.03	mg/L	0.070035	0.406	
5/31/22 10:50	6/2/22 11:28	50.75	25.5	mg/L	0.40600	2.03	R.A
5/31/22 10:50	6/2/22 10:48	1.015	Not Detected	mg/L	0.007105	0.01999956	U
5/31/22 10:50	6/2/22 10:48	1.015	3.56	mg/L	0.021315	0.406	
5/31/22 10:50	6/2/22 10:48	1	14.3	mg/L			
5/31/22 10:50	6/2/22 10:48	1.015	6.68	mg/L	0.02030	0.25375	
5/31/22 10:50	6/2/22 11:28	50.75	174	mg/L	1.5225	20.3	RA
Anal	yst: RDA						
5/27/22 09:45	6/1/22 11:34	1.015	0.377	mg/L	0.030000	0.1015	
5/27/22 09:45	6/1/22 11:34	1.015	6.83	mg/L	0.070035	0.406	
5/27/22 09:45	6/1/22 12:34	50.75	22.9	mg/L	0.40600	2.03	
5/27/22 09:45	6/1/22 11:34	1.015	Not Detected	l mg/L	0.007105	0.01999956	U
5/27/22 09:45	6/1/22 11:34	1.015	3.43	mg/L	0.021315	0.406	
5/27/22 09:45	6/1/22 11:34	1	14.1	mg/L			
5/27/22 09:45	6/1/22 11:34	1.015	6.60	mg/L	0.02030	0.25375	
5/27/22 09:45	6/1/22 12:34	50.75	171	mg/L	1.5225	20.3	
Anal	yst: DLJ		Prepara	tion Method:	EPA 1638		
6/1/22 11:30	6/1/22 17:45	1.015	Not Detected	l mg/L	0.000508	0.001015	U
6/1/22 11:30	6/1/22 17:45	1.015	0.0154	mg/L	0.006090	0.01015	
6/1/22 11:30	6/1/22 17:45	1.015	0.00572	mg/L	0.000081	0.000203	
6/1/22 11:30	6/1/22 17:45	1.015	0.0670	mg/L	0.000508	0.001015	
6/1/22 11:30	6/1/22 17:45	1.015	Not Detected	l mg/L	0.000406	0.001015	U
6/1/22 11:30	6/1/22 17:45	1.015	Not Detected	mg/L	0.000068	0.000203	U
6/1/22 11:30	6/1/22 17:45	1.015	0.000602	mg/L	0.000203	0.001015	J
6/1/22 11:30	6/1/22 17:45	1.015	0.00327	mg/L	0.000068	0.000203	
6/1/22 11:30	6/1/22 17:45	1.015	Not Detected	mg/L	0.000068	0.000203	U
6/1/22 11:30	6/1/22 17:45	1.015	0.349	mg/L	0.000152	0.000203	
6/1/22 11:30	6/1/22 17:45	1.015	0.00310	mg/L	0.000102	0.000203	
6/1/22 11:30	6/1/22 17:45	1.015	7.91	mg/L	0.169505	0.5075	
	5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 6/31/22 10:50 Anall 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 6/1/22 11:30	Analyst: RDA 5/31/22 10:50 6/2/22 10:48 5/31/22 10:50 6/2/22 11:28 5/31/22 10:50 6/2/22 11:28 5/31/22 10:50 6/2/22 10:48 5/31/22 10:50 6/2/22 10:48 5/31/22 10:50 6/2/22 10:48 5/31/22 10:50 6/2/22 10:48 5/31/22 10:50 6/2/22 10:48 5/31/22 10:50 6/2/22 10:48 5/31/22 10:50 6/2/22 11:28 Analyst: RDA 5/27/22 09:45 6/1/22 11:34 5/27/22 09:45 6/1/22 11:34 5/27/22 09:45 6/1/22 11:34 5/27/22 09:45 6/1/22 11:34 5/27/22 09:45 6/1/22 11:34 5/27/22 09:45 6/1/22 11:34 5/27/22 09:45 6/1/22 11:34 5/27/22 09:45 6/1/22 11:34 5/27/22 09:45 6/1/22 11:34 5/27/22 09:45 6/1/22 11:34 5/27/22 09:45 6/1/22 11:34 6/1/22 11:30 6/1/22 17:45	Analyst: RDA 5/31/22 10:50 6/2/22 10:48 1.015 5/31/22 10:50 6/2/22 10:48 50.75 5/31/22 10:50 6/2/22 10:48 1.015 5/31/22 10:50 6/2/22 10:48 1.015 5/31/22 10:50 6/2/22 10:48 1.015 5/31/22 10:50 6/2/22 10:48 1.015 5/31/22 10:50 6/2/22 10:48 1.015 5/31/22 10:50 6/2/22 10:48 1.015 5/31/22 10:50 6/2/22 10:48 1.015 5/31/22 10:50 6/2/22 11:28 50.75 Analyst: RDA 5/27/22 09:45 6/1/22 11:34 1.015 5/27/22 09:45 6/1/22 11:34 1.015 5/27/22 09:45 6/1/22 11:34 1.015 5/27/22 09:45 6/1/22 11:34 1.015 5/27/22 09:45 6/1/22 11:34 1.015 5/27/22 09:45 6/1/22 11:34 1.015 5/27/22 09:45 6/1/22 11:34 1.015 5/27/22 09:45 6/1/22 11:34 1.015 5/27/22 09:45 6/1/22 11:34 1.015 5/27/22 09:45 6/1/22 11:34 1.015 5/27/22 09:45 6/1/22 11:34 1.015 6/1/22 11:30 6/1/22 17:45 1.015	Analyst: RDA Prepara 5/31/22 10:50 6/2/22 10:48 1.015 0.376 5/31/22 10:50 6/2/22 10:48 1.015 7.03 5/31/22 10:50 6/2/22 10:48 1.015 7.03 5/31/22 10:50 6/2/22 10:48 1.015 Not Detected 5/31/22 10:50 6/2/22 10:48 1.015 3.56 5/31/22 10:50 6/2/22 10:48 1 14.3 5/31/22 10:50 6/2/22 10:48 1.015 6.68 5/31/22 10:50 6/2/22 11:28 50.75 174 Analyst: RDA 5/27/22 09:45 6/1/22 11:34 1.015 0.377 5/27/22 09:45 6/1/22 11:34 1.015 0.377 5/27/22 09:45 6/1/22 11:34 1.015 Not Detected 5/27/22 09:45 6/1/22 11:34 1.015 3.43 5/27/22 09:45 6/1/22 11:34 1.015 0.60 5/27/22 09:45 6/1/22 11:34 1.015 0.60 5/27/22 09:45 6/1/22 11:34 1.015 0.00 <td< td=""><td>### Analyst: RDA</td><td> Analyst: RDA</td><td> Analyst: RDA</td></td<>	### Analyst: RDA	Analyst: RDA	Analyst: RDA

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-14VLocation Code:WMWBARAPCollected:5/24/22 16:24

Customer ID:

Submittal Date: 5/25/22 14:54

Laboratory ID Number: BC09993

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 17:45	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 17:45	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anai	lyst: DLJ						
* Antimony, Dissolved	5/31/22 14:15	5/31/22 17:0	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 17:0	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 17:0	1.015	0.00532	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 17:0	1.015	0.0663	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 17:0	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 17:0	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 17:0	1.015	0.000605	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 17:0	1.015	0.00353	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 17:0	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 17:0	1.015	0.334	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 17:0	1.015	0.00275	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 17:0	1.015	6.52	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 17:0	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 17:0	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anai	lyst: CRB						
 Mercury, Total by CVAA 	6/6/22 11:40	6/6/22 15:14	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anai	lyst: CES						
* Nitrogen, Nitrate/Nitrite	5/26/22 13:53	5/26/22 13:5	3 1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Anai	lyst: ALH						
Alkalinity, Total as CaCO3	6/6/22 13:15	6/6/22 15:32	2 1	171	mg/L		0.1	
Analytical Method: SM 2540C	Anai	lyst: JS						
* Solids, Dissolved	5/27/22 11:00	6/2/22 15:15	5 1	508	mg/L		50	
Analytical Method: SM 4500CO2 D	Anai	lyst: ALH						
Bicarbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32	2 1	171	mg/L		1	Α
Carbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32	. 1	Not Detected	mg/L		0.5	Α
Analytical Method: SM 5310 B		lyst: ELH						
* Total Organic Carbon		5/31/22 23:2	25 1	4.37	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-14V

Location Code:

WMWBARAP 5/24/22 16:24

Collected:

Customer ID: Submittal Date:

5/25/22 14:54

Laboratory ID Number: BC09993

Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Anal	lyst: CES						
5/31/22 14:30	5/31/22 14:3	30 20	184	mg/L	10.00	20	
Anal	lyst: JCC						
6/8/22 11:52	6/8/22 11:52	2 1	0.291	mg/L	0.06	0.125	
Anal	lyst: JCC						
6/7/22 13:48	6/7/22 13:48	3 1	13.6	mg/L	0.6	2	
Anal	lyst: AWG						
5/24/22 16:21	5/24/22 16:2	21	969.26	uS/cm			FA
5/24/22 16:21	5/24/22 16:2	21	6.71	SU			FA
5/24/22 16:21	5/24/22 16:2	21	21.42	С			FA
5/24/22 16:21	5/24/22 16:2	21	1.07	NTU			FA
5/24/22 16:21	5/24/22 16:2	21	0	mg/L			FA
	Anai 5/31/22 14:30 Anai 6/8/22 11:52 Anai 6/7/22 13:48 Anai 5/24/22 16:21 5/24/22 16:21 5/24/22 16:21 5/24/22 16:21	Analyst: CES 5/31/22 14:30	Analyst: CES 5/31/22 14:30	Analyst: CES 5/31/22 14:30	Analyst: CES 5/31/22 14:30	Analyst: CES 5/31/22 14:30	Analyst: CES 5/31/22 14:30

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 16:24

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-14V

Laboratory ID Number: BC09993

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09996	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.100	0.102	0.102	0.0850 to 0.115	100	70.0 to 130	1.98	20.0
BC09993	Aluminum, Total	mg/L	0.000871	0.010	0.100	0.122	0.122	0.108	0.0850 to 0.115	107	70.0 to 130	0.00	20.0
BC09996	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.0992	0.100	0.0949	0.0850 to 0.115	99.2	70.0 to 130	0.803	20.0
BC09993	Antimony, Total	mg/L	0.00026	0.00100	0.100	0.100	0.101	0.0925	0.0850 to 0.115	100	70.0 to 130	0.995	20.0
BC09996	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.124	0.119	0.104	0.0850 to 0.115	105	70.0 to 130	4.12	20.0
BC09993	Arsenic, Total	mg/L	0.0000031	0.000176	0.100	0.109	0.107	0.102	0.0850 to 0.115	103	70.0 to 130	1.85	20.0
BC09996	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.189	0.186	0.102	0.0850 to 0.115	97.2	70.0 to 130	1.60	20.0
BC09993	Barium, Total	mg/L	0.000	0.00100	0.100	0.169	0.169	0.0987	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC09996	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.115	0.106	0.100	0.0850 to 0.115	115	70.0 to 130	8.14	20.0
BC09993	Beryllium, Total	mg/L	0.0000087	0.000880	0.100	0.107	0.112	0.105	0.0850 to 0.115	107	70.0 to 130	4.57	20.0
BC09996	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.12	1.12	1.01	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC09993	Boron, Total	mg/L	0.000087	0.0650	1.00	1.40	1.41	1.02	0.850 to 1.15	102	70.0 to 130	0.712	20.0
BC09996	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC09993	Cadmium, Total	mg/L	0.0000062	0.000147	0.100	0.0990	0.100	0.100	0.0850 to 0.115	99.0	70.0 to 130	1.01	20.0
BC09996	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	19.3	19.2	4.87	4.25 to 5.75	96.0	70.0 to 130	0.519	20.0
BC09993	Calcium, Total	mg/L	0.00617	0.152	5.00	11.7	11.8	4.91	4.25 to 5.75	93.4	70.0 to 130	0.851	20.0
BC09993	Chloride	mg/L	-0.137	1.00	200	391	388	10.3	9.00 to 11.0	104	80.0 to 120	0.770	20.0
BC09996	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.0986	0.0997	0.100	0.0850 to 0.115	98.1	70.0 to 130	1.11	20.0
BC09993	Chromium, Total	mg/L	-0.0000596	0.000440	0.100	0.101	0.0997	0.101	0.0850 to 0.115	100	70.0 to 130	1.30	20.0
BC09996	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.128	0.132	0.104	0.0850 to 0.115	101	70.0 to 130	3.08	20.0
BC09993	Cobalt, Total	mg/L	-0.000004	0.000147	0.100	0.105	0.103	0.101	0.0850 to 0.115	102	70.0 to 130	1.92	20.0
BC09993	Fluoride	mg/L	-0.0283	0.125	2.50	3.11	3.13	2.58	2.25 to 2.75	113	80.0 to 120	0.641	20.0
BC09996	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	79.1	79.2	0.200	0.170 to 0.230	-400	70.0 to 130	0.126	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 16:24

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-14V

Laboratory ID Number: BC09993

			MB					Standard		Rec		Prec
Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
Iron, Total	mg/L	0.000064	0.0176	0.2	25.2	26.1	0.203	0.170 to 0.230	-150	70.0 to 130	3.51	20.0
Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.102	0.103	0.104	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
Lead, Total	mg/L	0.0000003	0.000147	0.100	0.102	0.104	0.102	0.0850 to 0.115	102	70.0 to 130	1.94	20.0
Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.206	0.206	0.205	0.170 to 0.230	103	70.0 to 130	0.00	20.0
Lithium, Total	mg/L	0.00031	0.0154	0.200	0.212	0.211	0.206	0.170 to 0.230	106	70.0 to 130	0.473	20.0
Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	13.7	13.7	5.09	4.25 to 5.75	101	70.0 to 130	0.00	20.0
Magnesium, Total	mg/L	0.00180	0.0462	5.00	8.62	8.57	5.21	4.25 to 5.75	101	70.0 to 130	0.582	20.0
Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	2.10	2.03	0.103	0.0850 to 0.115	150	70.0 to 130	3.39	20.0
Manganese, Total	mg/L	0.0000087	0.0002	0.100	0.451	0.444	0.103	0.0850 to 0.115	102	70.0 to 130	1.56	20.0
Mercury, Total by CVAA	mg/L	2.750E-05	0.000500	0.004	0.00341	0.00338	0.00362	0.00340 to 0.00460	85.2	70.0 to 130	0.884	20.0
Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.103	0.102	0.0992	0.0850 to 0.115	101	70.0 to 130	0.976	20.0
Molybdenum, Total	mg/L	0.0000114	0.0002	0.100	0.102	0.100	0.0965	0.0850 to 0.115	98.9	70.0 to 130	1.98	20.0
Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	11.9	12.1	10.3	8.50 to 11.5	97.2	70.0 to 130	1.67	20.0
Potassium, Total	mg/L	-0.0109	0.367	10.0	17.9	17.7	10.5	8.50 to 11.5	99.9	70.0 to 130	1.12	20.0
Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.104	0.105	0.106	0.0850 to 0.115	104	70.0 to 130	0.957	20.0
Selenium, Total	mg/L	0.000252	0.00100	0.100	0.105	0.104	0.105	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	7.33	7.33	0.999	0.850 to 1.15	97.0	70.0 to 130	0.00	20.0
Silicon, Total	mg/L	0.00083	0.0440	1.00	7.62	7.60	1.04	0.850 to 1.15	94.0	70.0 to 130	0.263	20.0
Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	49.6	49.7	5.14	4.25 to 5.75	86.0	70.0 to 130	0.201	20.0
Sodium, Total	mg/L	0.00067	0.0660	5.00	176	180	5.25	4.25 to 5.75	40.0	70.0 to 130	2.25	20.0
Sulfate	mg/L	-0.278	2.0	20.0	33.5	33.5	19.1	18.0 to 22.0	99.5	80.0 to 120	0.00	20.0
Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.101	0.102	0.103	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
	Iron, Total Lead, Dissolved Lead, Total Lithium, Dissolved Lithium, Total Magnesium, Dissolved Manganese, Dissolved Manganese, Total Mercury, Total by CVAA Molybdenum, Dissolved Molybdenum, Total Potassium, Dissolved Potassium, Total Selenium, Dissolved Selenium, Total Silicon, Dissolved Silicon, Total Sodium, Dissolved Sodium, Total Sodium, Total	Iron, Total mg/L Lead, Dissolved mg/L Lead, Total mg/L Lithium, Dissolved mg/L Lithium, Total mg/L Magnesium, Dissolved mg/L Manganese, Dissolved mg/L Manganese, Total mg/L Mercury, Total by CVAA mg/L Molybdenum, Dissolved mg/L Potassium, Total mg/L Potassium, Total mg/L Selenium, Dissolved mg/L Silicon, Dissolved mg/L Sodium, Dissolved mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L	Iron, Total	Iron, Total	Iron, Total mg/L 0.000064 0.0176 0.2	Analysis Units MB Limit Spike MS Iron, Total mg/L 0.000064 0.0176 0.2 25.2 Lead, Dissolved mg/L 0.0000046 0.000147 0.100 0.102 Lead, Total mg/L 0.000003 0.000147 0.100 0.102 Lithium, Dissolved mg/L 0.000152 0.0154 0.200 0.206 Lithium, Total mg/L 0.00031 0.0154 0.200 0.212 Magnesium, Dissolved mg/L 0.00610 0.0462 5.00 13.7 Magnesium, Total mg/L 0.00180 0.0462 5.00 8.62 Manganese, Dissolved mg/L -0.000021 0.0002 0.100 2.10 Marganese, Total mg/L 0.0000087 0.0002 0.100 0.451 Mercury, Total by CVAA mg/L 2.750E-05 0.000500 0.004 0.0034 Molybdenum, Dissolved mg/L -0.0000176 0.0002 0.100 0.102	Iron, Total	Iron, Total	Analysis Units MB Limit Spike MS MSD Standard Limit Iron, Total mg/L 0.000064 0.0176 0.2 25.2 26.1 0.203 0.170 to 0.230 Lead, Dissolved mg/L 0.0000046 0.000147 0.100 0.102 0.103 0.104 0.0850 to 0.115 Lead, Total mg/L 0.000003 0.00147 0.100 0.102 0.104 0.102 0.0850 to 0.115 Lithium, Dissolved mg/L 0.000152 0.0154 0.200 0.206 0.205 0.170 to 0.230 Lithium, Total mg/L 0.00031 0.0154 0.200 0.212 0.211 0.206 0.170 to 0.230 Magnesium, Dissolved mg/L 0.00610 0.0462 5.00 13.7 13.7 5.09 4.25 to 5.75 Magnesium, Total mg/L 0.00180 0.0462 5.00 8.62 8.57 5.21 4.25 to 5.75 Manganese, Dissolved mg/L 0.0000000000 0.0100 </td <td>Analysis Units MB Limit Spike MS MSD Standard Limit Recommendation Iron, Total mg/L 0.000064 0.0176 0.2 25.2 26.1 0.203 0.170 to 0.230 -150 Lead, Dissolved mg/L 0.0000046 0.000147 0.100 0.102 0.103 0.104 0.0850 to 0.115 102 Lead, Total mg/L 0.000003 0.00147 0.100 0.102 0.104 0.102 0.0850 to 0.115 102 Lithium, Dissolved mg/L 0.000152 0.0154 0.200 0.206 0.206 0.205 0.170 to 0.230 103 Lithium, Total mg/L 0.00011 0.0154 0.200 0.212 0.211 0.206 0.170 to 0.230 103 Lithium, Total mg/L 0.000180 0.0462 5.00 13.7 13.7 5.09 4.25 to 5.75 101 Magnesium, Dissolved mg/L 0.00180 0.0462 5.00 8.62 8.57</td> <td>Analysis Units MB Limit Spike MS MSD Standard Limit Rec Limit Iron, Total mg/L 0.000064 0.0176 0.2 25.2 26.1 0.203 0.170 to 0.230 -150 70.0 to 130 Lead, Dissolved mg/L 0.000003 0.000147 0.100 0.102 0.103 0.104 0.0850 to 0.115 102 70.0 to 130 Lead, Total mg/L 0.000003 0.00147 0.100 0.102 0.104 0.102 0.0850 to 0.115 102 70.0 to 130 Lithium, Dissolved mg/L 0.000152 0.0154 0.200 0.206 0.206 0.205 0.170 to 0.230 103 70.0 to 130 Lithium, Total mg/L 0.000152 0.0154 0.200 0.216 0.201 0.203 0.170 to 0.230 106 70.0 to 130 Magnesium, Dissolved mg/L 0.00610 0.0462 5.00 8.62 8.52 2.51 4.25 to 5.75 101 70.0 to 130</td> <td>Analysis Units MB Limit Spike MS MSD Standard Limit Rec Limit Proposition Iron, Total mg/L 0.000064 0.0176 0.2 25.2 26.1 0.203 0.170 to 0.230 -150 70.0 to 130 3.51 Lead, Dissolved mg/L 0.0000003 0.00147 0.100 0.102 0.104 0.102 0.0850 to 0.115 102 70.0 to 130 0.78 Lead, Dissolved mg/L 0.000152 0.0154 0.200 0.206 0.206 0.250 0.170 to 0.230 103 70.0 to 130 0.043 Lithium, Dissolved mg/L 0.00031 0.0154 0.200 0.212 0.211 0.206 0.170 to 0.230 103 70.0 to 130 0.043 Lithium, Dissolved mg/L 0.00018 0.0462 5.00 13.7 13.7 5.09 4.25 to 5.75 101 70.0 to 130 0.052 Magnesium, Dissolved mg/L 0.000021 0.0002 0.100</td>	Analysis Units MB Limit Spike MS MSD Standard Limit Recommendation Iron, Total mg/L 0.000064 0.0176 0.2 25.2 26.1 0.203 0.170 to 0.230 -150 Lead, Dissolved mg/L 0.0000046 0.000147 0.100 0.102 0.103 0.104 0.0850 to 0.115 102 Lead, Total mg/L 0.000003 0.00147 0.100 0.102 0.104 0.102 0.0850 to 0.115 102 Lithium, Dissolved mg/L 0.000152 0.0154 0.200 0.206 0.206 0.205 0.170 to 0.230 103 Lithium, Total mg/L 0.00011 0.0154 0.200 0.212 0.211 0.206 0.170 to 0.230 103 Lithium, Total mg/L 0.000180 0.0462 5.00 13.7 13.7 5.09 4.25 to 5.75 101 Magnesium, Dissolved mg/L 0.00180 0.0462 5.00 8.62 8.57	Analysis Units MB Limit Spike MS MSD Standard Limit Rec Limit Iron, Total mg/L 0.000064 0.0176 0.2 25.2 26.1 0.203 0.170 to 0.230 -150 70.0 to 130 Lead, Dissolved mg/L 0.000003 0.000147 0.100 0.102 0.103 0.104 0.0850 to 0.115 102 70.0 to 130 Lead, Total mg/L 0.000003 0.00147 0.100 0.102 0.104 0.102 0.0850 to 0.115 102 70.0 to 130 Lithium, Dissolved mg/L 0.000152 0.0154 0.200 0.206 0.206 0.205 0.170 to 0.230 103 70.0 to 130 Lithium, Total mg/L 0.000152 0.0154 0.200 0.216 0.201 0.203 0.170 to 0.230 106 70.0 to 130 Magnesium, Dissolved mg/L 0.00610 0.0462 5.00 8.62 8.52 2.51 4.25 to 5.75 101 70.0 to 130	Analysis Units MB Limit Spike MS MSD Standard Limit Rec Limit Proposition Iron, Total mg/L 0.000064 0.0176 0.2 25.2 26.1 0.203 0.170 to 0.230 -150 70.0 to 130 3.51 Lead, Dissolved mg/L 0.0000003 0.00147 0.100 0.102 0.104 0.102 0.0850 to 0.115 102 70.0 to 130 0.78 Lead, Dissolved mg/L 0.000152 0.0154 0.200 0.206 0.206 0.250 0.170 to 0.230 103 70.0 to 130 0.043 Lithium, Dissolved mg/L 0.00031 0.0154 0.200 0.212 0.211 0.206 0.170 to 0.230 103 70.0 to 130 0.043 Lithium, Dissolved mg/L 0.00018 0.0462 5.00 13.7 13.7 5.09 4.25 to 5.75 101 70.0 to 130 0.052 Magnesium, Dissolved mg/L 0.000021 0.0002 0.100

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/24/22 16:24

Customer ID:

Delivery Date: 5/25/22 14:54

Description: Barry Ash Pond - MW-14V

Laboratory ID Number: BC09993

	-			MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09993	Thallium, Total	mg/L	-0.0000006	0.000147	0.100	0.103	0.105	0.107	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC09993	Total Organic Carbon	mg/L	0.256	1.00	10.0	13.7	13.9	9.85		93.3	80.0 to 120	1.45	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 16:24

Customer ID:

Delivery Date:

5/25/22 14:54

Description: Barry Ash Pond - MW-14V

Laboratory ID Number: BC09993

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10001	Alkalinity, Total as CaCO3	mg/L					12.4	53.2	45.0 to 55.0			3.28	10.0
BC09993	Nitrogen, Nitrate/Nitrite	mg/L as N	0.05	0.200	2.00	2.12	0.146	1.97	1.80 to 2.20	106	90.0 to 110	0.00	15.0
BC10001	Solids, Dissolved	mg/L	0.0000	25.0			40.0	53.0	40.0 to 60.0			1.73	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-12Location Code:WMWBARAPCollected:5/23/22 16:15

Customer ID:

Laboratory ID Number: BC09994 Submittal Date: 5/25/22 14:56

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analy	/st: RDA		Preparati	on Method:	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 11:08	1.015	0.0626	mg/L	0.030000	0.1015	J
* Calcium, Total	5/31/22 10:50	6/2/22 11:08	1.015	20.6	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 11:47	50.75	74.0	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 11:08	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 11:08	1.015	15.3	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 11:08	1	16.0	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 11:08	1.015	7.48	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 11:47	50.75	44.8	mg/L	1.5225	20.3	
Analytical Method: EPA 200.7	Analy	/st: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 11:37	1.015	0.0653	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	5/27/22 09:45	6/1/22 11:37	1.015	20.8	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 12:37	50.75	70.0	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 11:37	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 11:37	1.015	15.5	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 11:37	1	15.8	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 11:37	1.015	7.38	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 12:37	50.75	44.2	mg/L	1.5225	20.3	
Analytical Method: EPA 200.8	Analy	/st: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 18:13	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 18:13	1.015	0.190	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 18:13	1.015	0.0245	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 18:13	1.015	0.0802	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 18:13	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 18:13	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 18:13	1.015	0.00374	mg/L	0.000203	0.001015	
* Cobalt, Total	6/1/22 11:30	6/1/22 18:13	1.015	0.00428	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 18:13	1.015	0.000179	mg/L	0.000068	0.000203	J
* Manganese, Total	6/1/22 11:30	6/1/22 18:13	1.015	0.849	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 18:13	1.015	0.00109	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 18:13		2.76	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-12

Location Code:

WMWBARAP

Collected:

5/23/22 16:15

Customer ID:

Submittal Date:

5/25/22 14:56

Laboratory ID Number: BC09994				Submit	tal Date:	5/25/22 14:5	6	
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 18:13	3 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 18:13	3 1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ						
* Antimony, Dissolved	5/31/22 14:15	5/31/22 17:0	07 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 17:0	07 1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 17:0	07 1.015	0.0249	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 17:0	07 1.015	0.0787	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 17:0	07 1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 17:0	07 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 17:0	07 1.015	0.00290	mg/L	0.000203	0.001015	
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 17:0	07 1.015	0.00414	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 17:0	07 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 17:0	07 1.015	0.825	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 17:0	07 1.015	0.000899	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 17:0	07 1.015	2.60	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 17:0	07 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 17:0	07 1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	lyst: CRB						
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 10:13	3 1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Ana	lyst: CES						
* Nitrogen, Nitrate/Nitrite	5/26/22 14:44	5/26/22 14:4	14 1	0.212	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Ana	lyst: ALH						
Alkalinity, Total as CaCO3	6/3/22 12:00	6/3/22 13:44	4 1	274	mg/L		0.1	
Analytical Method: SM 2540C	Ana	lyst: CNJ						
* Solids, Dissolved	5/25/22 16:30	5/31/22 13:5	58 1	345	mg/L		25	
Analytical Method: SM 4500CO2 D	Ana	lyst: ALH						
Bicarbonate Alkalinity, (calc.)	6/3/22 12:00	6/3/22 13:44	4 1	274	mg/L			
Carbonate Alkalinity, (calc.)	6/3/22 12:00	6/3/22 13:44	4 1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		lyst: ELH						
* Total Organic Carbon		6/1/22 00:56	6 1	20.1	mg/L	1.00	2	
* Total Organic Carbon	6/1/22 00:56	6/1/22 00:56	5 1	20.1	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-12

Location Code:

WMWBARAP

Collected:

Customer ID:

5/23/22 16:15

oustonier ib.

Submittal Date:

5/25/22 14:56

Laboratory ID Number: BC09994					Subil	nillai Dale:	5/25/22 14	.00	
Name	Prepared	Analyzed	Vio Spec I	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Ana	lyst: CES							
* Chloride	5/31/22 15:00	5/31/22 15:0	00 3		26.2	mg/L	1.50	3	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	6/8/22 12:03	6/8/22 12:03	3 1		0.0873	mg/L	0.06	0.125	J
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	6/7/22 13:59	6/7/22 13:59	9 1		13.0	mg/L	0.6	2	
Analytical Method: Field Measurements	Ana	lyst: TJD							
Conductivity	5/23/22 16:12	5/23/22 16:	12		578.36	uS/cm			FA
рН	5/23/22 16:12	5/23/22 16:	12		6.12	SU			FA
Temperature	5/23/22 16:12	5/23/22 16:	12		20.85	С			FA
Turbidity	5/23/22 16:12	5/23/22 16:	12		2.67	NTU			FA
Sulfide	5/23/22 16:12	2 5/23/22 16:	12		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/23/22 16:15

Customer ID:

Delivery Date:

5/25/22 14:56

Description: Barry Ash Pond - MW-12

Laboratory ID Number: BC09994

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09996	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.100	0.102	0.102	0.0850 to 0.115	100	70.0 to 130	1.98	20.0
BC10112	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.320	0.329	0.109	0.0850 to 0.115	125	70.0 to 130	2.77	20.0
BC09996	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.0992	0.100	0.0949	0.0850 to 0.115	99.2	70.0 to 130	0.803	20.0
BC10112	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.100	0.0991	0.0923	0.0850 to 0.115	100	70.0 to 130	0.904	20.0
BC09996	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.124	0.119	0.104	0.0850 to 0.115	105	70.0 to 130	4.12	20.0
BC10112	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.122	0.121	0.101	0.0850 to 0.115	104	70.0 to 130	0.823	20.0
BC09996	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.189	0.186	0.102	0.0850 to 0.115	97.2	70.0 to 130	1.60	20.0
BC10112	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.172	0.171	0.0996	0.0850 to 0.115	103	70.0 to 130	0.583	20.0
BC09996	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.115	0.106	0.100	0.0850 to 0.115	115	70.0 to 130	8.14	20.0
BC10112	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.103	0.105	0.100	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC09996	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.12	1.12	1.01	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC10112	Boron, Total	mg/L	0.000059	0.0650	1.00	1.12	1.08	1.03	0.850 to 1.15	106	70.0 to 130	3.64	20.0
BC09996	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10112	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0993	0.0990	0.0989	0.0850 to 0.115	99.3	70.0 to 130	0.303	20.0
BC09996	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	19.3	19.2	4.87	4.25 to 5.75	96.0	70.0 to 130	0.519	20.0
BC10112	Calcium, Total	mg/L	0.00326	0.152	5.00	16.4	16.3	4.95	4.25 to 5.75	100	70.0 to 130	0.612	20.0
BC10112	Chloride	mg/L	-0.0683	1.00	100	142	153	9.80	9.00 to 11.0	96.7	80.0 to 120	7.46	20.0
BC09996	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.0986	0.0997	0.100	0.0850 to 0.115	98.1	70.0 to 130	1.11	20.0
BC10112	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.105	0.105	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC09996	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.128	0.132	0.104	0.0850 to 0.115	101	70.0 to 130	3.08	20.0
BC10112	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.103	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10112	Fluoride	mg/L	-0.0308	0.125	2.50	2.75	2.76	2.56	2.25 to 2.75	107	80.0 to 120	0.363	20.0
BC09996	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	79.1	79.2	0.200	0.170 to 0.230	-400	70.0 to 130	0.126	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/23/22 16:15

Customer ID:

Delivery Date: 5/25/22 14:56

Description: Barry Ash Pond - MW-12

Laboratory ID Number: BC09994

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10112	Iron, Total	mg/L	0.00011	0.0176	0.2	35.5	35.6	0.200	0.170 to 0.230	100	70.0 to 130	0.281	20.0
BC09996	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.102	0.103	0.104	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10112	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC09996	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.206	0.206	0.205	0.170 to 0.230	103	70.0 to 130	0.00	20.0
BC10112	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.201	0.193	0.201	0.170 to 0.230	100	70.0 to 130	4.06	20.0
BC09996	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	13.7	13.7	5.09	4.25 to 5.75	101	70.0 to 130	0.00	20.0
BC10112	Magnesium, Total	mg/L	0.00638	0.0462	5.00	11.8	11.6	5.20	4.25 to 5.75	102	70.0 to 130	1.71	20.0
BC09996	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	2.10	2.03	0.103	0.0850 to 0.115	150	70.0 to 130	3.39	20.0
BC10112	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.420	0.426	0.103	0.0850 to 0.115	104	70.0 to 130	1.42	20.0
BC10112	Mercury, Total by CVAA	mg/L	0.000122	0.000500	0.004	0.00317	0.00332	0.00405	0.00340 to 0.00460	79.2	70.0 to 130	4.62	20.0
BC09996	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.103	0.102	0.0992	0.0850 to 0.115	101	70.0 to 130	0.976	20.0
BC10112	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0983	0.0974	0.0973	0.0850 to 0.115	97.8	70.0 to 130	0.920	20.0
BC09996	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	11.9	12.1	10.3	8.50 to 11.5	97.2	70.0 to 130	1.67	20.0
BC10112	Potassium, Total	mg/L	-0.0105	0.367	10.0	12.6	12.6	10.2	8.50 to 11.5	101	70.0 to 130	0.00	20.0
BC09996	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.104	0.105	0.106	0.0850 to 0.115	104	70.0 to 130	0.957	20.0
BC10112	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09996	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	7.33	7.33	0.999	0.850 to 1.15	97.0	70.0 to 130	0.00	20.0
BC10112	Silicon, Total	mg/L	0.000146	0.0440	1.00	10.5	10.4	1.02	0.850 to 1.15	113	70.0 to 130	0.957	20.0
BC09996	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	49.6	49.7	5.14	4.25 to 5.75	86.0	70.0 to 130	0.201	20.0
BC10112	Sodium, Total	mg/L	0.0212	0.0660	5.00	84.7	84.8	5.05	4.25 to 5.75	86.0	70.0 to 130	0.118	20.0
BC10112	Sulfate	mg/L	-0.192	2.0	160	251	253	18.8	18.0 to 22.0	91.2	80.0 to 120	0.794	20.0
BC09996	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.101	0.102	0.103	0.0850 to 0.115	101	70.0 to 130	0.985	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/23/22 16:15

Customer ID:

Delivery Date: 5/25/22 14:56

Description: Barry Ash Pond - MW-12

Laboratory ID Number: BC09994

'				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10112	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.104	0.103	0.103	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10001	Total Organic Carbon	mg/L	0.234	1.00	10.0	10.3	10.2	9.74		103	80.0 to 120	0.976	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/23/22 16:15

Customer ID:

Delivery Date:

5/25/22 14:56

Description: Barry Ash Pond - MW-12

Laboratory ID Number: BC09994

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10005	Alkalinity, Total as CaCO3	mg/L					327	51.3	45.0 to 55.0			8.49	10.0
BC10001	Nitrogen, Nitrate/Nitrite	mg/L as N	0.07	0.200	2.00	2.18	0.074	2.04	1.80 to 2.20	109	90.0 to 110	0.00	15.0
BC09999	Solids, Dissolved	mg/L	1.00	25.0			468	49.0	40.0 to 60.0			0.858	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-12VLocation Code:WMWBARAPCollected:5/23/22 17:05

Customer ID:

Laboratory ID Number: BC09995 Submittal Date: 5/25/22 14:57

5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50	6/2/22 11:11 6/2/22 11:50 6/2/22 11:11 6/2/22 11:11	1.015 50.75	Preparati 0.0765 20.6 86.6 Not Detected	on Method: I mg/L mg/L mg/L	EPA 1638 0.030000 0.070035	0.1015 0.406	J
5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50	6/2/22 11:11 6/2/22 11:50 6/2/22 11:11 6/2/22 11:11	1.015 50.75	20.6 86.6	mg/L			J
5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50	6/2/22 11:50 6/2/22 11:11 6/2/22 11:11	50.75	86.6	ŭ	0.070035	0.406	
5/31/22 10:50 5/31/22 10:50 5/31/22 10:50	6/2/22 11:11 6/2/22 11:11			ma/l		0.400	
5/31/22 10:50 5/31/22 10:50	6/2/22 11:11	1.015	Not Dotoctod	mg/L	0.40600	2.03	
5/31/22 10:50			Not Detected	mg/L	0.007105	0.01999956	U
		1.015	14.7	mg/L	0.021315	0.406	
=/0.4/00.40.=0	6/2/22 11:11	1	14.1	mg/L			
5/31/22 10:50	6/2/22 11:11	1.015	6.58	mg/L	0.02030	0.25375	
5/31/22 10:50	6/2/22 11:50	50.75	42.0	mg/L	1.5225	20.3	
Anal	yst: RDA						
5/27/22 09:45	6/1/22 11:39	1.015	0.0799	mg/L	0.030000	0.1015	J
5/27/22 09:45	6/1/22 11:39	1.015	20.6	mg/L	0.070035	0.406	
5/27/22 09:45	6/1/22 12:41	50.75	85.6	mg/L	0.40600	2.03	
5/27/22 09:45	6/1/22 11:39	1.015	Not Detected	mg/L	0.007105	0.01999956	U
5/27/22 09:45	6/1/22 11:39	1.015	15.0	mg/L	0.021315	0.406	
5/27/22 09:45	6/1/22 11:39	1	13.9	mg/L			
5/27/22 09:45	6/1/22 11:39	1.015	6.51	mg/L	0.02030	0.25375	
5/27/22 09:45	6/1/22 12:41	50.75	42.6	mg/L	1.5225	20.3	
Anal	yst: DLJ		Preparati	on Method:	EPA 1638		
6/1/22 11:30	6/1/22 18:17	1.015	Not Detected	mg/L	0.000508	0.001015	U
6/1/22 11:30	6/1/22 18:17	1.015	0.00923	mg/L	0.006090	0.01015	J
6/1/22 11:30	6/1/22 18:17	1.015	0.0257	mg/L	0.000081	0.000203	
6/1/22 11:30	6/1/22 18:17	1.015	0.103	mg/L	0.000508	0.001015	
6/1/22 11:30	6/1/22 18:17	1.015	Not Detected	mg/L	0.000406	0.001015	U
6/1/22 11:30	6/1/22 18:17	1.015	Not Detected	mg/L	0.000068	0.000203	U
6/1/22 11:30	6/1/22 18:17	1.015	0.000813	mg/L	0.000203	0.001015	J
6/1/22 11:30	6/1/22 18:17	1.015	0.00255	mg/L	0.000068	0.000203	
6/1/22 11:30	6/1/22 18:17	1.015	Not Detected	mg/L	0.000068	0.000203	U
6/1/22 11:30	6/1/22 21:15	5.075	1.18	mg/L	0.000761	0.001015	
6/1/22 11:30	6/1/22 18:17	1.015	0.00123	mg/L	0.000102	0.000203	
6/1/22 11:30	6/1/22 18:17	1.015	2.57	mg/L	0.169505	0.5075	
	5/31/22 10:50 Analy 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 Analy 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30	5/31/22 10:50 6/2/22 11:50 Analyst: RDA 5/27/22 09:45 6/1/22 11:39 5/27/22 09:45 6/1/22 11:39 5/27/22 09:45 6/1/22 11:39 5/27/22 09:45 6/1/22 11:39 5/27/22 09:45 6/1/22 11:39 5/27/22 09:45 6/1/22 11:39 5/27/22 09:45 6/1/22 11:39 5/27/22 09:45 6/1/22 11:39 5/27/22 09:45 6/1/22 11:39 5/27/22 09:45 6/1/22 11:39 6/1/22 11:30 6/1/22 18:17 6/1/22 11:30 6/1/22 18:17 6/1/22 11:30 6/1/22 18:17 6/1/22 11:30 6/1/22 18:17 6/1/22 11:30 6/1/22 18:17 6/1/22 11:30 6/1/22 18:17 6/1/22 11:30 6/1/22 18:17 6/1/22 11:30 6/1/22 18:17 6/1/22 11:30 6/1/22 18:17 6/1/22 11:30 6/1/22 18:17 6/1/22 11:30 6/1/22 18:17 6/1/22 11:30 6/1/22 18:17 6/1/22 11:30 6/1/22 18:17 6/1/22 11:30 6/1/22 18:17 6/1/22 11:30 6/1/22 18:17	5/31/22 10:50 6/2/22 11:50 50.75 Analyst: RDA 5/27/22 09:45 6/1/22 11:39 1.015 5/27/22 09:45 6/1/22 12:41 50.75 5/27/22 09:45 6/1/22 11:39 1.015 5/27/22 09:45 6/1/22 11:39 1.015 5/27/22 09:45 6/1/22 11:39 1 5/27/22 09:45 6/1/22 11:39 1.015 5/27/22 09:45 6/1/22 11:39 1.015 5/27/22 09:45 6/1/22 12:41 50.75 Analyst: DLJ 6/1/22 11:30 6/1/22 18:17 1.015 6/1/22 11:30 6/1/22 18:17 1.015 6/1/22 11:30 6/1/22 18:17 1.015 6/1/22 11:30 6/1/22 18:17 1.015 6/1/22 11:30 6/1/22 18:17 1.015 6/1/22 11:30 6/1/22 18:17 1.015 6/1/22 11:30 6/1/22 18:17 1.015 6/1/22 11:30 6/1/22 18:17 1.015 6/1/22 11:30 6/1/22 18:17 1.015 6/1/22 11:30 6/1/22 18:17 1.015 6/1/22 11:30 6/1/22 18:17	5/31/22 10:50 6/2/22 11:50 50.75 42.0 Analyst: RDA 5/27/22 09:45 6/1/22 11:39 1.015 0.0799 5/27/22 09:45 6/1/22 12:41 50.75 85.6 5/27/22 09:45 6/1/22 11:39 1.015 Not Detected 5/27/22 09:45 6/1/22 11:39 1.015 15.0 5/27/22 09:45 6/1/22 11:39 1 13.9 5/27/22 09:45 6/1/22 11:39 1.015 6.51 5/27/22 09:45 6/1/22 12:41 50.75 42.6 Preparation 6/1/22 11:30 6/1/22 18:17 1.015 Not Detected 6/1/22 11:30 6/1/22 18:17 1.015 0.00923 6/1/22 11:30 6/1/22 18:17 1.015 Not Detected 6/1/22 11:30 6/1/22 18:17 1.015 No	5/31/22 10:50 6/2/22 11:50 50.75 42.0 mg/L Analyst: RDA 5/27/22 09:45 6/1/22 11:39 1.015 0.0799 mg/L 5/27/22 09:45 6/1/22 11:39 1.015 20.6 mg/L 5/27/22 09:45 6/1/22 12:41 50.75 85.6 mg/L 5/27/22 09:45 6/1/22 11:39 1.015 Not Detected mg/L 5/27/22 09:45 6/1/22 11:39 1 13.9 mg/L 5/27/22 09:45 6/1/22 11:39 1.015 6.51 mg/L 5/27/22 09:45 6/1/22 11:39 1.015 6.51 mg/L 5/27/22 09:45 6/1/22 12:41 50.75 42.6 mg/L Preparation Method: Analyst: DLJ Preparation Method: 6/1/22 11:30 6/1/22 18:17 1.015 Not Detected mg/L 6/1/22 11:30 6/1/22 18:17 1.015 0.00257 mg/L 6/1/22 11:30 6/1/22 18:17 1.015 Not Detected mg/L 6/1/22 11:30 6/1/22 18:17 1.015 0.000813 mg/L	5/31/22 10:50 6/2/22 11:50 50.75 42.0 mg/L 1.5225 Analyst: RDA 5/27/22 09:45 6/1/22 11:39 1.015 0.0799 mg/L 0.030000 5/27/22 09:45 6/1/22 11:39 1.015 20.6 mg/L 0.070035 5/27/22 09:45 6/1/22 11:39 1.015 Not Detected mg/L 0.007105 5/27/22 09:45 6/1/22 11:39 1.015 Not Detected mg/L 0.021315 5/27/22 09:45 6/1/22 11:39 1.015 13.9 mg/L 0.021315 5/27/22 09:45 6/1/22 11:39 1.015 6.51 mg/L 0.02030 5/27/22 09:45 6/1/22 11:39 1.015 6.51 mg/L 0.02030 5/27/22 09:45 6/1/22 12:41 50.75 42.6 mg/L 0.02030 5/27/22 10:45 6/1/22 18:17 1.015 Not Detected mg/L 0.000508 6/1/22 11:30 6/1/22 18:17 1.015 0.00923 mg/L 0.000069 6/1/22 11:30 6/1/22	5/31/22 10:50 6/2/22 11:50 50.75 42.0 mg/L 1.5225 20.3 Analyst: RDA 5/27/22 09:45 6/1/22 11:39 1.015 0.0799 mg/L 0.030000 0.1015 5/27/22 09:45 6/1/22 11:39 1.015 20.6 mg/L 0.070035 0.406 5/27/22 09:45 6/1/22 12:41 50.75 85.6 mg/L 0.007105 0.01999956 5/27/22 09:45 6/1/22 11:39 1.015 Not Detected mg/L 0.007105 0.01999956 5/27/22 09:45 6/1/22 11:39 1.015 15.0 mg/L 0.021315 0.406 5/27/22 09:45 6/1/22 11:39 1 13.9 mg/L 0.02030 0.25375 5/27/22 09:45 6/1/22 11:39 1.015 6.51 mg/L 0.02030 0.25375 5/27/22 09:45 6/1/22 18:17 1.015 Not Detected mg/L 0.000508 0.001015 6/1/22 11:30 6/1/22 18:17 1.015 Not Detected mg/L 0.000508 0.001015 6/1/22 11:30

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Location Code: Description: Barry Ash Pond - MW-12V Collected:

Customer ID:

5/23/22 17:05

WMWBARAP

Submittal Date: 5/25/22 14:57

Laboratory ID Number: BC09995				Submit	tal Date:	5/25/22 14:5	7	
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 18:17	7 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 18:17	7 1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ						
* Antimony, Dissolved	5/31/22 14:15	5/31/22 17:	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 17:	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 17:	1.015	0.0257	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 17:	1.015	0.101	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 17:	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 17:	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 17:	1.015	0.000905	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 17:	1.015	0.00263	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 17:	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 17:	1.015	1.27	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 17:	1.015	0.00112	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 17:	1.015	2.47	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 17:	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 17:	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	lyst: CRB						
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 10:15	5 1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Ana	lyst: CES						
* Nitrogen, Nitrate/Nitrite	5/26/22 14:45	5/26/22 14:4	15 1	0.259	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Ana	lyst: ALH						
Alkalinity, Total as CaCO3	6/3/22 12:00	6/3/22 13:44	1 1	295	mg/L		0.1	
Analytical Method: SM 2540C	Ana	lyst: CNJ						
* Solids, Dissolved	5/25/22 16:30	5/31/22 13:5	58 1	352	mg/L		25	
Analytical Method: SM 4500CO2 D	Ana	lyst: ALH						
Bicarbonate Alkalinity, (calc.)	6/3/22 12:00	6/3/22 13:44	1 1	295	mg/L			
Carbonate Alkalinity, (calc.)	6/3/22 12:00	6/3/22 13:44	1 1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		lyst: ELH						
* Total Organic Carbon	6/1/22 01:14	6/1/22 01:14	1 1	15.0	mg/L	1.00	2	
					-			

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-12V

Location Code:

WMWBARAP

Collected:

Customer ID: Submittal Date: 5/23/22 17:05

5/25/22 14:57

Laboratory ID Number: BC09995

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anal	yst: CES							
* Chloride	5/31/22 15:01	5/31/22 15:0	01	3	25.6	mg/L	1.50	3	
Analytical Method: SM4500F G 2017	Anal	yst: JCC							
* Fluoride	6/8/22 12:05	6/8/22 12:05	5	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC							
* Sulfate	6/7/22 14:01	6/7/22 14:01	I	1	6.64	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	yst: TJD							
Conductivity	5/23/22 17:02	5/23/22 17:0)2		616.65	uS/cm			FA
рН	5/23/22 17:02	5/23/22 17:0)2		6.22	SU			FA
Temperature	5/23/22 17:02	5/23/22 17:0	02		20.70	С			FA
Turbidity	5/23/22 17:02	5/23/22 17:0	02		1.04	NTU			FA
Sulfide	5/23/22 17:02	5/23/22 17:0)2		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/23/22 17:05

Customer ID:

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-12V

Laboratory ID Number: BC09995

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09996	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.100	0.102	0.102	0.0850 to 0.115	100	70.0 to 130	1.98	20.0
BC10112	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.320	0.329	0.109	0.0850 to 0.115	125	70.0 to 130	2.77	20.0
BC09996	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.0992	0.100	0.0949	0.0850 to 0.115	99.2	70.0 to 130	0.803	20.0
BC10112	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.100	0.0991	0.0923	0.0850 to 0.115	100	70.0 to 130	0.904	20.0
BC09996	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.124	0.119	0.104	0.0850 to 0.115	105	70.0 to 130	4.12	20.0
BC10112	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.122	0.121	0.101	0.0850 to 0.115	104	70.0 to 130	0.823	20.0
BC09996	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.189	0.186	0.102	0.0850 to 0.115	97.2	70.0 to 130	1.60	20.0
BC10112	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.172	0.171	0.0996	0.0850 to 0.115	103	70.0 to 130	0.583	20.0
BC09996	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.115	0.106	0.100	0.0850 to 0.115	115	70.0 to 130	8.14	20.0
BC10112	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.103	0.105	0.100	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC09996	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.12	1.12	1.01	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC10112	Boron, Total	mg/L	0.000059	0.0650	1.00	1.12	1.08	1.03	0.850 to 1.15	106	70.0 to 130	3.64	20.0
BC09996	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10112	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0993	0.0990	0.0989	0.0850 to 0.115	99.3	70.0 to 130	0.303	20.0
BC09996	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	19.3	19.2	4.87	4.25 to 5.75	96.0	70.0 to 130	0.519	20.0
BC10112	Calcium, Total	mg/L	0.00326	0.152	5.00	16.4	16.3	4.95	4.25 to 5.75	100	70.0 to 130	0.612	20.0
BC10112	Chloride	mg/L	-0.0683	1.00	100	142	153	9.80	9.00 to 11.0	96.7	80.0 to 120	7.46	20.0
BC09996	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.0986	0.0997	0.100	0.0850 to 0.115	98.1	70.0 to 130	1.11	20.0
BC10112	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.105	0.105	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC09996	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.128	0.132	0.104	0.0850 to 0.115	101	70.0 to 130	3.08	20.0
BC10112	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.103	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10112	Fluoride	mg/L	-0.0308	0.125	2.50	2.75	2.76	2.56	2.25 to 2.75	107	80.0 to 120	0.363	20.0
BC09996	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	79.1	79.2	0.200	0.170 to 0.230	-400	70.0 to 130	0.126	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/23/22 17:05

Customer ID:

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-12V

Laboratory ID Number: BC09995

Sample	Analysis	Units											
			MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
C10112	Iron, Total	mg/L	0.00011	0.0176	0.2	35.5	35.6	0.200	0.170 to 0.230	100	70.0 to 130	0.281	20.0
C09996	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.102	0.103	0.104	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
C10112	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
C09996	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.206	0.206	0.205	0.170 to 0.230	103	70.0 to 130	0.00	20.0
C10112	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.201	0.193	0.201	0.170 to 0.230	100	70.0 to 130	4.06	20.0
C09996	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	13.7	13.7	5.09	4.25 to 5.75	101	70.0 to 130	0.00	20.0
C10112	Magnesium, Total	mg/L	0.00638	0.0462	5.00	11.8	11.6	5.20	4.25 to 5.75	102	70.0 to 130	1.71	20.0
C09996	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	2.10	2.03	0.103	0.0850 to 0.115	150	70.0 to 130	3.39	20.0
C10112	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.420	0.426	0.103	0.0850 to 0.115	104	70.0 to 130	1.42	20.0
C10112	Mercury, Total by CVAA	mg/L	0.000122	0.000500	0.004	0.00317	0.00332	0.00405	0.00340 to 0.00460	79.2	70.0 to 130	4.62	20.0
C09996	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.103	0.102	0.0992	0.0850 to 0.115	101	70.0 to 130	0.976	20.0
C10112	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0983	0.0974	0.0973	0.0850 to 0.115	97.8	70.0 to 130	0.920	20.0
C09996	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	11.9	12.1	10.3	8.50 to 11.5	97.2	70.0 to 130	1.67	20.0
C10112	Potassium, Total	mg/L	-0.0105	0.367	10.0	12.6	12.6	10.2	8.50 to 11.5	101	70.0 to 130	0.00	20.0
C09996	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.104	0.105	0.106	0.0850 to 0.115	104	70.0 to 130	0.957	20.0
C10112	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
C09996	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	7.33	7.33	0.999	0.850 to 1.15	97.0	70.0 to 130	0.00	20.0
C10112	Silicon, Total	mg/L	0.000146	0.0440	1.00	10.5	10.4	1.02	0.850 to 1.15	113	70.0 to 130	0.957	20.0
C09996	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	49.6	49.7	5.14	4.25 to 5.75	86.0	70.0 to 130	0.201	20.0
C10112	Sodium, Total	mg/L	0.0212	0.0660	5.00	84.7	84.8	5.05	4.25 to 5.75	86.0	70.0 to 130	0.118	20.0
C10112	Sulfate	mg/L	-0.192	2.0	160	251	253	18.8	18.0 to 22.0	91.2	80.0 to 120	0.794	20.0
C09996	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.101	0.102	0.103	0.0850 to 0.115	101	70.0 to 130	0.985	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/23/22 17:05

Customer ID:

Customer ID: Delivery Date:

5/25/22 14:57

Description: Barry Ash Pond - MW-12V

Laboratory ID Number: BC09995

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10112	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.104	0.103	0.103	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10001	Total Organic Carbon	mg/L	0.234	1.00	10.0	10.3	10.2	9.74		103	80.0 to 120	0.976	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date: 5/23/22 17:05

Customer ID:

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-12V

Laboratory ID Number: BC09995

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10005	Alkalinity, Total as CaCO3	mg/L					327	51.3	45.0 to 55.0			8.49	10.0
BC10001	Nitrogen, Nitrate/Nitrite	mg/L as N	0.07	0.200	2.00	2.18	0.074	2.04	1.80 to 2.20	109	90.0 to 110	0.00	15.0
BC09999	Solids, Dissolved	mg/L	1.00	25.0			468	49.0	40.0 to 60.0			0.858	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-20VLocation Code:WMWBARAPCollected:5/24/22 09:05

Customer ID:

Laboratory ID Number: BC09996 Submittal Date: 5/25/22 14:57

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	on Method:	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 11:14	1.015	0.0977	mg/L	0.030000	0.1015	J
* Calcium, Total	5/31/22 10:50	6/2/22 11:14	1.015	14.4	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 11:53	50.75	80.5	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 11:14	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 11:14	1.015	8.64	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 11:14	1	13.7	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 11:14	1.015	6.41	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 11:53	50.75	44.4	mg/L	1.5225	20.3	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 11:42	1.015	0.0955	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	5/27/22 09:45	6/1/22 11:42	1.015	14.5	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 12:44	50.75	79.9	mg/L	0.40600	2.03	R
* Lithium, Dissolved	5/27/22 09:45	6/1/22 11:42	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 11:42	1.015	8.66	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 11:42	1	13.6	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 11:42	1.015	6.36	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 12:44	50.75	45.3	mg/L	1.5225	20.3	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	ion Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 18:20	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 18:20	1.015	0.0357	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 18:20	1.015	0.0188	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 18:20	1.015	0.0906	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 18:20	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 18:20	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 18:20	1.015	0.000464	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 18:20	1.015	0.0264	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 18:20		Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 21:04		1.92	mg/L	0.000761	0.001015	
* Molybdenum, Total	6/1/22 11:30	6/1/22 18:20	1.015	0.00164	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 18:20		2.29	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-20VLocation Code:WMWBARAPCollected:5/24/22 09:05

Customer ID:

Submittal Date: 5/25/22 14:57

Laboratory ID Number: BC09996

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 18:20	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 18:20	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anai	lyst: DLJ						
* Antimony, Dissolved	5/31/22 14:15	5/31/22 17:1	5 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 17:1	5 1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 17:1	5 1.015	0.0193	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 17:1	5 1.015	0.0918	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 17:1	5 1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 17:1	5 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 17:1	5 1.015	0.000526	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 17:1	5 1.015	0.0269	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 17:1	5 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	6/1/22 17:18	5.075	1.95	mg/L	0.000761	0.001015	RA
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 17:1	5 1.015	0.00175	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 17:1	5 1.015	2.18	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 17:1	5 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 17:1	5 1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anai	lyst: CRB						
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 10:18	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anai	lyst: CES						
* Nitrogen, Nitrate/Nitrite	5/26/22 14:47	5/26/22 14:4	7 1	0.216	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Anai	lyst: ALH						
Alkalinity, Total as CaCO3	6/3/22 12:00	6/3/22 13:44	1	208	mg/L		0.1	
Analytical Method: SM 2540C	Anai	lyst: CNJ						
* Solids, Dissolved	5/25/22 16:30	5/31/22 13:5	8 1	296	mg/L		25	
Analytical Method: SM 4500CO2 D	Anai	lyst: ALH						
Bicarbonate Alkalinity, (calc.)	6/3/22 12:00	6/3/22 13:44	. 1	208	mg/L			
Carbonate Alkalinity, (calc.)	6/3/22 12:00	6/3/22 13:44	. 1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		lyst: ELH			-			
* Total Organic Carbon	6/1/22 01:32	6/1/22 01:32	. 1	8.66	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-20V

Location Code:

WMWBARAP 5/24/22 09:05

Collected:

Customer ID: Submittal Date:

5/25/22 14:57

Laboratory ID Number: BC09996

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anal	yst: CES							
* Chloride	5/31/22 15:03	5/31/22 15:0)3	3	35.4	mg/L	1.50	3	
Analytical Method: SM4500F G 2017	Anal	yst: JCC							
* Fluoride	6/8/22 12:06	6/8/22 12:06	5	1	0.0811	mg/L	0.06	0.125	J
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC							
* Sulfate	6/7/22 14:02	6/7/22 14:02	2	1	3.79	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	yst: TJD							
Conductivity	5/24/22 09:02	5/24/22 09:0)2		549.97	uS/cm			FA
рН	5/24/22 09:02	5/24/22 09:0)2		6.28	SU			FA
Temperature	5/24/22 09:02	5/24/22 09:0)2		20.55	С			FA
Turbidity	5/24/22 09:02	5/24/22 09:0)2		1.01	NTU			FA
Sulfide	5/24/22 09:02	5/24/22 09:0)2		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP Sample Date:

Customer ID:

5/24/22 09:05

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-20V

Laboratory ID Number: BC09996

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC09996	Aluminum, Dissolved	mg/L	-0.0000138	0.010	0.100	0.100	0.102	0.102	0.0850 to 0.115	100	70.0 to 130	1.98	20.0
BC10112	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.320	0.329	0.109	0.0850 to 0.115	125	70.0 to 130	2.77	20.0
BC09996	Antimony, Dissolved	mg/L	0.000277	0.00100	0.100	0.0992	0.100	0.0949	0.0850 to 0.115	99.2	70.0 to 130	0.803	20.0
BC10112	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.100	0.0991	0.0923	0.0850 to 0.115	100	70.0 to 130	0.904	20.0
BC09996	Arsenic, Dissolved	mg/L	0.0000064	0.000176	0.100	0.124	0.119	0.104	0.0850 to 0.115	105	70.0 to 130	4.12	20.0
BC10112	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.122	0.121	0.101	0.0850 to 0.115	104	70.0 to 130	0.823	20.0
BC09996	Barium, Dissolved	mg/L	-0.0000236	0.00100	0.100	0.189	0.186	0.102	0.0850 to 0.115	97.2	70.0 to 130	1.60	20.0
BC10112	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.172	0.171	0.0996	0.0850 to 0.115	103	70.0 to 130	0.583	20.0
BC09996	Beryllium, Dissolved	mg/L	0.0000551	0.000880	0.100	0.115	0.106	0.100	0.0850 to 0.115	115	70.0 to 130	8.14	20.0
BC10112	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.103	0.105	0.100	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC09996	Boron, Dissolved	mg/L	-0.000095	0.0650	1.00	1.12	1.12	1.01	0.850 to 1.15	102	70.0 to 130	0.00	20.0
BC10112	Boron, Total	mg/L	0.000059	0.0650	1.00	1.12	1.08	1.03	0.850 to 1.15	106	70.0 to 130	3.64	20.0
BC09996	Cadmium, Dissolved	mg/L	0.0000098	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10112	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0993	0.0990	0.0989	0.0850 to 0.115	99.3	70.0 to 130	0.303	20.0
BC09996	Calcium, Dissolved	mg/L	0.000404	0.152	5.00	19.3	19.2	4.87	4.25 to 5.75	96.0	70.0 to 130	0.519	20.0
BC10112	Calcium, Total	mg/L	0.00326	0.152	5.00	16.4	16.3	4.95	4.25 to 5.75	100	70.0 to 130	0.612	20.0
BC10112	Chloride	mg/L	-0.0683	1.00	100	142	153	9.80	9.00 to 11.0	96.7	80.0 to 120	7.46	20.0
BC09996	Chromium, Dissolved	mg/L	0.0000501	0.000440	0.100	0.0986	0.0997	0.100	0.0850 to 0.115	98.1	70.0 to 130	1.11	20.0
BC10112	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.105	0.105	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC09996	Cobalt, Dissolved	mg/L	0.0000055	0.000147	0.100	0.128	0.132	0.104	0.0850 to 0.115	101	70.0 to 130	3.08	20.0
BC10112	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.103	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10112	Fluoride	mg/L	-0.0308	0.125	2.50	2.75	2.76	2.56	2.25 to 2.75	107	80.0 to 120	0.363	20.0
BC09996	Iron, Dissolved	mg/L	0.000012	0.0176	0.2	79.1	79.2	0.200	0.170 to 0.230	-400	70.0 to 130	0.126	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 09:05

Customer ID:

inple bate. 5/24/22 09.0

Delicer ID.

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-20V

Laboratory ID Number: BC09996

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10112	Iron, Total	mg/L	0.00011	0.0176	0.2	35.5	35.6	0.200	0.170 to 0.230	100	70.0 to 130	0.281	20.0
BC09996	Lead, Dissolved	mg/L	0.0000046	0.000147	0.100	0.102	0.103	0.104	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10112	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC09996	Lithium, Dissolved	mg/L	0.000152	0.0154	0.200	0.206	0.206	0.205	0.170 to 0.230	103	70.0 to 130	0.00	20.0
BC10112	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.201	0.193	0.201	0.170 to 0.230	100	70.0 to 130	4.06	20.0
BC09996	Magnesium, Dissolved	mg/L	0.00610	0.0462	5.00	13.7	13.7	5.09	4.25 to 5.75	101	70.0 to 130	0.00	20.0
BC10112	Magnesium, Total	mg/L	0.00638	0.0462	5.00	11.8	11.6	5.20	4.25 to 5.75	102	70.0 to 130	1.71	20.0
BC09996	Manganese, Dissolved	mg/L	-0.0000021	0.0002	0.100	2.10	2.03	0.103	0.0850 to 0.115	150	70.0 to 130	3.39	20.0
BC10112	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.420	0.426	0.103	0.0850 to 0.115	104	70.0 to 130	1.42	20.0
BC10112	Mercury, Total by CVAA	mg/L	0.000122	0.000500	0.004	0.00317	0.00332	0.00405	0.00340 to 0.00460	79.2	70.0 to 130	4.62	20.0
BC09996	Molybdenum, Dissolved	mg/L	-0.0000176	0.0002	0.100	0.103	0.102	0.0992	0.0850 to 0.115	101	70.0 to 130	0.976	20.0
BC10112	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0983	0.0974	0.0973	0.0850 to 0.115	97.8	70.0 to 130	0.920	20.0
BC09996	Potassium, Dissolved	mg/L	-0.0103	0.367	10.0	11.9	12.1	10.3	8.50 to 11.5	97.2	70.0 to 130	1.67	20.0
BC10112	Potassium, Total	mg/L	-0.0105	0.367	10.0	12.6	12.6	10.2	8.50 to 11.5	101	70.0 to 130	0.00	20.0
BC09996	Selenium, Dissolved	mg/L	0.0000409	0.00100	0.100	0.104	0.105	0.106	0.0850 to 0.115	104	70.0 to 130	0.957	20.0
BC10112	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC09996	Silicon, Dissolved	mg/L	-0.000431	0.0440	1.00	7.33	7.33	0.999	0.850 to 1.15	97.0	70.0 to 130	0.00	20.0
BC10112	Silicon, Total	mg/L	0.000146	0.0440	1.00	10.5	10.4	1.02	0.850 to 1.15	113	70.0 to 130	0.957	20.0
BC09996	Sodium, Dissolved	mg/L	0.00315	0.0660	5.00	49.6	49.7	5.14	4.25 to 5.75	86.0	70.0 to 130	0.201	20.0
BC10112	Sodium, Total	mg/L	0.0212	0.0660	5.00	84.7	84.8	5.05	4.25 to 5.75	86.0	70.0 to 130	0.118	20.0
BC10112	Sulfate	mg/L	-0.192	2.0	160	251	253	18.8	18.0 to 22.0	91.2	80.0 to 120	0.794	20.0
BC09996	Thallium, Dissolved	mg/L	0.0000031	0.000147	0.100	0.101	0.102	0.103	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
		-											

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/24/22 09:05

Customer ID: Delivery Date:

5/25/22 14:57

Description: Barry Ash Pond - MW-20V

Laboratory ID Number: BC09996

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10112	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.104	0.103	0.103	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10001	Total Organic Carbon	mg/L	0.234	1.00	10.0	10.3	10.2	9.74		103	80.0 to 120	0.976	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 09:05

Customer ID:

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-20V

Laboratory ID Number: BC09996

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10005	Alkalinity, Total as CaCO3	mg/L					327	51.3	45.0 to 55.0			8.49	10.0
BC10001	Nitrogen, Nitrate/Nitrite	mg/L as N	0.07	0.200	2.00	2.18	0.074	2.04	1.80 to 2.20	109	90.0 to 110	0.00	15.0
BC09999	Solids, Dissolved	mg/L	1.00	25.0			468	49.0	40.0 to 60.0			0.858	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-20V DupLocation Code:WMWBARAPCollected:5/24/22 09:05

Customer ID:

Laboratory ID Number: BC09997 Submittal Date: 5/25/22 14:57

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	on Method:	EPA 1638		_
* Boron, Total	5/31/22 10:50	6/2/22 11:17	1.015	0.0951	mg/L	0.030000	0.1015	J
* Calcium, Total	5/31/22 10:50	6/2/22 11:17	1.015	14.4	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 11:57	50.75	82.2	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 11:17	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 11:17	1.015	8.65	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 11:17	1	13.6	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 11:17	1.015	6.35	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 11:57	50.75	44.8	mg/L	1.5225	20.3	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 12:03	1.015	0.0950	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	5/27/22 09:45	6/1/22 12:03	1.015	14.6	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 13:03	50.75	83.3	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 12:03	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 12:03	1.015	8.67	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 12:03	1	13.5	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 12:03	1.015	6.33	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 13:03	50.75	47.6	mg/L	1.5225	20.3	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 18:24	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 18:24	1.015	0.0306	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 18:24	1.015	0.0186	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 18:24	1.015	0.0907	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 18:24	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 18:24	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 18:24	1.015	0.000530	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 18:24	1.015	0.0268	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 18:24	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 21:08	5.075	1.92	mg/L	0.000761	0.001015	
* Molybdenum, Total	6/1/22 11:30	6/1/22 18:24	1.015	0.00161	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 18:24		2.34	mg/L	0.169505	0.5075	
	3, ., 71.00				J			

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-20V DupLocation Code:WMWBARAPCollected:5/24/22 09:05

Customer ID:

Submittal Date: 5/25/22 14:57

Laboratory ID Number: BC09997

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 18:24		1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 18:24	ļ	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 17:4	14	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 17:4	14	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 17:4	14	1.015	0.0190	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 17:4	14	1.015	0.0932	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 17:4	14	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 17:4	14	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 17:4	14	1.015	0.000487	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 17:4	14	1.015	0.0276	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 17:4	14	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	6/1/22 17:29)	5.075	2.00	mg/L	0.000761	0.001015	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 17:4	14	1.015	0.00150	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 17:4	14	1.015	2.25	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 17:4	14	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 17:4	14	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 10:20)	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: CES							
* Nitrogen, Nitrate/Nitrite	5/26/22 14:49	5/26/22 14:4	19	1	0.280	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/3/22 12:00	6/3/22 13:44	ļ	1	244	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/25/22 16:30	5/31/22 13:5	58	1	303	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/3/22 12:00	6/3/22 13:44	ļ	1	244	mg/L			
Carbonate Alkalinity, (calc.)	6/3/22 12:00	6/3/22 13:44	ļ	1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B	Anal	yst: ELH							
* Total Organic Carbon	6/1/22 01:50	6/1/22 01:50)	1	8.63	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-20V Dup

Location Code:

WMWBARAP

Collected: Customer ID:

Customer ID: Submittal Date:

5/24/22 09:05 5/25/22 14:57

Laboratory ID Number: BC09997

- Number: Becosss								
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anal	yst: CES						
* Chloride	5/31/22 15:04	5/31/22 15:0	04 3	37.5	mg/L	1.50	3	
Analytical Method: SM4500F G 2017	Anal	yst: JCC						
* Fluoride	6/8/22 12:07	6/8/22 12:07	7 1	0.0852	mg/L	0.06	0.125	J
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC						
* Sulfate	6/7/22 14:03	6/7/22 14:03	3 1	3.66	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	yst: TJD						
Conductivity	5/24/22 09:02	5/24/22 09:0)2	549.97	uS/cm			FA
рН	5/24/22 09:02	5/24/22 09:0)2	6.28	SU			FA
Temperature	5/24/22 09:02	5/24/22 09:0)2	20.55	С			FA
Turbidity	5/24/22 09:02	5/24/22 09:0)2	1.01	NTU			FA
Sulfide	5/24/22 09:02	5/24/22 09:0)2	0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 09:05

Customer ID:

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-20V Dup

Laboratory ID Number: BC09997

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mi
BC10115	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.104	0.104	0.0988	0.0850 to 0.115	104	70.0 to 130	0.00	20.0
BC10112	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.320	0.329	0.109	0.0850 to 0.115	125	70.0 to 130	2.77	20.0
BC10115	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.0989	0.0976	0.0948	0.0850 to 0.115	98.9	70.0 to 130	1.32	20.0
BC10112	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.100	0.0991	0.0923	0.0850 to 0.115	100	70.0 to 130	0.904	20.0
BC10115	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.103	0.104	0.103	0.0850 to 0.115	102	70.0 to 130	0.966	20.0
BC10112	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.122	0.121	0.101	0.0850 to 0.115	104	70.0 to 130	0.823	20.0
BC10115	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.163	0.160	0.0990	0.0850 to 0.115	104	70.0 to 130	1.86	20.0
BC10112	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.172	0.171	0.0996	0.0850 to 0.115	103	70.0 to 130	0.583	20.0
BC10115	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.103	0.104	0.101	0.0850 to 0.115	103	70.0 to 130	0.966	20.0
BC10112	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.103	0.105	0.100	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC10115	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.01	1.02	1.02	0.850 to 1.15	101	70.0 to 130	0.985	20.0
BC10112	Boron, Total	mg/L	0.000059	0.0650	1.00	1.12	1.08	1.03	0.850 to 1.15	106	70.0 to 130	3.64	20.0
BC10115	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.101	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10112	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0993	0.0990	0.0989	0.0850 to 0.115	99.3	70.0 to 130	0.303	20.0
BC10115	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	6.58	6.68	5.03	4.25 to 5.75	95.8	70.0 to 130	1.51	20.0
BC10112	Calcium, Total	mg/L	0.00326	0.152	5.00	16.4	16.3	4.95	4.25 to 5.75	100	70.0 to 130	0.612	20.0
BC10112	Chloride	mg/L	-0.0683	1.00	100	142	153	9.80	9.00 to 11.0	96.7	80.0 to 120	7.46	20.0
BC10115	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0994	0.101	0.0999	0.0850 to 0.115	99.1	70.0 to 130	1.60	20.0
BC10112	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.105	0.105	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10115	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.118	0.119	0.103	0.0850 to 0.115	104	70.0 to 130	0.844	20.0
BC10112	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.103	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10112	Fluoride	mg/L	-0.0308	0.125	2.50	2.75	2.76	2.56	2.25 to 2.75	107	80.0 to 120	0.363	20.0
BC10115	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	4.02	4.04	0.201	0.170 to 0.230	60.0	70.0 to 130	0.496	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 09:05

Customer ID:

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-20V Dup

Laboratory ID Number: BC09997

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10112	Iron, Total	mg/L	0.00011	0.0176	0.2	35.5	35.6	0.200	0.170 to 0.230	100	70.0 to 130	0.281	20.0
BC10115	Lead, Dissolved	mg/L	0.0000088	0.000147	0.100	0.104	0.103	0.104	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10112	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10115	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.205	0.203	0.203	0.170 to 0.230	102	70.0 to 130	0.980	20.0
BC10112	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.201	0.193	0.201	0.170 to 0.230	100	70.0 to 130	4.06	20.0
BC10115	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	6.72	6.76	5.17	4.25 to 5.75	101	70.0 to 130	0.593	20.0
BC10112	Magnesium, Total	mg/L	0.00638	0.0462	5.00	11.8	11.6	5.20	4.25 to 5.75	102	70.0 to 130	1.71	20.0
BC10115	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.250	0.252	0.102	0.0850 to 0.115	99.0	70.0 to 130	0.797	20.0
BC10112	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.420	0.426	0.103	0.0850 to 0.115	104	70.0 to 130	1.42	20.0
BC10112	Mercury, Total by CVAA	mg/L	0.000122	0.000500	0.004	0.00317	0.00332	0.00405	0.00340 to 0.00460	79.2	70.0 to 130	4.62	20.0
BC10115	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.102	0.102	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10112	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0983	0.0974	0.0973	0.0850 to 0.115	97.8	70.0 to 130	0.920	20.0
BC10115	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.6	11.8	9.74	8.50 to 11.5	95.9	70.0 to 130	1.71	20.0
BC10112	Potassium, Total	mg/L	-0.0105	0.367	10.0	12.6	12.6	10.2	8.50 to 11.5	101	70.0 to 130	0.00	20.0
BC10115	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.103	0.103	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC10112	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10115	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	7.66	7.65	1.01	0.850 to 1.15	94.0	70.0 to 130	0.131	20.0
BC10112	Silicon, Total	mg/L	0.000146	0.0440	1.00	10.5	10.4	1.02	0.850 to 1.15	113	70.0 to 130	0.957	20.0
BC10115	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	62.8	62.2	5.08	4.25 to 5.75	138	70.0 to 130	0.960	20.0
BC10112	Sodium, Total	mg/L	0.0212	0.0660	5.00	84.7	84.8	5.05	4.25 to 5.75	86.0	70.0 to 130	0.118	20.0
BC10112	Sulfate	mg/L	-0.192	2.0	160	251	253	18.8	18.0 to 22.0	91.2	80.0 to 120	0.794	20.0
BC10115	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.101	0.101	0.102	0.0850 to 0.115	101	70.0 to 130	0.00	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 09:05

Customer ID:

Delivery Date:

5/25/22 14:57

Description: Barry Ash Pond - MW-20V Dup

Laboratory ID Number: BC09997

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10112	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.104	0.103	0.103	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10001	Total Organic Carbon	mg/L	0.234	1.00	10.0	10.3	10.2	9.74		103	80.0 to 120	0.976	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 09:05

Customer ID:

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-20V Dup

Laboratory ID Number: BC09997

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10005	Alkalinity, Total as CaCO3	mg/L					327	51.3	45.0 to 55.0			8.49	10.0
BC10001	Nitrogen, Nitrate/Nitrite	mg/L as N	0.07	0.200	2.00	2.18	0.074	2.04	1.80 to 2.20	109	90.0 to 110	0.00	15.0
BC09999	Solids, Dissolved	mg/L	1.00	25.0			468	49.0	40.0 to 60.0			0.858	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-24HLocation Code:WMWBARAPCollected:5/24/22 10:33

Customer ID:

Laboratory ID Number: BC09998 Submittal Date: 5/25/22 14:57

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	C
Analytical Method: EPA 200.7	Anal	yst: RDA			Preparati	on Method: L	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 11:20)	1.015	0.351	mg/L	0.030000	0.1015	
* Calcium, Total	5/31/22 10:50	6/2/22 11:20)	1.015	17.9	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 12:00)	50.75	113	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 11:20)	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 11:20)	1.015	16.7	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 11:20)	1	23.8	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 11:20)	1.015	11.1	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 12:00)	50.75	71.9	mg/L	1.5225	20.3	
Analytical Method: EPA 200.7	Anal	yst: RDA							
* Boron, Dissolved	5/27/22 09:45	6/1/22 12:06	6	1.015	0.347	mg/L	0.030000	0.1015	
* Calcium, Dissolved	5/27/22 09:45	6/1/22 12:06	6	1.015	17.5	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 13:06	6	50.75	111	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 12:06	6	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 12:06	6	1.015	16.7	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 12:06	6	1	23.8	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 12:06	6	1.015	11.1	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 13:06	6	50.75	73.7	mg/L	1.5225	20.3	
Analytical Method: EPA 200.8	Anal	yst: DLJ			Preparati	on Method: E	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 18:27	7	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 18:27	7	1.015	0.0262	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 18:27	7	1.015	0.0718	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 18:27	7	1.015	0.245	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 18:27	7	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 18:27	,	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 18:27	,	1.015	0.000809	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 18:27	,	1.015	0.00571	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 18:27	,	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 18:27	,	1.015	0.220	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 18:27		1.015	0.000923	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 18:27		1.015	2.55	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-24HLocation Code:WMWBARAPCollected:5/24/22 10:33

Customer ID:

Laboratory ID Number: BC09998 Submittal Date: 5/25/22 14:57

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 18:27	7	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 18:27	7	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 17:4	17	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 17:4	17	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 17:4	17	1.015	0.0712	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 17:4	17	1.015	0.246	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 17:4	17	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 17:4	17	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 17:4	17	1.015	0.000881	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 17:4	17	1.015	0.00570	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 17:4	17	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 17:4	17	1.015	0.217	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 17:4	17	1.015	0.00118	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 17:4	17	1.015	2.42	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 17:4	17	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 17:4	17	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 10:23	3	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: CES							
* Nitrogen, Nitrate/Nitrite	5/26/22 14:51	5/26/22 14:5	51	1	0.287	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/3/22 12:00	6/3/22 13:44	1	1	334	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/25/22 16:30	5/31/22 13:5	58	1	486	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/3/22 12:00	6/3/22 13:44	1	1	334	mg/L			
Carbonate Alkalinity, (calc.)	6/3/22 12:00	6/3/22 13:44	1	1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B	Anal	yst: ELH							
* Total Organic Carbon	6/1/22 02:09	6/1/22 02:09)	1	25.8	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-24H

Location Code:

WMWBARAP

Collected:

Customer ID:

5/24/22 10:33

5/25/22 14:57

Submittal Date:

Laboratory ID Number: BC09998									
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Ana	lyst: CES							
* Chloride	5/31/22 15:05	5/31/22 15:0)5	4	50.8	mg/L	2.00	4	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	6/8/22 12:08	6/8/22 12:08	3	1	0.135	mg/L	0.06	0.125	
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	6/7/22 14:04	6/7/22 14:04	ļ	1	24.3	mg/L	0.6	2	
Analytical Method: Field Measurements	Ana	lyst: TJD							
Conductivity	5/24/22 10:29	5/24/22 10:2	29		792.50	uS/cm			FA
рН	5/24/22 10:29	5/24/22 10:2	29		6.22	SU			FA
Temperature	5/24/22 10:29	5/24/22 10:2	29		21.70	С			FA
Turbidity	5/24/22 10:29	5/24/22 10:2	29		2.5	NTU			FA
Sulfide	5/24/22 10:29	5/24/22 10:2	9		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP Sample Date:

5/24/22 10:33

Customer ID: Delivery Date:

5/25/22 14:57

Description: Barry Ash Pond - MW-24H

Laboratory ID Number: BC09998

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10115	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.104	0.104	0.0988	0.0850 to 0.115	104	70.0 to 130	0.00	20.0
BC10112	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.320	0.329	0.109	0.0850 to 0.115	125	70.0 to 130	2.77	20.0
3C10115	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.0989	0.0976	0.0948	0.0850 to 0.115	98.9	70.0 to 130	1.32	20.0
BC10112	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.100	0.0991	0.0923	0.0850 to 0.115	100	70.0 to 130	0.904	20.0
3C10115	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.103	0.104	0.103	0.0850 to 0.115	102	70.0 to 130	0.966	20.0
BC10112	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.122	0.121	0.101	0.0850 to 0.115	104	70.0 to 130	0.823	20.0
BC10115	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.163	0.160	0.0990	0.0850 to 0.115	104	70.0 to 130	1.86	20.0
BC10112	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.172	0.171	0.0996	0.0850 to 0.115	103	70.0 to 130	0.583	20.0
BC10115	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.103	0.104	0.101	0.0850 to 0.115	103	70.0 to 130	0.966	20.0
BC10112	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.103	0.105	0.100	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC10115	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.01	1.02	1.02	0.850 to 1.15	101	70.0 to 130	0.985	20.0
BC10112	Boron, Total	mg/L	0.000059	0.0650	1.00	1.12	1.08	1.03	0.850 to 1.15	106	70.0 to 130	3.64	20.0
BC10115	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.101	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10112	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0993	0.0990	0.0989	0.0850 to 0.115	99.3	70.0 to 130	0.303	20.0
BC10115	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	6.58	6.68	5.03	4.25 to 5.75	95.8	70.0 to 130	1.51	20.0
BC10112	Calcium, Total	mg/L	0.00326	0.152	5.00	16.4	16.3	4.95	4.25 to 5.75	100	70.0 to 130	0.612	20.0
BC10112	Chloride	mg/L	-0.0683	1.00	100	142	153	9.80	9.00 to 11.0	96.7	80.0 to 120	7.46	20.0
BC10115	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0994	0.101	0.0999	0.0850 to 0.115	99.1	70.0 to 130	1.60	20.0
BC10112	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.105	0.105	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10115	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.118	0.119	0.103	0.0850 to 0.115	104	70.0 to 130	0.844	20.0
BC10112	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.103	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10112	Fluoride	mg/L	-0.0308	0.125	2.50	2.75	2.76	2.56	2.25 to 2.75	107	80.0 to 120	0.363	20.0
BC10115	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	4.02	4.04	0.201	0.170 to 0.230	60.0	70.0 to 130	0.496	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 10:33

Customer ID:

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-24H

Laboratory ID Number: BC09998

	_			MB		•		•	Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10112	Iron, Total	mg/L	0.00011	0.0176	0.2	35.5	35.6	0.200	0.170 to 0.230	100	70.0 to 130	0.281	20.0
BC10115	Lead, Dissolved	mg/L	0.000088	0.000147	0.100	0.104	0.103	0.104	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10112	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10115	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.205	0.203	0.203	0.170 to 0.230	102	70.0 to 130	0.980	20.0
BC10112	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.201	0.193	0.201	0.170 to 0.230	100	70.0 to 130	4.06	20.0
BC10115	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	6.72	6.76	5.17	4.25 to 5.75	101	70.0 to 130	0.593	20.0
BC10112	Magnesium, Total	mg/L	0.00638	0.0462	5.00	11.8	11.6	5.20	4.25 to 5.75	102	70.0 to 130	1.71	20.0
BC10115	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.250	0.252	0.102	0.0850 to 0.115	99.0	70.0 to 130	0.797	20.0
BC10112	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.420	0.426	0.103	0.0850 to 0.115	104	70.0 to 130	1.42	20.0
BC10112	Mercury, Total by CVAA	mg/L	0.000122	0.000500	0.004	0.00317	0.00332	0.00405	0.00340 to 0.00460	79.2	70.0 to 130	4.62	20.0
BC10115	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.102	0.102	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10112	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0983	0.0974	0.0973	0.0850 to 0.115	97.8	70.0 to 130	0.920	20.0
BC10115	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.6	11.8	9.74	8.50 to 11.5	95.9	70.0 to 130	1.71	20.0
BC10112	Potassium, Total	mg/L	-0.0105	0.367	10.0	12.6	12.6	10.2	8.50 to 11.5	101	70.0 to 130	0.00	20.0
BC10115	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.103	0.103	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC10112	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10115	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	7.66	7.65	1.01	0.850 to 1.15	94.0	70.0 to 130	0.131	20.0
BC10112	Silicon, Total	mg/L	0.000146	0.0440	1.00	10.5	10.4	1.02	0.850 to 1.15	113	70.0 to 130	0.957	20.0
BC10115	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	62.8	62.2	5.08	4.25 to 5.75	138	70.0 to 130	0.960	20.0
BC10112	Sodium, Total	mg/L	0.0212	0.0660	5.00	84.7	84.8	5.05	4.25 to 5.75	86.0	70.0 to 130	0.118	20.0
BC10112	Sulfate	mg/L	-0.192	2.0	160	251	253	18.8	18.0 to 22.0	91.2	80.0 to 120	0.794	20.0
BC10115	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.101	0.101	0.102	0.0850 to 0.115	101	70.0 to 130	0.00	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/24/22 10:33

Delivery Date: 5/25/22 14:57

Customer ID:

Description: Barry Ash Pond - MW-24H

Laboratory ID Number: BC09998

•				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10112	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.104	0.103	0.103	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10001	Total Organic Carbon	mg/L	0.234	1.00	10.0	10.3	10.2	9.74		103	80.0 to 120	0.976	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 10:33

Customer ID:

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-24H

Laboratory ID Number: BC09998

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10005	Alkalinity, Total as CaCO3	mg/L					327	51.3	45.0 to 55.0			8.49	10.0
BC10001	Nitrogen, Nitrate/Nitrite	mg/L as N	0.07	0.200	2.00	2.18	0.074	2.04	1.80 to 2.20	109	90.0 to 110	0.00	15.0
BC09999	Solids, Dissolved	mg/L	1.00	25.0			468	49.0	40.0 to 60.0			0.858	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-1Location Code:WMWBARAPCollected:5/24/22 12:58

Customer ID:

Submittal Date: 5/25/22 14:57

Laboratory ID Number: BC09999				Submit	tal Date:	5/25/22 14:5	7	
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anai	lyst: RDA		Preparat	ion Method:	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 11:23	1.015	2.08	mg/L	0.030000	0.1015	
* Calcium, Total	5/31/22 10:50	6/2/22 12:03	50.75	43.9	mg/L	3.50175	20.3	
* Iron, Total	5/31/22 10:50	6/2/22 12:03	50.75	155	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 11:23	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 11:23	1.015	13.1	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 11:23	3 1	23.3	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 11:23	1.015	10.9	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 11:23	1.015	24.4	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Anai	lyst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 12:08	1.015	2.07	mg/L	0.030000	0.1015	
* Calcium, Dissolved	5/27/22 09:45	6/1/22 13:10	50.75	44.3	mg/L	3.50175	20.3	
* Iron, Dissolved	5/27/22 09:45	6/1/22 13:10	50.75	150	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 12:08	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 12:08	1.015	13.0	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 12:08	3 1	23.1	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 12:08	1.015	10.8	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 12:08	1.015	24.2	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Anai	lyst: DLJ		Preparat	ion Method: I	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 18:31	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 18:31	1.015	0.0257	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 18:31	1.015	0.0767	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 18:31	1.015	0.343	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 18:31	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 18:31	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 18:31	1.015	0.00238	mg/L	0.000203	0.001015	
* Cobalt, Total	6/1/22 11:30	6/1/22 18:31	1.015	0.000914	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 18:31	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 18:31	1.015	0.946	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 18:31	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/1/22 11:30	6/1/22 18:31	1.015	2.25	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-1Location Code:WMWBARAPCollected:5/24/22 12:58

Customer ID:

Submittal Date: 5/25/22 14:57

Laboratory ID Number: BC09999

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 18:31		1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 18:31		1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 17:5	51	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 17:5	51	1.015	0.00828	mg/L	0.006090	0.01015	J
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 17:5	51	1.015	0.0779	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 17:5	51	1.015	0.328	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 17:5	51	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 17:5	51	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 17:5	51	1.015	0.00250	mg/L	0.000203	0.001015	
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 17:5	51	1.015	0.00109	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 17:5	51	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 17:5	51	1.015	0.966	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 17:5	51	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Dissolved	5/31/22 14:15	5/31/22 17:5	51	1.015	2.20	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 17:5	51	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 17:5	51	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 10:25	;	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: CES							
* Nitrogen, Nitrate/Nitrite	5/26/22 14:53	5/26/22 14:5	3	1	0.331	mg/L as N	0.20	0.3	
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/6/22 13:15	6/6/22 15:32	2	1	371	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/25/22 16:30	5/31/22 13:5	58	1	464	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32		1	371	mg/L			
Carbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32	<u>, </u>	1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		yst: ELH							
* Total Organic Carbon	6/1/22 02:28	6/1/22 02:28	ł	1	15.6	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-1

Location Code:

WMWBARAP 5/24/22 12:58

Collected:

Customer ID: Submittal Date:

5/25/22 14:57

Laboratory ID Number: BC09999

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anal	yst: CES							
* Chloride	5/31/22 15:06	5/31/22 15:0	06	3	27.6	mg/L	1.50	3	
Analytical Method: SM4500F G 2017	Anal	yst: JCC							
* Fluoride	6/8/22 12:09	6/8/22 12:09	9	1	0.0801	mg/L	0.06	0.125	J
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC							
* Sulfate	6/7/22 14:05	6/7/22 14:05	5	1	8.45	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	yst: TJD							
Conductivity	5/24/22 12:55	5/24/22 12:5	55		758.26	uS/cm			FA
рН	5/24/22 12:55	5/24/22 12:5	55		5.44	SU			FA
Temperature	5/24/22 12:55	5/24/22 12:5	55		21.65	С			FA
Turbidity	5/24/22 12:55	5/24/22 12:5	55		2.83	NTU			FA
Sulfide	5/24/22 12:55	5/24/22 12:5	55		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP Sample Date:

Customer ID:

5/24/22 12:58

Delivery Date:

5/25/22 14:57

Description: Barry Ash Pond - MW-1

Laboratory ID Number: BC09999

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10115	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.104	0.104	0.0988	0.0850 to 0.115	104	70.0 to 130	0.00	20.0
BC10112	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.320	0.329	0.109	0.0850 to 0.115	125	70.0 to 130	2.77	20.0
3C10115	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.0989	0.0976	0.0948	0.0850 to 0.115	98.9	70.0 to 130	1.32	20.0
BC10112	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.100	0.0991	0.0923	0.0850 to 0.115	100	70.0 to 130	0.904	20.0
3C10115	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.103	0.104	0.103	0.0850 to 0.115	102	70.0 to 130	0.966	20.0
BC10112	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.122	0.121	0.101	0.0850 to 0.115	104	70.0 to 130	0.823	20.0
BC10115	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.163	0.160	0.0990	0.0850 to 0.115	104	70.0 to 130	1.86	20.0
BC10112	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.172	0.171	0.0996	0.0850 to 0.115	103	70.0 to 130	0.583	20.0
BC10115	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.103	0.104	0.101	0.0850 to 0.115	103	70.0 to 130	0.966	20.0
BC10112	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.103	0.105	0.100	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC10115	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.01	1.02	1.02	0.850 to 1.15	101	70.0 to 130	0.985	20.0
BC10112	Boron, Total	mg/L	0.000059	0.0650	1.00	1.12	1.08	1.03	0.850 to 1.15	106	70.0 to 130	3.64	20.0
BC10115	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.101	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10112	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0993	0.0990	0.0989	0.0850 to 0.115	99.3	70.0 to 130	0.303	20.0
BC10115	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	6.58	6.68	5.03	4.25 to 5.75	95.8	70.0 to 130	1.51	20.0
BC10112	Calcium, Total	mg/L	0.00326	0.152	5.00	16.4	16.3	4.95	4.25 to 5.75	100	70.0 to 130	0.612	20.0
BC10112	Chloride	mg/L	-0.0683	1.00	100	142	153	9.80	9.00 to 11.0	96.7	80.0 to 120	7.46	20.0
BC10115	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0994	0.101	0.0999	0.0850 to 0.115	99.1	70.0 to 130	1.60	20.0
BC10112	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.105	0.105	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10115	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.118	0.119	0.103	0.0850 to 0.115	104	70.0 to 130	0.844	20.0
BC10112	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.103	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10112	Fluoride	mg/L	-0.0308	0.125	2.50	2.75	2.76	2.56	2.25 to 2.75	107	80.0 to 120	0.363	20.0
BC10115	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	4.02	4.04	0.201	0.170 to 0.230	60.0	70.0 to 130	0.496	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 12:58

Customer ID:

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-1

Laboratory ID Number: BC09999

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10112	Iron, Total	mg/L	0.00011	0.0176	0.2	35.5	35.6	0.200	0.170 to 0.230	100	70.0 to 130	0.281	20.0
BC10115	Lead, Dissolved	mg/L	0.000088	0.000147	0.100	0.104	0.103	0.104	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10112	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10115	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.205	0.203	0.203	0.170 to 0.230	102	70.0 to 130	0.980	20.0
BC10112	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.201	0.193	0.201	0.170 to 0.230	100	70.0 to 130	4.06	20.0
BC10115	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	6.72	6.76	5.17	4.25 to 5.75	101	70.0 to 130	0.593	20.0
BC10112	Magnesium, Total	mg/L	0.00638	0.0462	5.00	11.8	11.6	5.20	4.25 to 5.75	102	70.0 to 130	1.71	20.0
BC10115	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.250	0.252	0.102	0.0850 to 0.115	99.0	70.0 to 130	0.797	20.0
BC10112	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.420	0.426	0.103	0.0850 to 0.115	104	70.0 to 130	1.42	20.0
BC10112	Mercury, Total by CVAA	mg/L	0.000122	0.000500	0.004	0.00317	0.00332	0.00405	0.00340 to 0.00460	79.2	70.0 to 130	4.62	20.0
BC10115	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.102	0.102	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10112	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0983	0.0974	0.0973	0.0850 to 0.115	97.8	70.0 to 130	0.920	20.0
BC10115	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.6	11.8	9.74	8.50 to 11.5	95.9	70.0 to 130	1.71	20.0
BC10112	Potassium, Total	mg/L	-0.0105	0.367	10.0	12.6	12.6	10.2	8.50 to 11.5	101	70.0 to 130	0.00	20.0
BC10115	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.103	0.103	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC10112	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10115	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	7.66	7.65	1.01	0.850 to 1.15	94.0	70.0 to 130	0.131	20.0
BC10112	Silicon, Total	mg/L	0.000146	0.0440	1.00	10.5	10.4	1.02	0.850 to 1.15	113	70.0 to 130	0.957	20.0
BC10115	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	62.8	62.2	5.08	4.25 to 5.75	138	70.0 to 130	0.960	20.0
BC10112	Sodium, Total	mg/L	0.0212	0.0660	5.00	84.7	84.8	5.05	4.25 to 5.75	86.0	70.0 to 130	0.118	20.0
BC10112	Sulfate	mg/L	-0.192	2.0	160	251	253	18.8	18.0 to 22.0	91.2	80.0 to 120	0.794	20.0
BC10115	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.101	0.101	0.102	0.0850 to 0.115	101	70.0 to 130	0.00	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 12:58

Customer ID:

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-1

Laboratory ID Number: BC09999

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10112	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.104	0.103	0.103	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10001	Total Organic Carbon	mg/L	0.234	1.00	10.0	10.3	10.2	9.74		103	80.0 to 120	0.976	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 12:58

Customer ID:

Delivery Date:

5/25/22 14:57

Description: Barry Ash Pond - MW-1

Laboratory ID Number: BC09999

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10001	Alkalinity, Total as CaCO3	mg/L					12.4	53.2	45.0 to 55.0			3.28	10.0
BC10001	Nitrogen, Nitrate/Nitrite	mg/L as N	0.07	0.200	2.00	2.18	0.074	2.04	1.80 to 2.20	109	90.0 to 110	0.00	15.0
BC09999	Solids, Dissolved	mg/L	1.00	25.0			468	49.0	40.0 to 60.0			0.858	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-1VLocation Code:WMWBARAPCollected:5/24/22 15:15

Customer ID:

Submittal Date: 5/25/22 14:57

Laboratory ID Number: BC10000

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	on Method:	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 11:26	1.015	0.0333	mg/L	0.030000	0.1015	J
* Calcium, Total	5/31/22 10:50	6/2/22 11:26	1.015	3.55	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 11:26	1.015	0.646	mg/L	0.008120	0.0406	
* Lithium, Total	5/31/22 10:50	6/2/22 11:26	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 11:26	1.015	2.25	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 11:26	1	15.2	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 11:26	1.015	7.08	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 12:07	50.75	65.4	mg/L	1.5225	20.3	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 12:11	1.015	0.0337	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	5/27/22 09:45	6/1/22 12:11	1.015	3.65	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 12:11	1.015	0.659	mg/L	0.008120	0.0406	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 12:11	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 12:11	1.015	2.26	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 12:11	1	15.2	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 12:11	1.015	7.08	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 13:13	50.75	65.8	mg/L	1.5225	20.3	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 18:35	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 18:35	1.015	0.0214	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 18:35	1.015	0.000793	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 18:35	1.015	0.0863	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 18:35	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 18:35	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 18:35	1.015	0.000381	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 18:35	1.015	0.00765	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 18:35	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 18:35		0.178	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 18:35		0.000108	mg/L	0.000102	0.000203	J
* Potassium, Total	6/1/22 11:30	6/1/22 18:35		2.47	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-1V

Location Code:

WMWBARAP 5/24/22 15:15

Collected: Customer ID:

Submittal Date:

5/25/22 14:57

Laboratory ID Number: BC10000

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 18:3	5	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 18:3	5	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5 5/31/22 17:	54	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5 5/31/22 17:	54	1.015	0.0123	mg/L	0.006090	0.01015	
* Arsenic, Dissolved	5/31/22 14:15	5 5/31/22 17:	54	1.015	0.000696	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5 5/31/22 17:	54	1.015	0.0886	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5 5/31/22 17:	54	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5 5/31/22 17:	54	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5 5/31/22 17:	54	1.015	0.000384	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5 5/31/22 17:	54	1.015	0.00779	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5 5/31/22 17:	54	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5 5/31/22 17:	54	1.015	0.178	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5 5/31/22 17:	54	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Dissolved	5/31/22 14:15	5 5/31/22 17:	54	1.015	2.37	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5 5/31/22 17:	54	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5 5/31/22 17:	54	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	lyst: CRB							
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 10:2	7	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Ana	lyst: CES							
* Nitrogen, Nitrate/Nitrite	5/26/22 14:54	5/26/22 14:	54	1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Ana	lyst: ALH							
Alkalinity, Total as CaCO3	6/6/22 13:15	6/6/22 15:3	2	1	21.8	mg/L		0.1	
Analytical Method: SM 2540C	Ana	lyst: JS							
* Solids, Dissolved	5/27/22 11:00	6/2/22 15:1	5	1	176	mg/L		25	
Analytical Method: SM 4500CO2 D	Ana	lyst: ALH							
Bicarbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:3	2	1	21.8	mg/L			
Carbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:3		1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		lyst: ELH				•			
* Total Organic Carbon	6/1/22 02:47	6/1/22 02:4	7	1	1.04	mg/L	1.00	2	J
	0/1/22 02.47	0/1/22 02.4	•		1.04	9/=		_	•

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-1V

Location Code:

WMWBARAP

Collected:

Customer ID: Submittal Date: 5/24/22 15:15 5/25/22 14:57

Laboratory ID Number: BC10000

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anal	yst: CES							
* Chloride	5/31/22 15:07	5/31/22 15:0)7	10	95.1	mg/L	5.00	10	
Analytical Method: SM4500F G 2017	Anal	yst: JCC							
* Fluoride	6/8/22 12:11	6/8/22 12:11		1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC							
* Sulfate	6/7/22 14:07	6/7/22 14:07	7	1	21.1	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	yst: TJD							
Conductivity	5/24/22 15:12	5/24/22 15:	2		375.09	uS/cm			FA
рН	5/24/22 15:12	5/24/22 15:	2		4.90	SU			FA
Temperature	5/24/22 15:12	5/24/22 15:	2		22.07	С			FA
Turbidity	5/24/22 15:12	5/24/22 15:	2		0.51	NTU			FA
Sulfide	5/24/22 15:12	5/24/22 15:1	2		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/24/22 15:15

Customer ID: Delivery Date:

5/25/22 14:57

Description: Barry Ash Pond - MW-1V

Laboratory ID Number: BC10000

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10115	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.104	0.104	0.0988	0.0850 to 0.115	104	70.0 to 130	0.00	20.0
BC10112	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.320	0.329	0.109	0.0850 to 0.115	125	70.0 to 130	2.77	20.0
BC10115	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.0989	0.0976	0.0948	0.0850 to 0.115	98.9	70.0 to 130	1.32	20.0
BC10112	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.100	0.0991	0.0923	0.0850 to 0.115	100	70.0 to 130	0.904	20.0
BC10115	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.103	0.104	0.103	0.0850 to 0.115	102	70.0 to 130	0.966	20.0
BC10112	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.122	0.121	0.101	0.0850 to 0.115	104	70.0 to 130	0.823	20.0
BC10115	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.163	0.160	0.0990	0.0850 to 0.115	104	70.0 to 130	1.86	20.0
BC10112	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.172	0.171	0.0996	0.0850 to 0.115	103	70.0 to 130	0.583	20.0
BC10115	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.103	0.104	0.101	0.0850 to 0.115	103	70.0 to 130	0.966	20.0
BC10112	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.103	0.105	0.100	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC10115	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.01	1.02	1.02	0.850 to 1.15	101	70.0 to 130	0.985	20.0
BC10112	Boron, Total	mg/L	0.000059	0.0650	1.00	1.12	1.08	1.03	0.850 to 1.15	106	70.0 to 130	3.64	20.0
BC10115	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.101	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10112	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0993	0.0990	0.0989	0.0850 to 0.115	99.3	70.0 to 130	0.303	20.0
BC10115	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	6.58	6.68	5.03	4.25 to 5.75	95.8	70.0 to 130	1.51	20.0
BC10112	Calcium, Total	mg/L	0.00326	0.152	5.00	16.4	16.3	4.95	4.25 to 5.75	100	70.0 to 130	0.612	20.0
BC10112	Chloride	mg/L	-0.0683	1.00	100	142	153	9.80	9.00 to 11.0	96.7	80.0 to 120	7.46	20.0
BC10115	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0994	0.101	0.0999	0.0850 to 0.115	99.1	70.0 to 130	1.60	20.0
BC10112	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.105	0.105	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10115	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.118	0.119	0.103	0.0850 to 0.115	104	70.0 to 130	0.844	20.0
BC10112	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.103	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10112	Fluoride	mg/L	-0.0308	0.125	2.50	2.75	2.76	2.56	2.25 to 2.75	107	80.0 to 120	0.363	20.0
BC10115	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	4.02	4.04	0.201	0.170 to 0.230	60.0	70.0 to 130	0.496	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 15:15

Customer ID:

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-1V

Laboratory ID Number: BC10000

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10112	Iron, Total	mg/L	0.00011	0.0176	0.2	35.5	35.6	0.200	0.170 to 0.230	100	70.0 to 130	0.281	20.0
BC10115	Lead, Dissolved	mg/L	0.000088	0.000147	0.100	0.104	0.103	0.104	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10112	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10115	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.205	0.203	0.203	0.170 to 0.230	102	70.0 to 130	0.980	20.0
BC10112	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.201	0.193	0.201	0.170 to 0.230	100	70.0 to 130	4.06	20.0
BC10115	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	6.72	6.76	5.17	4.25 to 5.75	101	70.0 to 130	0.593	20.0
BC10112	Magnesium, Total	mg/L	0.00638	0.0462	5.00	11.8	11.6	5.20	4.25 to 5.75	102	70.0 to 130	1.71	20.0
BC10115	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.250	0.252	0.102	0.0850 to 0.115	99.0	70.0 to 130	0.797	20.0
BC10112	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.420	0.426	0.103	0.0850 to 0.115	104	70.0 to 130	1.42	20.0
BC10112	Mercury, Total by CVAA	mg/L	0.000122	0.000500	0.004	0.00317	0.00332	0.00405	0.00340 to 0.00460	79.2	70.0 to 130	4.62	20.0
BC10115	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.102	0.102	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10112	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0983	0.0974	0.0973	0.0850 to 0.115	97.8	70.0 to 130	0.920	20.0
BC10115	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.6	11.8	9.74	8.50 to 11.5	95.9	70.0 to 130	1.71	20.0
BC10112	Potassium, Total	mg/L	-0.0105	0.367	10.0	12.6	12.6	10.2	8.50 to 11.5	101	70.0 to 130	0.00	20.0
BC10115	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.103	0.103	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC10112	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10115	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	7.66	7.65	1.01	0.850 to 1.15	94.0	70.0 to 130	0.131	20.0
BC10112	Silicon, Total	mg/L	0.000146	0.0440	1.00	10.5	10.4	1.02	0.850 to 1.15	113	70.0 to 130	0.957	20.0
BC10115	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	62.8	62.2	5.08	4.25 to 5.75	138	70.0 to 130	0.960	20.0
BC10112	Sodium, Total	mg/L	0.0212	0.0660	5.00	84.7	84.8	5.05	4.25 to 5.75	86.0	70.0 to 130	0.118	20.0
BC10112	Sulfate	mg/L	-0.192	2.0	160	251	253	18.8	18.0 to 22.0	91.2	80.0 to 120	0.794	20.0
BC10115	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.101	0.101	0.102	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10112 BC10115 BC10112 BC10112	Silicon, Total Sodium, Dissolved Sodium, Total Sulfate	mg/L mg/L mg/L mg/L	0.000146 0.0124 0.0212 -0.192	0.0440 0.0660 0.0660 2.0	1.00 5.00 5.00 160	10.5 62.8 84.7 251	10.4 62.2 84.8 253	1.02 5.08 5.05 18.8	0.850 to 1.15 4.25 to 5.75 4.25 to 5.75 18.0 to 22.0	113 138 86.0 91.2	70.0 to 130 70.0 to 130 70.0 to 130 80.0 to 120	0.957 0.960 0.118 0.794	2 2 2

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 15:15

Customer ID:

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-1V

Laboratory ID Number: BC10000

•				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10112	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.104	0.103	0.103	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10001	Total Organic Carbon	mg/L	0.234	1.00	10.0	10.3	10.2	9.74		103	80.0 to 120	0.976	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

te: 5/24/22 15:15

Customer ID:

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-1V

Laboratory ID Number: BC10000

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10001	Alkalinity, Total as CaCO3	mg/L					12.4	53.2	45.0 to 55.0			3.28	10.0
BC10001	Nitrogen, Nitrate/Nitrite	mg/L as N	0.07	0.200	2.00	2.18	0.074	2.04	1.80 to 2.20	109	90.0 to 110	0.00	15.0
BC09982	Solids, Dissolved	mg/L	0.0000	25.0			271	53.0	40.0 to 60.0			5.30	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-2

Location Code: Collected: WMWBARAP 5/24/22 16:58

Customer ID:

Submittal Date:

ate: 5/25/22 14:57

Laboratory ID Number: BC10001				Submi	ttal Date:	5/25/22 14:5	1	
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Prepara	ntion Method:	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 11:29	1.015	Not Detected	d mg/L	0.030000	0.1015	U
* Calcium, Total	5/31/22 10:50	6/2/22 11:29	1.015	2.45	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 11:29	1.015	0.305	mg/L	0.008120	0.0406	
* Lithium, Total	5/31/22 10:50	6/2/22 11:29	1.015	Not Detected	d mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 11:29	1.015	1.62	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 11:29	1	16.4	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 11:29	1.015	7.65	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 11:29	1.015	4.38	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 12:14	1.015	Not Detected	d mg/L	0.030000	0.1015	U
* Calcium, Dissolved	5/27/22 09:45	6/1/22 12:14	1.015	2.45	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 12:14	1.015	0.303	mg/L	0.008120	0.0406	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 12:14	1.015	Not Detected	d mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 12:14	1.015	1.65	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 12:14	1	16.3	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 12:14	1.015	7.60	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 12:14	1.015	4.58	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Prepara	tion Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 18:38	1.015	Not Detected	d mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 18:38	1.015	0.0125	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 18:38	1.015	0.00115	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 18:38	1.015	0.0248	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 18:38	1.015	Not Detected	d mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 18:38	1.015	Not Detected	d mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 18:38	1.015	Not Detected	d mg/L	0.000203	0.001015	U
* Cobalt, Total	6/1/22 11:30	6/1/22 18:38	1.015	0.00582	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 18:38		Not Detecte	d mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 18:38		0.272	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 18:38		Not Detecte	•	0.000102	0.000203	U
* Potassium, Total	6/1/22 11:30	6/1/22 18:38		0.969	mg/L	0.169505	0.5075	
	0/1/22 11.30	3, 1,22 10.00	1.013	0.000	···ə/ =	000000	2.00.0	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-2

Location Code: WMWBARAP **Collected:** 5/24/22 16:58

Customer ID:

Submittal Date: 5/25/22 14:57

Laboratory ID Number: BC10001					Submitt	al Date:	5/25/22 14:5	7	
Name	Prepared	Analyzed	Vio Spec D)F	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 18:38	3 1.0	015	Not Detected	mg/L	0.000508	0.001015	U
Thallium, Total	6/1/22 11:30	6/1/22 18:38	3 1.0	015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ							
Antimony, Dissolved	5/31/22 14:15	5/31/22 17:5	58 1.0	015	Not Detected	mg/L	0.000508	0.001015	U
Aluminum, Dissolved	5/31/22 14:15	5/31/22 17:5	58 1.0	015	Not Detected	mg/L	0.006090	0.01015	U
Arsenic, Dissolved	5/31/22 14:15	5/31/22 17:5	58 1.0	015	0.00114	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 17:5	58 1.0	015	0.0251	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 17:5	58 1.0	015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 17:5	58 1.0	015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 17:5	58 1.0	015	0.000233	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 17:5	58 1.0	015	0.00621	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 17:5	58 1.0	015	Not Detected	mg/L	0.000068	0.000203	U
Manganese, Dissolved	5/31/22 14:15	5/31/22 17:5	58 1.0	015	0.277	mg/L	0.000152	0.000203	
Molybdenum, Dissolved	5/31/22 14:15	5/31/22 17:5	58 1.0	015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Dissolved	5/31/22 14:15	5/31/22 17:5	58 1.0	015	0.945	mg/L	0.169505	0.5075	
Selenium, Dissolved	5/31/22 14:15	5/31/22 17:5	58 1.0	015	Not Detected	mg/L	0.000508	0.001015	U
Thallium, Dissolved	5/31/22 14:15	5/31/22 17:5	58 1.0	015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	lyst: CRB							
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 10:30) 1		Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Ana	lyst: CES							
* Nitrogen, Nitrate/Nitrite	5/26/22 14:54	5/26/22 14:5	54 1		Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Ana	lyst: ALH							
Alkalinity, Total as CaCO3	6/6/22 13:15	6/6/22 15:32	2 1		12.0	mg/L		0.1	
Analytical Method: SM 2540C	Ana	lyst: JS							
* Solids, Dissolved	5/27/22 11:00	6/2/22 15:15	5 1		40.7	mg/L		25	
Analytical Method: SM 4500CO2 D	Ana	lyst: ALH							
Bicarbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32	2 1		12.0	mg/L			
Carbonate Alkalinity, (calc.)	6/6/22 13:15	6/6/22 15:32			Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		lyst: ELH				-			
* Total Organic Carbon	6/1/22 03:09	6/1/22 03:09	9 1		Not Detected	ma/L	1.00	2	U
3	0/1/22 03.09	5/ 1/22 00.00	'		. NOT DOTOGLOG	······································		_	-

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-2

Location Code:

WMWBARAP

Collected:

Customer ID:

5/24/22 16:58

Submittal Date:

5/25/22 14:57

				Submit	ai Date.	3/23/22 14	.37	
Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Anal	yst: CES							
5/31/22 14:54	5/31/22 14:5	54	1	9.21	mg/L	0.50	1	
Anal	yst: JCC							
6/8/22 12:12	6/8/22 12:12	2	1	Not Detected	mg/L	0.06	0.125	U
Anal	yst: JCC							
6/7/22 14:08	6/7/22 14:08	3	1	0.615	mg/L	0.6	2	J
Anal	yst: TJD							
5/24/22 16:55	5/24/22 16:5	55		53.16	uS/cm			FA
5/24/22 16:55	5/24/22 16:5	55		4.78	SU			FA
5/24/22 16:55	5/24/22 16:5	55		22.12	С			FA
5/24/22 16:55	5/24/22 16:5	55		0.78	NTU			FA
5/24/22 16:55	5/24/22 16:5	55		0	mg/L			FA
	Anal 5/31/22 14:54 Anal 6/8/22 12:12 Anal 6/7/22 14:08 Anal 5/24/22 16:55 5/24/22 16:55 5/24/22 16:55	Analyst: CES 5/31/22 14:54 5/31/22 14:5 Analyst: JCC 6/8/22 12:12 6/8/22 12:12 Analyst: JCC 6/7/22 14:08 6/7/22 14:08 Analyst: TJD 5/24/22 16:55 5/24/22 16:5 5/24/22 16:55 5/24/22 16:5 5/24/22 16:55 5/24/22 16:5 5/24/22 16:55 5/24/22 16:5	Analyst: CES 5/31/22 14:54	Analyst: CES 5/31/22 14:54 5/31/22 14:54 1 Analyst: JCC 6/8/22 12:12 6/8/22 12:12 1 Analyst: JCC 6/7/22 14:08 6/7/22 14:08 1 Analyst: TJD 5/24/22 16:55 5/24/22 16:55 5/24/22 16:55 5/24/22 16:55 5/24/22 16:55 5/24/22 16:55 5/24/22 16:55 5/24/22 16:55	Prepared Analyzed Vio Spec DF Results Analyst: CES 5/31/22 14:54 5/31/22 14:54 1 9.21 Analyst: JCC 6/8/22 12:12 1 Not Detected Analyst: JCC 6/7/22 14:08 6/7/22 14:08 1 0.615 Analyst: TJD 5/24/22 16:55 5/24/22 16:55 53.16 5/24/22 16:55 5/24/22 16:55 4.78 5/24/22 16:55 5/24/22 16:55 22.12 5/24/22 16:55 5/24/22 16:55 0.78	Analyst: CES 5/31/22 14:54 5/31/22 14:54 1 9.21 mg/L Analyst: JCC 6/8/22 12:12 6/8/22 12:12 1 Not Detected mg/L Analyst: JCC 6/7/22 14:08 6/7/22 14:08 1 0.615 mg/L Analyst: TJD 5/24/22 16:55 5/24/22 16:55 5.24/22 16:55 4.78 SU 5/24/22 16:55 5/24/22 16:55 22.12 C 5/24/22 16:55 5/24/22 16:55 0.78 NTU	Prepared Analyzed Vio Spec DF Results Units MDL Analyst: CES 5/31/22 14:54 5/31/22 14:54 1 9.21 mg/L 0.50 Analyst: JCC 6/8/22 12:12 1 Not Detected mg/L 0.06 Analyst: JCC 6/7/22 14:08 6/7/22 14:08 1 0.615 mg/L 0.6 Analyst: TJD 5/24/22 16:55 5/24/22 16:55 53.16 uS/cm 5/24/22 16:55 5/24/22 16:55 4.78 SU 5/24/22 16:55 5/24/22 16:55 22.12 C 5/24/22 16:55 5/24/22 16:55 0.78 NTU	Prepared Analyzed Vio Spec DF Results Units MDL RL Analyst: CES 5/31/22 14:54 5/31/22 14:54 1 9.21 mg/L 0.50 1 Analyst: JCC 6/8/22 12:12 1 Not Detected mg/L 0.06 0.125 Analyst: JCC 6/7/22 14:08 6/7/22 14:08 1 0.615 mg/L 0.6 2 Analyst: TJD 5/24/22 16:55 5/24/22 16:55 53.16 uS/cm 5/24/22 16:55 5/24/22 16:55 4.78 SU 5/24/22 16:55 5/24/22 16:55 22.12 C 5/24/22 16:55 5/24/22 16:55 0.78 NTU

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 16:58

Customer ID:

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-2

Laboratory ID Number: BC10001

				MB					Standard		Rec		Pred
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mi
BC10115	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.104	0.104	0.0988	0.0850 to 0.115	104	70.0 to 130	0.00	20.0
BC10112	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.320	0.329	0.109	0.0850 to 0.115	125	70.0 to 130	2.77	20.0
BC10115	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.0989	0.0976	0.0948	0.0850 to 0.115	98.9	70.0 to 130	1.32	20.0
BC10112	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.100	0.0991	0.0923	0.0850 to 0.115	100	70.0 to 130	0.904	20.0
BC10115	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.103	0.104	0.103	0.0850 to 0.115	102	70.0 to 130	0.966	20.0
BC10112	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.122	0.121	0.101	0.0850 to 0.115	104	70.0 to 130	0.823	20.0
BC10115	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.163	0.160	0.0990	0.0850 to 0.115	104	70.0 to 130	1.86	20.0
BC10112	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.172	0.171	0.0996	0.0850 to 0.115	103	70.0 to 130	0.583	20.0
BC10115	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.103	0.104	0.101	0.0850 to 0.115	103	70.0 to 130	0.966	20.0
BC10112	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.103	0.105	0.100	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
3C10115	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.01	1.02	1.02	0.850 to 1.15	101	70.0 to 130	0.985	20.0
BC10112	Boron, Total	mg/L	0.000059	0.0650	1.00	1.12	1.08	1.03	0.850 to 1.15	106	70.0 to 130	3.64	20.0
BC10115	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.101	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10112	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0993	0.0990	0.0989	0.0850 to 0.115	99.3	70.0 to 130	0.303	20.0
BC10115	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	6.58	6.68	5.03	4.25 to 5.75	95.8	70.0 to 130	1.51	20.0
BC10112	Calcium, Total	mg/L	0.00326	0.152	5.00	16.4	16.3	4.95	4.25 to 5.75	100	70.0 to 130	0.612	20.0
BC10112	Chloride	mg/L	-0.0683	1.00	100	142	153	9.80	9.00 to 11.0	96.7	80.0 to 120	7.46	20.0
BC10115	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0994	0.101	0.0999	0.0850 to 0.115	99.1	70.0 to 130	1.60	20.0
BC10112	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.105	0.105	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10115	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.118	0.119	0.103	0.0850 to 0.115	104	70.0 to 130	0.844	20.0
3C10112	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.103	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
3C10112	Fluoride	mg/L	-0.0308	0.125	2.50	2.75	2.76	2.56	2.25 to 2.75	107	80.0 to 120	0.363	20.0
BC10115	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	4.02	4.04	0.201	0.170 to 0.230	60.0	70.0 to 130	0.496	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 16:58

Customer ID:

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-2

Laboratory ID Number: BC10001

			MB					Standard		Rec		Prec
Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
Iron, Total	mg/L	0.00011	0.0176	0.2	35.5	35.6	0.200	0.170 to 0.230	100	70.0 to 130	0.281	20.0
Lead, Dissolved	mg/L	0.0000088	0.000147	0.100	0.104	0.103	0.104	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.205	0.203	0.203	0.170 to 0.230	102	70.0 to 130	0.980	20.0
Lithium, Total	mg/L	0.00014	0.0154	0.200	0.201	0.193	0.201	0.170 to 0.230	100	70.0 to 130	4.06	20.0
Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	6.72	6.76	5.17	4.25 to 5.75	101	70.0 to 130	0.593	20.0
Magnesium, Total	mg/L	0.00638	0.0462	5.00	11.8	11.6	5.20	4.25 to 5.75	102	70.0 to 130	1.71	20.0
Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.250	0.252	0.102	0.0850 to 0.115	99.0	70.0 to 130	0.797	20.0
Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.420	0.426	0.103	0.0850 to 0.115	104	70.0 to 130	1.42	20.0
Mercury, Total by CVAA	mg/L	0.000122	0.000500	0.004	0.00317	0.00332	0.00405	0.00340 to 0.00460	79.2	70.0 to 130	4.62	20.0
Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.102	0.102	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0983	0.0974	0.0973	0.0850 to 0.115	97.8	70.0 to 130	0.920	20.0
Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.6	11.8	9.74	8.50 to 11.5	95.9	70.0 to 130	1.71	20.0
Potassium, Total	mg/L	-0.0105	0.367	10.0	12.6	12.6	10.2	8.50 to 11.5	101	70.0 to 130	0.00	20.0
Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.103	0.103	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
Selenium, Total	mg/L	0.000162	0.00100	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	7.66	7.65	1.01	0.850 to 1.15	94.0	70.0 to 130	0.131	20.0
Silicon, Total	mg/L	0.000146	0.0440	1.00	10.5	10.4	1.02	0.850 to 1.15	113	70.0 to 130	0.957	20.0
Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	62.8	62.2	5.08	4.25 to 5.75	138	70.0 to 130	0.960	20.0
Sodium, Total	mg/L	0.0212	0.0660	5.00	84.7	84.8	5.05	4.25 to 5.75	86.0	70.0 to 130	0.118	20.0
Sulfate	mg/L	-0.192	2.0	160	251	253	18.8	18.0 to 22.0	91.2	80.0 to 120	0.794	20.0
Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.101	0.101	0.102	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
	Iron, Total Lead, Dissolved Lead, Total Lithium, Dissolved Lithium, Total Magnesium, Dissolved Manganese, Dissolved Manganese, Total Mercury, Total by CVAA Molybdenum, Dissolved Molybdenum, Total Potassium, Dissolved Potassium, Total Selenium, Dissolved Selenium, Total Silicon, Dissolved Silicon, Total Sodium, Dissolved Sodium, Total Sodium, Total	Iron, Total mg/L Lead, Dissolved mg/L Lead, Total mg/L Lithium, Dissolved mg/L Lithium, Total mg/L Magnesium, Dissolved mg/L Manganese, Dissolved mg/L Manganese, Total mg/L Mercury, Total by CVAA mg/L Molybdenum, Dissolved mg/L Potassium, Total mg/L Potassium, Total mg/L Selenium, Dissolved mg/L Selenium, Dissolved mg/L Silicon, Dissolved mg/L Sodium, Dissolved mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L	Iron, Total	Iron, Total	Iron, Total mg/L 0.00011 0.0176 0.2	Iron, Total	Iron, Total	Iron, Total	Analysis Units MB Limit Spike MS MSD Standard Limit Iron, Total mg/L 0.00011 0.0176 0.2 35.5 35.6 0.200 0.170 to 0.230 Lead, Dissolved mg/L 0.0000088 0.000147 0.100 0.104 0.103 0.104 0.0850 to 0.115 Lead, Total mg/L 0.0000025 0.000147 0.100 0.102 0.102 0.101 0.0850 to 0.115 Lithium, Dissolved mg/L 0.000048 0.0154 0.200 0.205 0.203 0.203 0.170 to 0.230 Lithium, Total mg/L 0.00014 0.0154 0.200 0.201 0.193 0.201 0.170 to 0.230 Magnesium, Dissolved mg/L 0.00696 0.0462 5.00 6.72 6.76 5.17 4.25 to 5.75 Manganese, Dissolved mg/L 0.0000609 0.0002 0.100 0.250 0.252 0.102 0.0850 to 0.115 Mercury, Total by CVAA mg/L <td< td=""><td>Analysis Units MB Limit Spike MS MSD Standard Limit Recommendation Iron, Total mg/L 0.00011 0.0176 0.2 35.5 35.6 0.200 0.170 to 0.230 100 Lead, Dissolved mg/L 0.0000088 0.000147 0.100 0.102 0.102 0.101 0.0850 to 0.115 104 Lead, Total mg/L 0.0000025 0.000147 0.100 0.102 0.102 0.101 0.0850 to 0.115 102 Lithium, Dissolved mg/L 0.000048 0.0154 0.200 0.201 0.193 0.203 0.170 to 0.230 102 Lithium, Total mg/L 0.00068 0.0162 5.00 6.72 6.76 5.17 4.25 to 5.75 101 Magnesium, Dissolved mg/L 0.000689 0.0062 5.00 11.8 11.6 5.07 4.25 to 5.75 102 Magnesium, Total mg/L 0.0000099 0.0002 0.100 0.250 0.252</td><td>Analysis Units MB Limit Spike MS MSD Standard Limit Rec Limit Iron, Total mg/L 0.00011 0.0176 0.2 35.5 35.6 0.200 0.170 to 0.230 100 70.0 to 130 Lead, Dissolved mg/L 0.0000088 0.000147 0.100 0.102 0.101 0.0850 to 0.115 104 70.0 to 130 Lead, Total mg/L 0.0000025 0.000147 0.100 0.102 0.101 0.0850 to 0.115 102 70.0 to 130 Lithium, Dissolved mg/L 0.000048 0.0154 0.200 0.201 0.193 0.201 0.170 to 0.230 102 70.0 to 130 Lithium, Total mg/L 0.00696 0.0462 5.00 6.72 6.76 5.17 4.25 to 5.75 101 70.0 to 130 Magnesium, Dissolved mg/L 0.00698 0.0462 5.00 6.72 6.76 5.17 4.25 to 5.75 102 70.0 to 130 Magnesium, Total</td><td> Name</td></td<>	Analysis Units MB Limit Spike MS MSD Standard Limit Recommendation Iron, Total mg/L 0.00011 0.0176 0.2 35.5 35.6 0.200 0.170 to 0.230 100 Lead, Dissolved mg/L 0.0000088 0.000147 0.100 0.102 0.102 0.101 0.0850 to 0.115 104 Lead, Total mg/L 0.0000025 0.000147 0.100 0.102 0.102 0.101 0.0850 to 0.115 102 Lithium, Dissolved mg/L 0.000048 0.0154 0.200 0.201 0.193 0.203 0.170 to 0.230 102 Lithium, Total mg/L 0.00068 0.0162 5.00 6.72 6.76 5.17 4.25 to 5.75 101 Magnesium, Dissolved mg/L 0.000689 0.0062 5.00 11.8 11.6 5.07 4.25 to 5.75 102 Magnesium, Total mg/L 0.0000099 0.0002 0.100 0.250 0.252	Analysis Units MB Limit Spike MS MSD Standard Limit Rec Limit Iron, Total mg/L 0.00011 0.0176 0.2 35.5 35.6 0.200 0.170 to 0.230 100 70.0 to 130 Lead, Dissolved mg/L 0.0000088 0.000147 0.100 0.102 0.101 0.0850 to 0.115 104 70.0 to 130 Lead, Total mg/L 0.0000025 0.000147 0.100 0.102 0.101 0.0850 to 0.115 102 70.0 to 130 Lithium, Dissolved mg/L 0.000048 0.0154 0.200 0.201 0.193 0.201 0.170 to 0.230 102 70.0 to 130 Lithium, Total mg/L 0.00696 0.0462 5.00 6.72 6.76 5.17 4.25 to 5.75 101 70.0 to 130 Magnesium, Dissolved mg/L 0.00698 0.0462 5.00 6.72 6.76 5.17 4.25 to 5.75 102 70.0 to 130 Magnesium, Total	Name

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/24/22 16:58

Customer ID:

Delivery Date: 5/25/22 14:57

Description: Barry Ash Pond - MW-2

Laboratory ID Number: BC10001

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10112	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.104	0.103	0.103	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10001	Total Organic Carbon	mg/L	0.234	1.00	10.0	10.3	10.2	9.74		103	80.0 to 120	0.976	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/24/22 16:58

Customer ID:

Delivery Date:

5/25/22 14:57

Description: Barry Ash Pond - MW-2

Laboratory ID Number: BC10001

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10001	Alkalinity, Total as CaCO3	mg/L					12.4	53.2	45.0 to 55.0			3.28	10.0
BC10001	Nitrogen, Nitrate/Nitrite	mg/L as N	0.07	0.200	2.00	2.18	0.074	2.04	1.80 to 2.20	109	90.0 to 110	0.00	15.0
BC10001	Solids, Dissolved	mg/L	0.0000	25.0			40.0	53.0	40.0 to 60.0			1.73	10.0

Laboratory ID Number: BC10111

Certificate Of Analysis

Description: Barry Ash Pond - MW-13V Collected:

Location Code: WMWBARAP 5/25/22 10:52

Customer ID:

Submittal Date: 5/26/22 12:33

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	on Method:	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 11:31	1.015	0.0852	mg/L	0.030000	0.1015	J
* Calcium, Total	5/31/22 10:50	6/2/22 11:31	1.015	12.0	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 12:10	50.75	50.7	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 11:31	1.015	0.0318	mg/L	0.007105	0.01999956	j
* Magnesium, Total	5/31/22 10:50	6/2/22 11:31	1.015	6.72	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 11:31	1	14.5	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 11:31	1.015	6.78	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 12:10	50.75	72.6	mg/L	1.5225	20.3	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 12:17	1.015	0.0867	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	5/27/22 09:45	6/1/22 12:17	1.015	11.9	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 13:17	50.75	49.8	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 12:17	1.015	0.0321	mg/L	0.007105	0.01999956	j
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 12:17	1.015	6.74	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 12:17	' 1	14.6	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 12:17	1.015	6.82	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 13:17	50.75	75.0	mg/L	1.5225	20.3	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 18:42	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 18:42	1.015	0.0133	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 18:42	1.015	0.0102	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 18:42	1.015	0.0888	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 18:42	1.015	Not Detected	mg/L	0.000406	0.001015	U
					_			

MDL's and RL's are adjusted for sample dilution, as applicable

* Cadmium, Total

* Chromium, Total

* Manganese, Total

* Potassium, Total

Molybdenum, Total

* Cobalt, Total

* Lead, Total

Comments: Filtered LCS and MB were not submitted or analyzed with Dissolved Metals.

6/1/22 11:30

6/1/22 11:30

6/1/22 11:30

6/1/22 11:30

6/1/22 11:30

6/1/22 11:30

6/1/22 11:30

6/1/22 18:42

6/1/22 18:42

6/1/22 18:42

6/1/22 18:42

6/1/22 18:42

6/1/22 18:42

6/1/22 18:42

1.015

1.015

1.015

1.015

1.015

1.015

1.015

Not Detected mg/L

Not Detected mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

0.00488

0.00119

0.794

9.48

0.000796

0.000068

0.000203

0.000068

0.000068

0.000152

0.000102

0.169505

0.000203

0.001015

0.000203

0.000203

0.000203

0.000203

0.5075

U

U

Certificate Of Analysis

Description: Barry Ash Pond - MW-13V

Location Code:

WMWBARAP 5/25/22 10:52

Collected: Customer ID:

Submittal Date:

5/26/22 12:33

Laboratory ID Number: BC10111

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 18:42	2 1	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 18:42	2 1	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 18:0)2 1	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 18:0)2 1	1.015	0.00726	mg/L	0.006090	0.01015	J
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 18:0)2 1	1.015	0.0106	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 18:0)2 1	1.015	0.0852	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 18:0)2 1	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 18:0)2 1	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 18:0)2 1	1.015	0.00379	mg/L	0.000203	0.001015	
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 18:0)2 1	1.015	0.00127	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 18:0)2 1	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 18:0)2 1	1.015	0.790	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 18:0)2 1	1.015	0.000703	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 18:0)2 1	1.015	9.09	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 18:0)2 1	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 18:0)2 1	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 10:32	2 1	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: ELH							
* Nitrogen, Nitrate/Nitrite	5/31/22 09:37	5/31/22 09:3	37 1	i	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/8/22 08:59	6/8/22 10:23	3 1	1	174	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/31/22 11:22	6/1/22 14:18	3 1	1	343	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/8/22 08:59	6/8/22 10:23	3 1	I	174	mg/L			
Carbonate Alkalinity, (calc.)	6/8/22 08:59	6/8/22 10:23	3 1	1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B	Anal	yst: ELH							
* Total Organic Carbon	6/7/22 16:30	6/7/22 16:30) 1	1	20.4	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-13V

Location Code:

WMWBARAP

Collected:

Customer ID: Submittal Date: 5/25/22 10:52

5/26/22 12:33

Laboratory ID Number: BC10111								
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anal	lyst: CES						
* Chloride	5/31/22 15:09	5/31/22 15:0	9 10	59.3	mg/L	5.00	10	
Analytical Method: SM4500F G 2017	Anal	lyst: JCC						
* Fluoride	6/8/22 12:13	6/8/22 12:13	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Anal	lyst: JCC						
* Sulfate	6/7/22 14:25	6/7/22 14:25	4	122	mg/L	2.4	8	
Analytical Method: Field Measurements	Anal	lyst: AWG						
Conductivity	5/25/22 10:50	5/25/22 10:5	0	561.68	uS/cm			FA
рН	5/25/22 10:50	5/25/22 10:5	0	6.30	SU			FA
Temperature	5/25/22 10:50	5/25/22 10:5	60	20.80	С			FA
Turbidity	5/25/22 10:50	5/25/22 10:5	60	2.04	NTU			FA
Sulfide	5/25/22 10:50	5/25/22 10:5	60	0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP Sample Date:

5/25/22 10:52

Customer ID:

Delivery Date: 5/26/22 12:33

Description: Barry Ash Pond - MW-13V

Laboratory ID Number: BC10111

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10115	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.104	0.104	0.0988	0.0850 to 0.115	104	70.0 to 130	0.00	20.0
BC10112	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.320	0.329	0.109	0.0850 to 0.115	125	70.0 to 130	2.77	20.0
BC10115	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.0989	0.0976	0.0948	0.0850 to 0.115	98.9	70.0 to 130	1.32	20.0
BC10112	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.100	0.0991	0.0923	0.0850 to 0.115	100	70.0 to 130	0.904	20.0
BC10115	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.103	0.104	0.103	0.0850 to 0.115	102	70.0 to 130	0.966	20.0
BC10112	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.122	0.121	0.101	0.0850 to 0.115	104	70.0 to 130	0.823	20.0
BC10115	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.163	0.160	0.0990	0.0850 to 0.115	104	70.0 to 130	1.86	20.0
BC10112	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.172	0.171	0.0996	0.0850 to 0.115	103	70.0 to 130	0.583	20.0
BC10115	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.103	0.104	0.101	0.0850 to 0.115	103	70.0 to 130	0.966	20.0
BC10112	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.103	0.105	0.100	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC10115	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.01	1.02	1.02	0.850 to 1.15	101	70.0 to 130	0.985	20.0
BC10112	Boron, Total	mg/L	0.000059	0.0650	1.00	1.12	1.08	1.03	0.850 to 1.15	106	70.0 to 130	3.64	20.0
BC10115	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.101	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10112	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0993	0.0990	0.0989	0.0850 to 0.115	99.3	70.0 to 130	0.303	20.0
BC10115	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	6.58	6.68	5.03	4.25 to 5.75	95.8	70.0 to 130	1.51	20.0
BC10112	Calcium, Total	mg/L	0.00326	0.152	5.00	16.4	16.3	4.95	4.25 to 5.75	100	70.0 to 130	0.612	20.0
BC10112	Chloride	mg/L	-0.0683	1.00	100	142	153	9.80	9.00 to 11.0	96.7	80.0 to 120	7.46	20.0
BC10115	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0994	0.101	0.0999	0.0850 to 0.115	99.1	70.0 to 130	1.60	20.0
BC10112	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.105	0.105	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10115	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.118	0.119	0.103	0.0850 to 0.115	104	70.0 to 130	0.844	20.0
BC10112	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.103	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10112	Fluoride	mg/L	-0.0308	0.125	2.50	2.75	2.76	2.56	2.25 to 2.75	107	80.0 to 120	0.363	20.0
BC10115	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	4.02	4.04	0.201	0.170 to 0.230	60.0	70.0 to 130	0.496	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 10:52

Customer ID:

Delivery Date: 5/26/22 12:33

Description: Barry Ash Pond - MW-13V

Laboratory ID Number: BC10111

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10112	Iron, Total	mg/L	0.00011	0.0176	0.2	35.5	35.6	0.200	0.170 to 0.230	100	70.0 to 130	0.281	20.0
BC10115	Lead, Dissolved	mg/L	0.0000088	0.000147	0.100	0.104	0.103	0.104	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10112	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10115	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.205	0.203	0.203	0.170 to 0.230	102	70.0 to 130	0.980	20.0
BC10112	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.201	0.193	0.201	0.170 to 0.230	100	70.0 to 130	4.06	20.0
BC10115	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	6.72	6.76	5.17	4.25 to 5.75	101	70.0 to 130	0.593	20.0
BC10112	Magnesium, Total	mg/L	0.00638	0.0462	5.00	11.8	11.6	5.20	4.25 to 5.75	102	70.0 to 130	1.71	20.0
BC10115	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.250	0.252	0.102	0.0850 to 0.115	99.0	70.0 to 130	0.797	20.0
BC10112	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.420	0.426	0.103	0.0850 to 0.115	104	70.0 to 130	1.42	20.0
BC10112	Mercury, Total by CVAA	mg/L	0.000122	0.000500	0.004	0.00317	0.00332	0.00405	0.00340 to 0.00460	79.2	70.0 to 130	4.62	20.0
BC10115	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.102	0.102	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10112	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0983	0.0974	0.0973	0.0850 to 0.115	97.8	70.0 to 130	0.920	20.0
BC10115	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.6	11.8	9.74	8.50 to 11.5	95.9	70.0 to 130	1.71	20.0
BC10112	Potassium, Total	mg/L	-0.0105	0.367	10.0	12.6	12.6	10.2	8.50 to 11.5	101	70.0 to 130	0.00	20.0
BC10115	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.103	0.103	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC10112	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10115	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	7.66	7.65	1.01	0.850 to 1.15	94.0	70.0 to 130	0.131	20.0
BC10112	Silicon, Total	mg/L	0.000146	0.0440	1.00	10.5	10.4	1.02	0.850 to 1.15	113	70.0 to 130	0.957	20.0
BC10115	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	62.8	62.2	5.08	4.25 to 5.75	138	70.0 to 130	0.960	20.0
BC10112	Sodium, Total	mg/L	0.0212	0.0660	5.00	84.7	84.8	5.05	4.25 to 5.75	86.0	70.0 to 130	0.118	20.0
BC10112	Sulfate	mg/L	-0.192	2.0	160	251	253	18.8	18.0 to 22.0	91.2	80.0 to 120	0.794	20.0
BC10115	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.101	0.101	0.102	0.0850 to 0.115	101	70.0 to 130	0.00	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 10:52

Customer ID:

Delivery Date: 5/26/22 12:33

Description: Barry Ash Pond - MW-13V

Laboratory ID Number: BC10111

'				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10112	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.104	0.103	0.103	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10120	Total Organic Carbon	mg/L	0.240	1.00	10.0	11.1	11.2	25.3		99.9	80.0 to 120	0.897	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 10:52

Customer ID:

Delivery Date:

5/26/22 12:33

Description: Barry Ash Pond - MW-13V

Laboratory ID Number: BC10111

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10124	Alkalinity, Total as CaCO3	mg/L					8.28	52.0	45.0 to 55.0			2.94	10.0
BC10120	Nitrogen, Nitrate/Nitrite	mg/L as N	0.02	0.200	2.00	1.96	-0.009	1.97	1.80 to 2.20	98.0	90.0 to 110	0.00	15.0
BC10116	Solids, Dissolved	mg/L	1.00	25.0			299	52.0	40.0 to 60.0			0.00	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-14

Location Code:

WMWBARAP 5/25/22 11:55

Collected: Customer ID:

Submittal Date:

5/26/22 12:33

Laboratory	ID	Number:	BC10112
------------	----	---------	---------

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analy	/st: RDA		Preparati	on Method:	EPA 1638	<u> </u>	
* Boron, Total	5/31/22 10:50	6/2/22 11:34	1.015	0.0618	mg/L	0.030000	0.1015	J
* Calcium, Total	5/31/22 10:50	6/2/22 11:34	1.015	11.4	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 12:14	50.75	35.3	mg/L	0.40600	2.03	R.A
* Lithium, Total	5/31/22 10:50	6/2/22 11:34	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 11:34	1.015	6.72	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 11:34	1	20.1	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 11:34	1.015	9.37	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 12:14	50.75	80.4	mg/L	1.5225	20.3	
Analytical Method: EPA 200.7	Anal	/st: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 12:20	1.015	0.0649	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	5/27/22 09:45	6/1/22 12:20	1.015	11.0	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 13:20	50.75	34.2	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 12:20	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 12:20	1.015	6.70	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 12:20	1	19.6	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 12:20	1.015	9.14	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 13:20	50.75	81.2	mg/L	1.5225	20.3	
Analytical Method: EPA 200.8	Anal	/st: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 18:45	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 18:45	1.015	0.195	mg/L	0.006090	0.01015	R
* Arsenic, Total	6/1/22 11:30	6/1/22 18:45	1.015	0.0183	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 18:45	1.015	0.0693	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 18:45	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 18:45	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 18:45	1.015	0.00345	mg/L	0.000203	0.001015	
* Cobalt, Total	6/1/22 11:30	6/1/22 18:45	1.015	0.00125	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 18:45	1.015	0.000102	mg/L	0.000068	0.000203	J
* Manganese, Total	6/1/22 11:30	6/1/22 18:45	1.015	0.316	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 18:45	1.015	0.000518	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 18:45	1.015	2.54	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-14

Location Code:

WMWBARAP 5/25/22 11:55

Collected: Customer ID:

Submittal Date:

5/26/22 12:33

Laboratory ID Number: BC10112

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Selenium, Total	6/1/22 11:30	6/1/22 18:4	5	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 18:4	5	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anai	lyst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 18:	05	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 18:	05	1.015	0.0102	mg/L	0.006090	0.01015	
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 18:	05	1.015	0.0186	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 18:	05	1.015	0.0692	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 18:	05	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 18:	05	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 18:	05	1.015	0.00315	mg/L	0.000203	0.001015	
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 18:	05	1.015	0.00117	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 18:	05	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 18:	05	1.015	0.314	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 18:	05	1.015	0.000508	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 18:	05	1.015	2.46	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 18:	05	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 18:	05	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anai	lyst: CRB							
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 10:3	4	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anai	lyst: ELH							
Nitrogen, Nitrate/Nitrite	5/31/22 09:39	5/31/22 09:	39	1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Anai	lyst: ALH							
Alkalinity, Total as CaCO3	6/8/22 08:59	6/8/22 10:23	3	1	196	mg/L		0.1	
Analytical Method: SM 2540C	Anai	lyst: CNJ							
* Solids, Dissolved	5/31/22 11:22	6/1/22 14:1	3	1	328	mg/L		25	
Analytical Method: SM 4500CO2 D	Anai	lyst: ALH							
Bicarbonate Alkalinity, (calc.)	6/8/22 08:59	6/8/22 10:2	3	1	196	mg/L			
Carbonate Alkalinity, (calc.)	6/8/22 08:59	6/8/22 10:2:	3	1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		lyst: ELH							
Total Organic Carbon	6/7/22 16:49	6/7/22 16:4	9	1	17.0	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-14

Location Code:

WMWBARAP

Collected:

Customer ID:

5/25/22 11:55

5/26/22 12:33

Laboratory ID Number: BC10112

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500CI E	Anal	yst: CES							
* Chloride	5/31/22 15:10	5/31/22 15:	10	10	45.3	mg/L	5.00	10	
Analytical Method: SM4500F G 2017	Anal	yst: JCC							
* Fluoride	6/8/22 12:14	6/8/22 12:14	4	1	0.0733	mg/L	0.06	0.125	J
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC							
* Sulfate	6/7/22 14:26	6/7/22 14:26	6	8	105	mg/L	4.8	16	
Analytical Method: Field Measurements	Anal	yst: AWG							
Conductivity	5/25/22 11:53	5/25/22 11:5	53		512.57	uS/cm			FA
рН	5/25/22 11:53	5/25/22 11:5	53		6.14	SU			FA
Temperature	5/25/22 11:53	5/25/22 11:5	53		20.59	С			FA
Turbidity	5/25/22 11:53	5/25/22 11:5	53		3.06	NTU			FA
Sulfide	5/25/22 11:53	5/25/22 11:5	53		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP Sample Date:

Customer ID:

5/25/22 11:55

Delivery Date: 5/26/22 12:33

Description: Barry Ash Pond - MW-14

Laboratory ID Number: BC10112

<u> </u>				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10115	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.104	0.104	0.0988	0.0850 to 0.115	104	70.0 to 130	0.00	20.0
BC10112	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.320	0.329	0.109	0.0850 to 0.115	125	70.0 to 130	2.77	20.0
BC10115	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.0989	0.0976	0.0948	0.0850 to 0.115	98.9	70.0 to 130	1.32	20.0
BC10112	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.100	0.0991	0.0923	0.0850 to 0.115	100	70.0 to 130	0.904	20.0
BC10115	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.103	0.104	0.103	0.0850 to 0.115	102	70.0 to 130	0.966	20.0
BC10112	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.122	0.121	0.101	0.0850 to 0.115	104	70.0 to 130	0.823	20.0
BC10115	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.163	0.160	0.0990	0.0850 to 0.115	104	70.0 to 130	1.86	20.0
BC10112	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.172	0.171	0.0996	0.0850 to 0.115	103	70.0 to 130	0.583	20.0
BC10115	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.103	0.104	0.101	0.0850 to 0.115	103	70.0 to 130	0.966	20.0
BC10112	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.103	0.105	0.100	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BC10115	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.01	1.02	1.02	0.850 to 1.15	101	70.0 to 130	0.985	20.0
BC10112	Boron, Total	mg/L	0.000059	0.0650	1.00	1.12	1.08	1.03	0.850 to 1.15	106	70.0 to 130	3.64	20.0
BC10115	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.101	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10112	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0993	0.0990	0.0989	0.0850 to 0.115	99.3	70.0 to 130	0.303	20.0
BC10115	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	6.58	6.68	5.03	4.25 to 5.75	95.8	70.0 to 130	1.51	20.0
BC10112	Calcium, Total	mg/L	0.00326	0.152	5.00	16.4	16.3	4.95	4.25 to 5.75	100	70.0 to 130	0.612	20.0
BC10112	Chloride	mg/L	-0.0683	1.00	100	142	153	9.80	9.00 to 11.0	96.7	80.0 to 120	7.46	20.0
BC10115	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0994	0.101	0.0999	0.0850 to 0.115	99.1	70.0 to 130	1.60	20.0
BC10112	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.105	0.105	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10115	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.118	0.119	0.103	0.0850 to 0.115	104	70.0 to 130	0.844	20.0
BC10112	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.103	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10112	Fluoride	mg/L	-0.0308	0.125	2.50	2.75	2.76	2.56	2.25 to 2.75	107	80.0 to 120	0.363	20.0
BC10115	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	4.02	4.04	0.201	0.170 to 0.230	60.0	70.0 to 130	0.496	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/25/22 11:55

Customer ID:

Delivery Date:

5/26/22 12:33

Description: Barry Ash Pond - MW-14

Laboratory ID Number: BC10112

Sample	Analysis	Units	MB										
				Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
C10112	Iron, Total	mg/L	0.00011	0.0176	0.2	35.5	35.6	0.200	0.170 to 0.230	100	70.0 to 130	0.281	20.0
C10115	Lead, Dissolved	mg/L	0.0000088	0.000147	0.100	0.104	0.103	0.104	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
C10112	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.102	0.101	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
C10115	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.205	0.203	0.203	0.170 to 0.230	102	70.0 to 130	0.980	20.0
C10112	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.201	0.193	0.201	0.170 to 0.230	100	70.0 to 130	4.06	20.0
C10115	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	6.72	6.76	5.17	4.25 to 5.75	101	70.0 to 130	0.593	20.0
C10112	Magnesium, Total	mg/L	0.00638	0.0462	5.00	11.8	11.6	5.20	4.25 to 5.75	102	70.0 to 130	1.71	20.0
C10115	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.250	0.252	0.102	0.0850 to 0.115	99.0	70.0 to 130	0.797	20.0
C10112	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.420	0.426	0.103	0.0850 to 0.115	104	70.0 to 130	1.42	20.0
C10112	Mercury, Total by CVAA	mg/L	0.000122	0.000500	0.004	0.00317	0.00332	0.00405	0.00340 to 0.00460	79.2	70.0 to 130	4.62	20.0
C10115	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.102	0.102	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
C10112	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0983	0.0974	0.0973	0.0850 to 0.115	97.8	70.0 to 130	0.920	20.0
C10115	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.6	11.8	9.74	8.50 to 11.5	95.9	70.0 to 130	1.71	20.0
C10112	Potassium, Total	mg/L	-0.0105	0.367	10.0	12.6	12.6	10.2	8.50 to 11.5	101	70.0 to 130	0.00	20.0
C10115	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.103	0.103	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
C10112	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
C10115	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	7.66	7.65	1.01	0.850 to 1.15	94.0	70.0 to 130	0.131	20.0
C10112	Silicon, Total	mg/L	0.000146	0.0440	1.00	10.5	10.4	1.02	0.850 to 1.15	113	70.0 to 130	0.957	20.0
C10115	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	62.8	62.2	5.08	4.25 to 5.75	138	70.0 to 130	0.960	20.0
C10112	Sodium, Total	mg/L	0.0212	0.0660	5.00	84.7	84.8	5.05	4.25 to 5.75	86.0	70.0 to 130	0.118	20.0
C10112	Sulfate	mg/L	-0.192	2.0	160	251	253	18.8	18.0 to 22.0	91.2	80.0 to 120	0.794	20.0
C10115	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.101	0.101	0.102	0.0850 to 0.115	101	70.0 to 130	0.00	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 11:55

Customer ID:

Delivery Date: 5/26/22 12:33

Description: Barry Ash Pond - MW-14

Laboratory ID Number: BC10112

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10112	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.104	0.103	0.103	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10120	Total Organic Carbon	mg/L	0.240	1.00	10.0	11.1	11.2	25.3		99.9	80.0 to 120	0.897	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 11:55

Customer ID:

Delivery Date:

5/26/22 12:33

Description: Barry Ash Pond - MW-14

Laboratory ID Number: BC10112

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10124	Alkalinity, Total as CaCO3	mg/L					8.28	52.0	45.0 to 55.0			2.94	10.0
BC10120	Nitrogen, Nitrate/Nitrite	mg/L as N	0.02	0.200	2.00	1.96	-0.009	1.97	1.80 to 2.20	98.0	90.0 to 110	0.00	15.0
BC10116	Solids, Dissolved	mg/L	1.00	25.0			299	52.0	40.0 to 60.0			0.00	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-15

Location Code:

WMWBARAP 5/25/22 13:07

Collected:

Customer ID: Submittal Date:

5/26/22 12:33

Laboratory ID Number: BC10113

							Q
Analy	/st: RDA		Prepara	tion Method:	EPA 1638		
5/31/22 10:50	6/2/22 11:49	1.015	0.0826	mg/L	0.030000	0.1015	J
5/31/22 10:50	6/2/22 11:49	1.015	6.41	mg/L	0.070035	0.406	
5/31/22 10:50	6/2/22 12:35	50.75	105	mg/L	0.40600	2.03	
5/31/22 10:50	6/2/22 11:49	1.015	0.0118	mg/L	0.007105	0.01999956	J
5/31/22 10:50	6/2/22 13:17	1.015	5.31	mg/L	0.021315	0.406	
5/31/22 10:50	6/2/22 11:49	1	12.9	mg/L			
5/31/22 10:50	6/2/22 11:49	1.015	6.03	mg/L	0.02030	0.25375	
5/31/22 10:50	6/2/22 11:49	1.015	36.0	mg/L	0.03045	0.406	
Analy	/st: RDA						
5/27/22 09:45	6/1/22 12:23	1.015	0.0766	mg/L	0.030000	0.1015	J
5/27/22 09:45	6/1/22 12:23	1.015	6.05	mg/L	0.070035	0.406	
5/27/22 09:45	6/1/22 13:23	50.75	103	mg/L	0.40600	2.03	
5/27/22 09:45	6/1/22 12:23	1.015	0.00893	mg/L	0.007105	0.01999956	J
5/27/22 09:45	6/1/22 12:23	1.015	5.16	mg/L	0.021315	0.406	
5/27/22 09:45	6/1/22 12:23	1	12.8	mg/L			
5/27/22 09:45	6/1/22 12:23	1.015	6.00	mg/L	0.02030	0.25375	
5/27/22 09:45	6/1/22 12:23	1.015	39.0	mg/L	0.03045	0.406	
Analy	/st: DLJ		Prepara	tion Method:	EPA 1638		
6/1/22 11:30	6/1/22 19:07	1.015	Not Detected	d mg/L	0.000508	0.001015	U
6/1/22 11:30	6/1/22 19:07	1.015	Not Detected	d mg/L	0.006090	0.01015	U
6/1/22 11:30	6/1/22 19:07	1.015	0.0176	mg/L	0.000081	0.000203	
6/1/22 11:30	6/1/22 19:07	1.015	0.0846	mg/L	0.000508	0.001015	
6/1/22 11:30	6/1/22 19:07	1.015	Not Detected	d mg/L	0.000406	0.001015	U
6/1/22 11:30	6/1/22 19:07	1.015	Not Detected	d mg/L	0.000068	0.000203	U
6/1/22 11:30	6/1/22 19:07	1.015	0.000489	mg/L	0.000203	0.001015	J
6/1/22 11:30	6/1/22 19:07	1.015	0.0364	mg/L	0.000068	0.000203	
6/1/22 11:30	6/1/22 19:07	1.015	Not Detecte		0.000068	0.000203	U
6/1/22 11:30	6/1/22 19:07	1.015	0.741	mg/L	0.000152	0.000203	
6/1/22 11:30	6/1/22 19:07	1.015	0.00180	mg/L	0.000102	0.000203	
				•	0.169505	0.5075	
	5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 5/31/22 10:50 6/31/22 10:50 Analy 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 5/27/22 09:45 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30 6/1/22 11:30	5/31/22 10:50 6/2/22 11:49 5/31/22 10:50 6/2/22 12:35 5/31/22 10:50 6/2/22 13:17 5/31/22 10:50 6/2/22 13:17 5/31/22 10:50 6/2/22 13:17 5/31/22 10:50 6/2/22 11:49 5/31/22 10:50 6/2/22 11:49 5/31/22 10:50 6/2/22 11:49 5/31/22 10:50 6/2/22 11:49 5/31/22 10:50 6/2/22 11:49 6/1/22 10:50 6/2/22 11:49 6/1/22 10:50 6/2/22 11:49 6/1/22 10:50 6/2/22 11:49 6/1/22 10:50 6/2/22 11:49 6/1/22 10:50 6/2/22 11:49 6/1/22 10:50 6/2/22 11:49 6/1/22 10:50 6/2/22 11:23 5/27/22 09:45 6/1/22 12:23 5/27/22 09:45 6/1/22 12:23 5/27/22 09:45 6/1/22 12:23 5/27/22 09:45 6/1/22 12:23 5/27/22 09:45 6/1/22 12:23 5/27/22 09:45 6/1/22 12:23 5/27/22 09:45 6/1/22 12:23 6/1/22 11:30 6/1/22 12:07 6/1/22 11:30 6/1/22 19:07 6/1/22 11:30 6/1/22 19:07 6/1/22 11:30 6/1/22 19:07 6/1/22 11:30 6/1/22 19:07 6/1/22 11:30 6/1/22 19:07 6/1/22 11:30 6/1/22 19:07 6/1/22 11:30 6/1/22 19:07 6/1/22 11:30 6/1/22 19:07 6/1/22 11:30 6/1/22 19:07 6/1/22 11:30 6/1/22 19:07 6/1/22 11:30 6/1/22 19:07 6/1/22 11:30 6/1/22 19:07 6/1/22 11:30 6/1/22 19:07	5/31/22 10:50 6/2/22 11:49 1.015 5/31/22 10:50 6/2/22 11:49 1.015 5/31/22 10:50 6/2/22 12:35 50.75 5/31/22 10:50 6/2/22 11:49 1.015 5/31/22 10:50 6/2/22 13:17 1.015 5/31/22 10:50 6/2/22 13:17 1.015 5/31/22 10:50 6/2/22 11:49 1 5/31/22 10:50 6/2/22 11:49 1.015 5/31/22 10:50 6/2/22 11:49 1.015 5/31/22 10:50 6/2/22 11:49 1.015 Analyst: RDA 5/27/22 09:45 6/1/22 12:23 1.015 5/27/22 09:45 6/1/22 12:23 1.015 5/27/22 09:45 6/1/22 12:23 1.015 5/27/22 09:45 6/1/22 12:23 1.015 5/27/22 09:45 6/1/22 12:23 1.015 5/27/22 09:45 6/1/22 12:23 1.015 5/27/22 09:45 6/1/22 12:23 1.015 5/27/22 09:45 6/1/22 12:23 1.015 5/27/22 09:45 6/1/22 12:23 1.015 5/27/22 09:45 6/1/22 12:23 1.015 5/27/22 09:45 6/1/22 12:23 1.015 6/1/22 11:30 6/1/22 12:07 1.015 6/1/22 11:30 6/1/22 19:07 1.015 6/1/22 11:30 6/1/22 19:07 1.015 6/1/22 11:30 6/1/22 19:07 1.015 6/1/22 11:30 6/1/22 19:07 1.015 6/1/22 11:30 6/1/22 19:07 1.015 6/1/22 11:30 6/1/22 19:07 1.015 6/1/22 11:30 6/1/22 19:07 1.015 6/1/22 11:30 6/1/22 19:07 1.015 6/1/22 11:30 6/1/22 19:07 1.015 6/1/22 11:30 6/1/22 19:07 1.015 6/1/22 11:30 6/1/22 19:07 1.015 6/1/22 11:30 6/1/22 19:07 1.015 6/1/22 11:30 6/1/22 19:07 1.015 6/1/22 11:30 6/1/22 19:07 1.015 6/1/22 11:30 6/1/22 19:07 1.015 6/1/22 11:30 6/1/22 19:07 1.015	5/31/22 10:50 6/2/22 11:49 1.015 0.0826 5/31/22 10:50 6/2/22 11:49 1.015 6.41 5/31/22 10:50 6/2/22 12:35 50.75 105 5/31/22 10:50 6/2/22 11:49 1.015 0.0118 5/31/22 10:50 6/2/22 13:17 1.015 5.31 5/31/22 10:50 6/2/22 11:49 1 12.9 5/31/22 10:50 6/2/22 11:49 1 12.9 5/31/22 10:50 6/2/22 11:49 1.015 6.03 5/31/22 10:50 6/2/22 11:49 1.015 36.0 Analyst: RDA 5/27/22 09:45 6/1/22 12:23 1.015 0.0766 5/27/22 09:45 6/1/22 12:23 1.015 0.00893 5/27/22 09:45 6/1/22 12:23 1.015 0.00893 5/27/22 09:45 6/1/22 12:23 1.015 5.16 5/27/22 09:45 6/1/22 12:23 1.015 5.16 5/27/22 09:45 6/1/22 12:23 1.015 5.16 5/27/22 09:45 6/1/22 12:23 1.015 5.16 5/27/22 09:45 6/1/22 12:23 1.015 5.00 5/27/22 09:45 6/1/22 12:23 1.015 5.00 5/27/22 09:45 6/1/22 12:23 1.015 5.00 5/27/22 09:45 6/1/22 12:23 1.015 5.00 5/27/22 09:45 6/1/22 12:23 1.015 0.00893 5/27/22 09:45 6/1/22 12:23 1.015 5.00 6/1/22 11:30 6/1/22 19:07 1.015 Not Detected 6/1/22 11:30 6/1/22	5/31/22 10:50 6/2/22 11:49 1.015 0.0826 mg/L 5/31/22 10:50 6/2/22 11:49 1.015 6.41 mg/L 5/31/22 10:50 6/2/22 12:35 50.75 105 mg/L 5/31/22 10:50 6/2/22 11:49 1.015 0.0118 mg/L 5/31/22 10:50 6/2/22 11:49 1 12.9 mg/L 5/31/22 10:50 6/2/22 11:49 1 12.9 mg/L 5/31/22 10:50 6/2/22 11:49 1.015 6.03 mg/L 5/31/22 10:50 6/2/22 11:49 1.015 36.0 mg/L Analyst: RDA 1.015 36.0 mg/L 5/27/22 09:45 6/1/22 12:23 1.015 0.0766 mg/L 5/27/22 09:45 6/1/22 12:23 1.015 0.05 mg/L 5/27/22 09:45 6/1/22 12:23 1.015 0.00893 mg/L 5/27/22 09:45 6/1/22 12:23 1.015 0.00893 mg/L 5/27/22 09:45 6/1/22 12:23 1.015 Not Detected mg/L <t< td=""><td>5/31/22 10:50 6/2/22 11:49 1.015 0.0826 mg/L 0.030000 5/31/22 10:50 6/2/22 11:49 1.015 6.41 mg/L 0.070035 5/31/22 10:50 6/2/22 12:35 50.75 105 mg/L 0.40600 5/31/22 10:50 6/2/22 11:49 1.015 0.0118 mg/L 0.007105 5/31/22 10:50 6/2/22 11:49 1 12.9 mg/L 0.021315 5/31/22 10:50 6/2/22 11:49 1 12.9 mg/L 0.02030 5/31/22 10:50 6/2/22 11:49 1.015 6.03 mg/L 0.02030 5/31/22 10:50 6/2/22 11:49 1.015 36.0 mg/L 0.03045 Analyst: RDA 5/27/22 09:45 6/1/22 12:23 1.015 0.0766 mg/L 0.03000 5/27/22 09:45 6/1/22 12:23 1.015 6.05 mg/L 0.070035 5/27/22 09:45 6/1/22 12:23 1.015 0.00893 mg/L 0.007105 5/27/22 09:45 6/1/22 12:23</td><td>5/31/22 10:50 6/2/22 11:49 1.015 0.0826 mg/L 0.030000 0.1015 5/31/22 10:50 6/2/22 11:49 1.015 6.41 mg/L 0.070035 0.406 5/31/22 10:50 6/2/22 11:49 1.015 0.0118 mg/L 0.007105 0.01999956 5/31/22 10:50 6/2/22 11:49 1.015 5.31 mg/L 0.021315 0.406 5/31/22 10:50 6/2/22 11:49 1 12.9 mg/L 0.02030 0.25375 5/31/22 10:50 6/2/22 11:49 1.015 6.03 mg/L 0.02030 0.25375 5/31/22 10:50 6/2/22 11:49 1.015 6.03 mg/L 0.03045 0.406 Analyst: RDA 5/27/22 09:45 6/1/22 12:23 1.015 0.0766 mg/L 0.03045 0.406 Analyst: RDA 5/27/22 09:45 6/1/22 12:23 1.015 0.0766 mg/L 0.030000 0.1015 5/27/22 09:45 6/1/22 12:23 1.015 0.05 mg/L</td></t<>	5/31/22 10:50 6/2/22 11:49 1.015 0.0826 mg/L 0.030000 5/31/22 10:50 6/2/22 11:49 1.015 6.41 mg/L 0.070035 5/31/22 10:50 6/2/22 12:35 50.75 105 mg/L 0.40600 5/31/22 10:50 6/2/22 11:49 1.015 0.0118 mg/L 0.007105 5/31/22 10:50 6/2/22 11:49 1 12.9 mg/L 0.021315 5/31/22 10:50 6/2/22 11:49 1 12.9 mg/L 0.02030 5/31/22 10:50 6/2/22 11:49 1.015 6.03 mg/L 0.02030 5/31/22 10:50 6/2/22 11:49 1.015 36.0 mg/L 0.03045 Analyst: RDA 5/27/22 09:45 6/1/22 12:23 1.015 0.0766 mg/L 0.03000 5/27/22 09:45 6/1/22 12:23 1.015 6.05 mg/L 0.070035 5/27/22 09:45 6/1/22 12:23 1.015 0.00893 mg/L 0.007105 5/27/22 09:45 6/1/22 12:23	5/31/22 10:50 6/2/22 11:49 1.015 0.0826 mg/L 0.030000 0.1015 5/31/22 10:50 6/2/22 11:49 1.015 6.41 mg/L 0.070035 0.406 5/31/22 10:50 6/2/22 11:49 1.015 0.0118 mg/L 0.007105 0.01999956 5/31/22 10:50 6/2/22 11:49 1.015 5.31 mg/L 0.021315 0.406 5/31/22 10:50 6/2/22 11:49 1 12.9 mg/L 0.02030 0.25375 5/31/22 10:50 6/2/22 11:49 1.015 6.03 mg/L 0.02030 0.25375 5/31/22 10:50 6/2/22 11:49 1.015 6.03 mg/L 0.03045 0.406 Analyst: RDA 5/27/22 09:45 6/1/22 12:23 1.015 0.0766 mg/L 0.03045 0.406 Analyst: RDA 5/27/22 09:45 6/1/22 12:23 1.015 0.0766 mg/L 0.030000 0.1015 5/27/22 09:45 6/1/22 12:23 1.015 0.05 mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-15

Location Code:

WMWBARAP 5/25/22 13:07

Collected:

Customer ID: Submittal Date:

5/26/22 12:33

Laboratory ID Number: BC10113

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 19:07	7	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 19:07	7	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 18:0	09	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 18:0	09	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 18:0	09	1.015	0.0186	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 18:0	09	1.015	0.0835	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 18:0	09	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 18:0	09	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 18:0	09	1.015	0.000498	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 18:0	09	1.015	0.0377	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 18:0	09	1.015	0.0000821	mg/L	0.000068	0.000203	J
* Manganese, Dissolved	5/31/22 14:15	5/31/22 18:0	09	1.015	0.734	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 18:0	09	1.015	0.00214	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 18:0	09	1.015	3.39	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 18:0	09	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 18:0	09	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 12:04	1	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: ELH							
* Nitrogen, Nitrate/Nitrite	5/31/22 09:41	5/31/22 09:4	11	1	0.283	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/8/22 10:59	6/8/22 11:32	2	1	101	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/31/22 11:22	6/1/22 14:18	3	1	255	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/8/22 10:59	6/8/22 11:32	2	1	101	mg/L			
Carbonate Alkalinity, (calc.)	6/8/22 10:59	6/8/22 11:32		1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		yst: ELH				-			
* Total Organic Carbon	6/7/22 17:07	6/7/22 17:07	7	1	4.99	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-15

Laboratory ID Number: BC10113

Location Code:

WMWBARAP

Collected:

5/25/22 13:07

Customer ID:

Submittal Date:

5/26/22 12:33

Name	Prepared	Analyzed	Vio Spec D	F F	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anal	yst: CES							
* Chloride	5/31/22 15:38	5/31/22 15:3	38 10		80.7	mg/L	5.00	10	
Analytical Method: SM4500F G 2017	Anal	yst: JCC							
* Fluoride	6/8/22 12:28	6/8/22 12:28	8 1	(0.214	mg/L	0.06	0.125	
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC							
* Sulfate	6/7/22 14:44	6/7/22 14:44	4 1		1.80	mg/L	0.6	2	J
Analytical Method: Field Measurements	Anal	yst: AWG							
Conductivity	5/25/22 13:05	5/25/22 13:0	05	;	564.84	uS/cm			FA
рН	5/25/22 13:05	5/25/22 13:0	05	(6.68	SU			FA
Temperature	5/25/22 13:05	5/25/22 13:0	05	:	21.92	С			FA
Turbidity	5/25/22 13:05	5/25/22 13:0	05	;	3.64	NTU			FA
Sulfide	5/25/22 13:05	5/25/22 13:0	05	(0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP Sample Date:

Customer ID:

5/25/22 13:07

Delivery Date: 5/26/22 12:33

Description: Barry Ash Pond - MW-15

Laboratory ID Number: BC10113

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10115	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.104	0.104	0.0988	0.0850 to 0.115	104	70.0 to 130	0.00	20.0
BC10122	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.120	0.118	0.109	0.0850 to 0.115	107	70.0 to 130	1.68	20.0
BC10115	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.0989	0.0976	0.0948	0.0850 to 0.115	98.9	70.0 to 130	1.32	20.0
BC10122	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.0924	0.0920	0.0923	0.0850 to 0.115	92.4	70.0 to 130	0.434	20.0
BC10115	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.103	0.104	0.103	0.0850 to 0.115	102	70.0 to 130	0.966	20.0
BC10122	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.102	0.100	0.101	0.0850 to 0.115	102	70.0 to 130	1.98	20.0
BC10115	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.163	0.160	0.0990	0.0850 to 0.115	104	70.0 to 130	1.86	20.0
BC10122	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.149	0.148	0.0996	0.0850 to 0.115	99.6	70.0 to 130	0.673	20.0
BC10115	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.103	0.104	0.101	0.0850 to 0.115	103	70.0 to 130	0.966	20.0
BC10122	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.106	0.104	0.100	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
BC10115	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.01	1.02	1.02	0.850 to 1.15	101	70.0 to 130	0.985	20.0
BC10122	Boron, Total	mg/L	0.000059	0.0650	1.00	1.01	1.00	1.03	0.850 to 1.15	101	70.0 to 130	0.995	20.0
BC10115	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.101	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10122	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0995	0.0988	0.0989	0.0850 to 0.115	99.5	70.0 to 130	0.706	20.0
BC10115	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	6.58	6.68	5.03	4.25 to 5.75	95.8	70.0 to 130	1.51	20.0
BC10122	Calcium, Total	mg/L	0.00326	0.152	5.00	6.24	6.04	4.95	4.25 to 5.75	99.0	70.0 to 130	3.26	20.0
BC10122	Chloride	mg/L	-0.111	1.00	10.0	23.6	23.7	9.52	9.00 to 11.0	84.0	80.0 to 120	0.423	20.0
BC10115	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0994	0.101	0.0999	0.0850 to 0.115	99.1	70.0 to 130	1.60	20.0
BC10122	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.102	0.101	0.100	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
BC10115	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.118	0.119	0.103	0.0850 to 0.115	104	70.0 to 130	0.844	20.0
BC10122	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.101	0.100	0.101	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BC10122	Fluoride	mg/L	0.0243	0.125	2.50	2.50	2.49	2.57	2.25 to 2.75	100	80.0 to 120	0.401	20.0
BC10115	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	4.02	4.04	0.201	0.170 to 0.230	60.0	70.0 to 130	0.496	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date: 5/25/22 13:07

Customer ID:

Delivery Date: 5/26/22 12:33

Description: Barry Ash Pond - MW-15

Laboratory ID Number: BC10113

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10122	Iron, Total	mg/L	0.00011	0.0176	0.2	0.210	0.207	0.200	0.170 to 0.230	101	70.0 to 130	1.44	20.0
BC10115	Lead, Dissolved	mg/L	0.0000088	0.000147	0.100	0.104	0.103	0.104	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10122	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10115	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.205	0.203	0.203	0.170 to 0.230	102	70.0 to 130	0.980	20.0
BC10122	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.190	0.188	0.201	0.170 to 0.230	95.0	70.0 to 130	1.06	20.0
BC10115	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	6.72	6.76	5.17	4.25 to 5.75	101	70.0 to 130	0.593	20.0
BC10122	Magnesium, Total	mg/L	0.00638	0.0462	5.00	6.53	6.48	5.20	4.25 to 5.75	108	70.0 to 130	0.769	20.0
BC10115	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.250	0.252	0.102	0.0850 to 0.115	99.0	70.0 to 130	0.797	20.0
BC10122	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.113	0.111	0.103	0.0850 to 0.115	104	70.0 to 130	1.79	20.0
BC10122	Mercury, Total by CVAA	mg/L	0.000124	0.000500	0.004	0.00422	0.00420	0.00424	0.00340 to 0.00460	106	70.0 to 130	0.475	20.0
BC10115	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.102	0.102	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10122	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0995	0.0962	0.0973	0.0850 to 0.115	99.5	70.0 to 130	3.37	20.0
BC10115	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.6	11.8	9.74	8.50 to 11.5	95.9	70.0 to 130	1.71	20.0
BC10122	Potassium, Total	mg/L	-0.0105	0.367	10.0	11.5	11.3	10.2	8.50 to 11.5	103	70.0 to 130	1.75	20.0
BC10115	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.103	0.103	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC10122	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.103	0.102	0.103	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC10115	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	7.66	7.65	1.01	0.850 to 1.15	94.0	70.0 to 130	0.131	20.0
BC10122	Silicon, Total	mg/L	0.000146	0.0440	1.00	7.33	7.32	1.02	0.850 to 1.15	111	70.0 to 130	0.137	20.0
BC10115	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	62.8	62.2	5.08	4.25 to 5.75	138	70.0 to 130	0.960	20.0
BC10122	Sodium, Total	mg/L	0.0212	0.0660	5.00	12.5	12.5	5.05	4.25 to 5.75	90.4	70.0 to 130	0.00	20.0
BC10122	Sulfate	mg/L	-0.244	2.0	20.0	20.8	20.8	18.8	18.0 to 22.0	97.0	80.0 to 120	0.00	20.0
BC10115	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.101	0.101	0.102	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10115	I hallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.101	0.101	0.102	0.0850 to 0.115	101	70.0 to 130	0.00	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 13:07

Customer ID:

Delivery Date:

5/26/22 12:33

Description: Barry Ash Pond - MW-15

Laboratory ID Number: BC10113

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10122	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10120	Total Organic Carbon	mg/L	0.240	1.00	10.0	11.1	11.2	25.3		99.9	80.0 to 120	0.897	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 13:07

Customer ID:

Delivery Date: 5/26/22 12:33

Description: Barry Ash Pond - MW-15

Laboratory ID Number: BC10113

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10125	Alkalinity, Total as CaCO3	mg/L					6.68	52.0	45.0 to 55.0			2.95	10.0
BC10120	Nitrogen, Nitrate/Nitrite	mg/L as N	0.02	0.200	2.00	1.96	-0.009	1.97	1.80 to 2.20	98.0	90.0 to 110	0.00	15.0
BC10116	Solids, Dissolved	mg/L	1.00	25.0			299	52.0	40.0 to 60.0			0.00	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-15 DupLocation Code:WMWBARAPCollected:5/25/22 13:07

Customer ID:

Laboratory ID Number: BC10114 Submittal Date: 5/26/22 12:33

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	on Method:	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 11:52	1.015	0.0794	mg/L	0.030000	0.1015	J
* Calcium, Total	5/31/22 10:50	6/2/22 11:52	1.015	6.35	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 12:38	50.75	102	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 11:52	1.015	0.0116	mg/L	0.007105	0.01999956	J
* Magnesium, Total	5/31/22 10:50	6/2/22 13:20	1.015	5.33	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 11:52	1	12.8	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 11:52	1.015	5.96	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 11:52	1.015	35.3	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 12:26	1.015	0.0765	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	5/27/22 09:45	6/1/22 12:26	1.015	6.11	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 13:27	50.75	109	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 12:26	1.015	0.00859	mg/L	0.007105	0.01999956	J
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 12:26	1.015	5.12	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 12:26	1	12.8	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 12:26	1.015	5.99	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 12:26	1.015	38.0	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 19:10	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 19:10	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Total	6/1/22 11:30	6/1/22 19:10	1.015	0.0163	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 19:10	1.015	0.0806	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 19:10	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 19:10	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 19:10	1.015	0.000424	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 19:10		0.0358	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 19:10		Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 19:10	1.015	0.719	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 19:10		0.00157	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 19:10		4.13	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-15 DupLocation Code:WMWBARAPCollected:5/25/22 13:07

Customer ID:

Laboratory ID Number: BC10114 Submittal Date: 5/26/22 12:33

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 19:10)	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 19:10)	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 18:	13	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 18:1	13	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 18:1	13	1.015	0.0183	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 18:	13	1.015	0.0819	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 18:	13	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 18:	13	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 18:	13	1.015	0.000350	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 18:	13	1.015	0.0373	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 18:	13	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 18:	13	1.015	0.725	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 18:	13	1.015	0.00200	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 18:	13	1.015	3.30	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 18:	13	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 18:	13	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 12:06	6	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: ELH							
* Nitrogen, Nitrate/Nitrite	5/31/22 09:43	5/31/22 09:4	13	1	0.283	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/8/22 10:59	6/8/22 11:32	2	1	117	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/31/22 11:22	6/1/22 14:18	3	1	261	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/8/22 10:59	6/8/22 11:32	2	1	117	mg/L			
Carbonate Alkalinity, (calc.)	6/8/22 10:59	6/8/22 11:32	2	1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		yst: ELH							
* Total Organic Carbon	6/7/22 17:25	6/7/22 17:25	5	1	4.90	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Q

Description: Barry Ash Pond - MW-15 Dup

Location Code:

WMWBARAP

Collected:

Customer ID: Submittal Date: 5/25/22 13:07

5/26/22 12:33

Laboratory ID Number: BC10114

MDL RL Results Units Prepared Analyzed Vio Spec DF

Analytical Method: SM4500Cl E	Anal	yst: CES						
* Chloride	5/31/22 15:40	5/31/22 15:40	10	79.7	mg/L	5.00	10	
Analytical Method: SM4500F G 2017	Anal	yst: JCC						
* Fluoride	6/8/22 12:29	6/8/22 12:29	1	0.168	mg/L	0.06	0.125	
Analytical Method: SM4500SO4 E 2011	Analy	yst: JCC						
* Sulfate	6/7/22 14:45	6/7/22 14:45	1	1.49	mg/L	0.6	2	J
Analytical Method: Field Measurements	Anal	yst: AWG						
Conductivity	5/25/22 13:05	5/25/22 13:05		564.84	uS/cm			FA
рН	5/25/22 13:05	5/25/22 13:05		6.68	SU			FA
Temperature	5/25/22 13:05	5/25/22 13:05		21.92	С			FA
Turbidity	5/25/22 13:05	5/25/22 13:05		3.64	NTU			FA
Sulfide	5/25/22 13:05	5/25/22 13:05		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 13:07

Customer ID:

Delivery Date: 5/26/22 12:33

Description: Barry Ash Pond - MW-15 Dup

Laboratory ID Number: BC10114

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10115	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.104	0.104	0.0988	0.0850 to 0.115	104	70.0 to 130	0.00	20.0
BC10122	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.120	0.118	0.109	0.0850 to 0.115	107	70.0 to 130	1.68	20.0
BC10115	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.0989	0.0976	0.0948	0.0850 to 0.115	98.9	70.0 to 130	1.32	20.0
BC10122	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.0924	0.0920	0.0923	0.0850 to 0.115	92.4	70.0 to 130	0.434	20.0
BC10115	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.103	0.104	0.103	0.0850 to 0.115	102	70.0 to 130	0.966	20.0
BC10122	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.102	0.100	0.101	0.0850 to 0.115	102	70.0 to 130	1.98	20.0
BC10115	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.163	0.160	0.0990	0.0850 to 0.115	104	70.0 to 130	1.86	20.0
BC10122	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.149	0.148	0.0996	0.0850 to 0.115	99.6	70.0 to 130	0.673	20.0
BC10115	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.103	0.104	0.101	0.0850 to 0.115	103	70.0 to 130	0.966	20.0
BC10122	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.106	0.104	0.100	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
BC10115	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.01	1.02	1.02	0.850 to 1.15	101	70.0 to 130	0.985	20.0
BC10122	Boron, Total	mg/L	0.000059	0.0650	1.00	1.01	1.00	1.03	0.850 to 1.15	101	70.0 to 130	0.995	20.0
BC10115	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.101	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10122	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0995	0.0988	0.0989	0.0850 to 0.115	99.5	70.0 to 130	0.706	20.0
BC10115	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	6.58	6.68	5.03	4.25 to 5.75	95.8	70.0 to 130	1.51	20.0
BC10122	Calcium, Total	mg/L	0.00326	0.152	5.00	6.24	6.04	4.95	4.25 to 5.75	99.0	70.0 to 130	3.26	20.0
BC10122	Chloride	mg/L	-0.111	1.00	10.0	23.6	23.7	9.52	9.00 to 11.0	84.0	80.0 to 120	0.423	20.0
BC10115	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0994	0.101	0.0999	0.0850 to 0.115	99.1	70.0 to 130	1.60	20.0
BC10122	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.102	0.101	0.100	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
BC10115	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.118	0.119	0.103	0.0850 to 0.115	104	70.0 to 130	0.844	20.0
BC10122	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.101	0.100	0.101	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BC10122	Fluoride	mg/L	0.0243	0.125	2.50	2.50	2.49	2.57	2.25 to 2.75	100	80.0 to 120	0.401	20.0
BC10115	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	4.02	4.04	0.201	0.170 to 0.230	60.0	70.0 to 130	0.496	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 13:07

5/26/22 12:33

Customer ID:

Delivery Date: 5/26/2

Description: Barry Ash Pond - MW-15 Dup

Laboratory ID Number: BC10114

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10122	Iron, Total	mg/L	0.00011	0.0176	0.2	0.210	0.207	0.200	0.170 to 0.230	101	70.0 to 130	1.44	20.0
BC10115	Lead, Dissolved	mg/L	0.0000088	0.000147	0.100	0.104	0.103	0.104	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10122	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10115	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.205	0.203	0.203	0.170 to 0.230	102	70.0 to 130	0.980	20.0
BC10122	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.190	0.188	0.201	0.170 to 0.230	95.0	70.0 to 130	1.06	20.0
BC10115	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	6.72	6.76	5.17	4.25 to 5.75	101	70.0 to 130	0.593	20.0
BC10122	Magnesium, Total	mg/L	0.00638	0.0462	5.00	6.53	6.48	5.20	4.25 to 5.75	108	70.0 to 130	0.769	20.0
BC10115	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.250	0.252	0.102	0.0850 to 0.115	99.0	70.0 to 130	0.797	20.0
BC10122	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.113	0.111	0.103	0.0850 to 0.115	104	70.0 to 130	1.79	20.0
BC10122	Mercury, Total by CVAA	mg/L	0.000124	0.000500	0.004	0.00422	0.00420	0.00424	0.00340 to 0.00460	106	70.0 to 130	0.475	20.0
BC10115	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.102	0.102	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10122	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0995	0.0962	0.0973	0.0850 to 0.115	99.5	70.0 to 130	3.37	20.0
BC10115	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.6	11.8	9.74	8.50 to 11.5	95.9	70.0 to 130	1.71	20.0
BC10122	Potassium, Total	mg/L	-0.0105	0.367	10.0	11.5	11.3	10.2	8.50 to 11.5	103	70.0 to 130	1.75	20.0
BC10115	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.103	0.103	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC10122	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.103	0.102	0.103	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC10115	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	7.66	7.65	1.01	0.850 to 1.15	94.0	70.0 to 130	0.131	20.0
BC10122	Silicon, Total	mg/L	0.000146	0.0440	1.00	7.33	7.32	1.02	0.850 to 1.15	111	70.0 to 130	0.137	20.0
BC10115	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	62.8	62.2	5.08	4.25 to 5.75	138	70.0 to 130	0.960	20.0
BC10122	Sodium, Total	mg/L	0.0212	0.0660	5.00	12.5	12.5	5.05	4.25 to 5.75	90.4	70.0 to 130	0.00	20.0
BC10122	Sulfate	mg/L	-0.244	2.0	20.0	20.8	20.8	18.8	18.0 to 22.0	97.0	80.0 to 120	0.00	20.0
BC10115	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.101	0.101	0.102	0.0850 to 0.115	101	70.0 to 130	0.00	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 13:07

Customer ID:

Delivery Date:

5/26/22 12:33

Description: Barry Ash Pond - MW-15 Dup

Laboratory ID Number: BC10114

'				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10122	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10120	Total Organic Carbon	mg/L	0.240	1.00	10.0	11.1	11.2	25.3		99.9	80.0 to 120	0.897	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 13:07

Customer ID:

Delivery Date:

5/26/22 12:33

Description: Barry Ash Pond - MW-15 Dup

Laboratory ID Number: BC10114

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10125	Alkalinity, Total as CaCO3	mg/L					6.68	52.0	45.0 to 55.0			2.95	10.0
BC10120	Nitrogen, Nitrate/Nitrite	mg/L as N	0.02	0.200	2.00	1.96	-0.009	1.97	1.80 to 2.20	98.0	90.0 to 110	0.00	15.0
BC10116	Solids, Dissolved	mg/L	1.00	25.0			299	52.0	40.0 to 60.0			0.00	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-16VLocation Code:WMWBARAPCollected:5/25/22 14:06

Customer ID:

Laboratory ID Number: BC10115 Submittal Date: 5/26/22 12:33

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	ion Method: I	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 11:55	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	5/31/22 10:50	6/2/22 11:55	1.015	1.80	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 12:42	20.3	4.18	mg/L	0.1624	0.812	
* Lithium, Total	5/31/22 10:50	6/2/22 11:55	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 13:23	1.015	1.77	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 11:55	1	14.0	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 11:55	1.015	6.54	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 12:42	20.3	57.0	mg/L	0.609	8.12	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 12:29	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Dissolved	5/27/22 09:45	6/1/22 12:29	1.015	1.79	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 12:29	1.015	3.90	mg/L	0.008120	0.0406	R.A
* Lithium, Dissolved	5/27/22 09:45	6/1/22 12:29	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 12:29	1.015	1.67	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 12:29	1	14.4	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 12:29	1.015	6.72	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 13:30	10.15	55.9	mg/L	0.3045	4.06	R.A
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	ion Method: I	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 19:14	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 19:14	1.015	0.0132	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 19:14	1.015	0.00112	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 19:14	1.015	0.0569	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 19:14	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 19:14	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 19:14	1.015	Not Detected	mg/L	0.000203	0.001015	U
* Cobalt, Total	6/1/22 11:30	6/1/22 19:14	1.015	0.0139	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 19:14	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 19:14	1.015	0.150	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 19:14		Not Detected	_	0.000102	0.000203	U
* Potassium, Total	6/1/22 11:30	6/1/22 19:14		2.00	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-16V

Location Code:

WMWBARAP

Collected:

Customer ID: Submittal Date:

5/25/22 14:06

5/26/22 12:33

Laboratory ID Number: BC10115

	Prepared	Analyzed		DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 19:14	,	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 19:14	ļ	1.015	0.0000886	mg/L	0.000068	0.000203	J
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 18:1	6	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 18:1	6	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 18:1	6	1.015	0.00126	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 18:1	6	1.015	0.0594	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 18:1	6	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 18:1	6	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 18:1	6	1.015	0.000278	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 18:1	6	1.015	0.0143	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 18:1	6	1.015	0.000127	mg/L	0.000068	0.000203	J
* Manganese, Dissolved	5/31/22 14:15	5/31/22 18:1	6	1.015	0.151	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 18:1	6	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Dissolved	5/31/22 14:15	5/31/22 18:1	6	1.015	2.01	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 18:1	6	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 18:1	6	1.015	0.0000919	mg/L	0.000068	0.000203	J
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 12:09)	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: ELH							
* Nitrogen, Nitrate/Nitrite	5/31/22 09:45	5/31/22 09:4	5	1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/8/22 11:53	6/8/22 13:41		1	22.6	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/31/22 11:22	6/1/22 14:18	3	1	188	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/8/22 11:53	6/8/22 13:41		1	22.6	mg/L			
Carbonate Alkalinity, (calc.)	6/8/22 11:53	6/8/22 13:41		1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		yst: ELH							
* Total Organic Carbon	6/7/22 17:50	6/7/22 17:50)	1	1.64	mg/L	1.00	2	J

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-16V

Location Code:

WMWBARAP

Collected:

Customer ID:

5/25/22 14:06

Laboratory ID Number: BC10115

Submittal Date:

5/26/22 12:33

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anal	yst: CES							
* Chloride	5/31/22 15:41	5/31/22 15:	41	10	56.6	mg/L	5.00	10	
Analytical Method: SM4500F G 2017	Anal	lyst: JCC							
* Fluoride	6/8/22 12:31	6/8/22 12:3	1	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Anal	lyst: JCC							
* Sulfate	6/7/22 14:47	6/7/22 14:4	7	1	35.1	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	lyst: AWG							
Conductivity	5/25/22 14:03	5/25/22 14:	03		318.16	uS/cm			FA
рН	5/25/22 14:03	5/25/22 14:	03		5.26	SU			FA
Temperature	5/25/22 14:03	5/25/22 14:	03		22.23	С			FA
Turbidity	5/25/22 14:03	5/25/22 14:	03		1.38	NTU			FA
Sulfide	5/25/22 14:03	5/25/22 14:	03		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 14:06

Customer ID: Delivery Date:

5/26/22 12:33

Description: Barry Ash Pond - MW-16V

Laboratory ID Number: BC10115

	-			MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10115	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.104	0.104	0.0988	0.0850 to 0.115	104	70.0 to 130	0.00	20.0
BC10122	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.120	0.118	0.109	0.0850 to 0.115	107	70.0 to 130	1.68	20.0
BC10115	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.0989	0.0976	0.0948	0.0850 to 0.115	98.9	70.0 to 130	1.32	20.0
BC10122	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.0924	0.0920	0.0923	0.0850 to 0.115	92.4	70.0 to 130	0.434	20.0
BC10115	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.103	0.104	0.103	0.0850 to 0.115	102	70.0 to 130	0.966	20.0
BC10122	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.102	0.100	0.101	0.0850 to 0.115	102	70.0 to 130	1.98	20.0
BC10115	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.163	0.160	0.0990	0.0850 to 0.115	104	70.0 to 130	1.86	20.0
BC10122	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.149	0.148	0.0996	0.0850 to 0.115	99.6	70.0 to 130	0.673	20.0
BC10115	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.103	0.104	0.101	0.0850 to 0.115	103	70.0 to 130	0.966	20.0
BC10122	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.106	0.104	0.100	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
BC10115	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.01	1.02	1.02	0.850 to 1.15	101	70.0 to 130	0.985	20.0
BC10122	Boron, Total	mg/L	0.000059	0.0650	1.00	1.01	1.00	1.03	0.850 to 1.15	101	70.0 to 130	0.995	20.0
BC10115	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.101	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10122	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0995	0.0988	0.0989	0.0850 to 0.115	99.5	70.0 to 130	0.706	20.0
BC10115	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	6.58	6.68	5.03	4.25 to 5.75	95.8	70.0 to 130	1.51	20.0
BC10122	Calcium, Total	mg/L	0.00326	0.152	5.00	6.24	6.04	4.95	4.25 to 5.75	99.0	70.0 to 130	3.26	20.0
BC10122	Chloride	mg/L	-0.111	1.00	10.0	23.6	23.7	9.52	9.00 to 11.0	84.0	80.0 to 120	0.423	20.0
BC10115	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0994	0.101	0.0999	0.0850 to 0.115	99.1	70.0 to 130	1.60	20.0
BC10122	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.102	0.101	0.100	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
BC10115	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.118	0.119	0.103	0.0850 to 0.115	104	70.0 to 130	0.844	20.0
BC10122	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.101	0.100	0.101	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BC10122	Fluoride	mg/L	0.0243	0.125	2.50	2.50	2.49	2.57	2.25 to 2.75	100	80.0 to 120	0.401	20.0
BC10115	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	4.02	4.04	0.201	0.170 to 0.230	60.0	70.0 to 130	0.496	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/25/22 14:06

Customer ID:

Delivery Date: 5/26/22 12:33

Description: Barry Ash Pond - MW-16V

Laboratory ID Number: BC10115

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10122	Iron, Total	mg/L	0.00011	0.0176	0.2	0.210	0.207	0.200	0.170 to 0.230	101	70.0 to 130	1.44	20.0
BC10115	Lead, Dissolved	mg/L	0.0000088	0.000147	0.100	0.104	0.103	0.104	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10122	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10115	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.205	0.203	0.203	0.170 to 0.230	102	70.0 to 130	0.980	20.0
BC10122	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.190	0.188	0.201	0.170 to 0.230	95.0	70.0 to 130	1.06	20.0
BC10115	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	6.72	6.76	5.17	4.25 to 5.75	101	70.0 to 130	0.593	20.0
BC10122	Magnesium, Total	mg/L	0.00638	0.0462	5.00	6.53	6.48	5.20	4.25 to 5.75	108	70.0 to 130	0.769	20.0
BC10115	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.250	0.252	0.102	0.0850 to 0.115	99.0	70.0 to 130	0.797	20.0
BC10122	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.113	0.111	0.103	0.0850 to 0.115	104	70.0 to 130	1.79	20.0
BC10122	Mercury, Total by CVAA	mg/L	0.000124	0.000500	0.004	0.00422	0.00420	0.00424	0.00340 to 0.00460	106	70.0 to 130	0.475	20.0
BC10115	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.102	0.102	0.100	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10122	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0995	0.0962	0.0973	0.0850 to 0.115	99.5	70.0 to 130	3.37	20.0
BC10115	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.6	11.8	9.74	8.50 to 11.5	95.9	70.0 to 130	1.71	20.0
BC10122	Potassium, Total	mg/L	-0.0105	0.367	10.0	11.5	11.3	10.2	8.50 to 11.5	103	70.0 to 130	1.75	20.0
BC10115	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.103	0.103	0.102	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC10122	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.103	0.102	0.103	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC10115	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	7.66	7.65	1.01	0.850 to 1.15	94.0	70.0 to 130	0.131	20.0
BC10122	Silicon, Total	mg/L	0.000146	0.0440	1.00	7.33	7.32	1.02	0.850 to 1.15	111	70.0 to 130	0.137	20.0
BC10115	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	62.8	62.2	5.08	4.25 to 5.75	138	70.0 to 130	0.960	20.0
BC10122	Sodium, Total	mg/L	0.0212	0.0660	5.00	12.5	12.5	5.05	4.25 to 5.75	90.4	70.0 to 130	0.00	20.0
BC10122	Sulfate	mg/L	-0.244	2.0	20.0	20.8	20.8	18.8	18.0 to 22.0	97.0	80.0 to 120	0.00	20.0
BC10115	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.101	0.101	0.102	0.0850 to 0.115	101	70.0 to 130	0.00	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 14:06

Customer ID:

Delivery Date: 5/26/22 12:33

Description: Barry Ash Pond - MW-16V

Laboratory ID Number: BC10115

	ratory is italiaser. Bolor	10											
				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10122	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10120	Total Organic Carbon	mg/L	0.240	1.00	10.0	11.1	11.2	25.3		99.9	80.0 to 120	0.897	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 14:06

Customer ID:

Delivery Date:

5/26/22 12:33

Description: Barry Ash Pond - MW-16V

Laboratory ID Number: BC10115

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10128	Alkalinity, Total as CaCO3	mg/L					16.6	52.0	45.0 to 55.0			3.68	10.0
BC10120	Nitrogen, Nitrate/Nitrite	mg/L as N	0.02	0.200	2.00	1.96	-0.009	1.97	1.80 to 2.20	98.0	90.0 to 110	0.00	15.0
BC10116	Solids, Dissolved	mg/L	1.00	25.0			299	52.0	40.0 to 60.0			0.00	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-16Location Code:WMWBARAPCollected:5/25/22 14:54

Customer ID:

Submittal Date: 5/26/22 12:33

Laboratory ID Number: BC10116

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analy	/st: RDA		Preparati	on Method:	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 11:58	1.015	1.98	mg/L	0.030000	0.1015	
* Calcium, Total	5/31/22 10:50	6/2/22 11:58	1.015	13.9	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 12:45	50.75	94.6	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 11:58	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 13:27	1.015	7.61	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 11:58	1	24.0	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 11:58	1.015	11.2	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 11:58	1.015	24.6	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analy	/st: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 12:43	1.015	1.97	mg/L	0.030000	0.1015	
* Calcium, Dissolved	5/27/22 09:45	6/1/22 12:43	1.015	13.2	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 13:50	50.75	92.2	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 12:43	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 12:43	1.015	7.00	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 12:43	1	24.2	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 12:43	1.015	11.3	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 12:43	1.015	26.8	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Analy	/st: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 19:17	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 19:17	1.015	0.0137	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 19:17	1.015	0.0134	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 19:17	1.015	0.0977	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 19:17	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 19:17	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 19:17	1.015	0.00135	mg/L	0.000203	0.001015	
* Cobalt, Total	6/1/22 11:30	6/1/22 19:17	1.015	0.0155	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 19:17	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 19:17	1.015	0.845	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 19:17	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/1/22 11:30	6/1/22 19:17	1.015	2.11	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-16

Location Code: Collected:

WMWBARAP 5/25/22 14:54

Customer ID:

Customer ID: Submittal Date:

5/26/22 12:33

Laboratory ID Number: BC10116

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 19:17	7	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 19:17	7	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 18:3	38	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 18:3	38	1.015	0.00628	mg/L	0.006090	0.01015	J
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 18:3	38	1.015	0.0144	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 18:3	38	1.015	0.0961	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 18:3	38	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 18:3	38	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 18:3	38	1.015	0.00139	mg/L	0.000203	0.001015	
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 18:3	38	1.015	0.0161	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 18:3	38	1.015	0.0000973	mg/L	0.000068	0.000203	J
* Manganese, Dissolved	5/31/22 14:15	5/31/22 18:3	38	1.015	0.844	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 18:3	38	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Dissolved	5/31/22 14:15	5/31/22 18:3	38	1.015	2.00	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 18:3	38	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 18:3	38	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 12:11	l	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: ELH							
* Nitrogen, Nitrate/Nitrite	5/31/22 09:47	5/31/22 09:4	17	1	0.282	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/8/22 11:53	6/8/22 13:41	l	1	219	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/31/22 11:22	6/1/22 14:18	3	1	299	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/8/22 11:53	6/8/22 13:41	İ	1	219	mg/L			
Carbonate Alkalinity, (calc.)	6/8/22 11:53	6/8/22 13:41		1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		yst: ELH							
* Total Organic Carbon	6/7/22 18:08	6/7/22 18:08	3	1	10.5	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-16

Location Code:

WMWBARAP

Collected:

Customer ID:

5/25/22 14:54

Laboratory ID Number: BC10116

Submittal Date: 5/26/22 12:33

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500CI E	Anal	yst: CES							
* Chloride	5/31/22 15:36	5/31/22 15:	36	1	20.0	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Anal	yst: JCC							
* Fluoride	6/8/22 12:32	6/8/22 12:3	2	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC							
* Sulfate	6/7/22 14:48	6/7/22 14:4	8	1	6.29	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	yst: AWG							
Conductivity	5/25/22 14:51	5/25/22 14:	51		474.44	uS/cm			FA
рН	5/25/22 14:51	5/25/22 14:	51		5.74	SU			FA
Temperature	5/25/22 14:51	5/25/22 14:	51		22.27	С			FA
Turbidity	5/25/22 14:51	5/25/22 14:	51		1.8	NTU			FA
Sulfide	5/25/22 14:51	5/25/22 14:	51		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP

Sample Date: **Customer ID:**

5/25/22 14:54

Delivery Date: 5/26/22 12:33

Description: Barry Ash Pond - MW-16

Laboratory ID Number: BC10116

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10126	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.102	0.102	0.0988	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10122	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.120	0.118	0.109	0.0850 to 0.115	107	70.0 to 130	1.68	20.0
BC10126	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.101	0.101	0.0948	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10122	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.0924	0.0920	0.0923	0.0850 to 0.115	92.4	70.0 to 130	0.434	20.0
BC10126	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.136	0.131	0.103	0.0850 to 0.115	103	70.0 to 130	3.75	20.0
BC10122	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.102	0.100	0.101	0.0850 to 0.115	102	70.0 to 130	1.98	20.0
BC10126	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.264	0.257	0.0990	0.0850 to 0.115	100	70.0 to 130	2.69	20.0
BC10122	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.149	0.148	0.0996	0.0850 to 0.115	99.6	70.0 to 130	0.673	20.0
BC10126	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.104	0.0996	0.101	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10122	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.106	0.104	0.100	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
BC10126	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.08	1.06	1.02	0.850 to 1.15	102	70.0 to 130	1.87	20.0
BC10122	Boron, Total	mg/L	0.000059	0.0650	1.00	1.01	1.00	1.03	0.850 to 1.15	101	70.0 to 130	0.995	20.0
BC10126	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.102	0.101	0.103	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10122	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0995	0.0988	0.0989	0.0850 to 0.115	99.5	70.0 to 130	0.706	20.0
BC10126	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	19.2	19.2	5.03	4.25 to 5.75	96.0	70.0 to 130	0.00	20.0
BC10122	Calcium, Total	mg/L	0.00326	0.152	5.00	6.24	6.04	4.95	4.25 to 5.75	99.0	70.0 to 130	3.26	20.0
BC10122	Chloride	mg/L	-0.111	1.00	10.0	23.6	23.7	9.52	9.00 to 11.0	84.0	80.0 to 120	0.423	20.0
BC10126	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0993	0.0994	0.0999	0.0850 to 0.115	98.2	70.0 to 130	0.101	20.0
BC10122	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.102	0.101	0.100	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
BC10126	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.105	0.105	0.103	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC10122	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.101	0.100	0.101	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BC10122	Fluoride	mg/L	0.0243	0.125	2.50	2.50	2.49	2.57	2.25 to 2.75	100	80.0 to 120	0.401	20.0
BC10126	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	78.8	79.0	0.201	0.170 to 0.230	-1100	70.0 to 130	0.253	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 14:54

Customer ID: Delivery Date:

stomer ID:

5/26/22 12:33

Description: Barry Ash Pond - MW-16

Laboratory ID Number: BC10116

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	Limit
	•												
BC10122	Iron, Total	mg/L	0.00011	0.0176	0.2	0.210	0.207	0.200	0.170 to 0.230	101	70.0 to 130	1.44	20.0
BC10126	Lead, Dissolved	mg/L	0.0000088	0.000147	0.100	0.104	0.0996	0.104	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10122	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10126	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.213	0.211	0.203	0.170 to 0.230	106	70.0 to 130	0.943	20.0
BC10122	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.190	0.188	0.201	0.170 to 0.230	95.0	70.0 to 130	1.06	20.0
BC10126	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	10.2	10.2	5.17	4.25 to 5.75	100	70.0 to 130	0.00	20.0
BC10122	Magnesium, Total	mg/L	0.00638	0.0462	5.00	6.53	6.48	5.20	4.25 to 5.75	108	70.0 to 130	0.769	20.0
BC10126	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.745	0.742	0.102	0.0850 to 0.115	71.0	70.0 to 130	0.403	20.0
BC10122	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.113	0.111	0.103	0.0850 to 0.115	104	70.0 to 130	1.79	20.0
BC10122	Mercury, Total by CVAA	mg/L	0.000124	0.000500	0.004	0.00422	0.00420	0.00424	0.00340 to 0.00460	106	70.0 to 130	0.475	20.0
BC10126	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.0992	0.0985	0.100	0.0850 to 0.115	99.0	70.0 to 130	0.708	20.0
BC10122	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0995	0.0962	0.0973	0.0850 to 0.115	99.5	70.0 to 130	3.37	20.0
BC10126	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.1	10.8	9.74	8.50 to 11.5	96.1	70.0 to 130	2.74	20.0
BC10122	Potassium, Total	mg/L	-0.0105	0.367	10.0	11.5	11.3	10.2	8.50 to 11.5	103	70.0 to 130	1.75	20.0
BC10126	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.104	0.103	0.102	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10122	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.103	0.102	0.103	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC10126	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	13.4	13.4	1.01	0.850 to 1.15	90.0	70.0 to 130	0.00	20.0
BC10122	Silicon, Total	mg/L	0.000146	0.0440	1.00	7.33	7.32	1.02	0.850 to 1.15	111	70.0 to 130	0.137	20.0
BC10126	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	27.4	27.6	5.08	4.25 to 5.75	100	70.0 to 130	0.727	20.0
BC10122	Sodium, Total	mg/L	0.0212	0.0660	5.00	12.5	12.5	5.05	4.25 to 5.75	90.4	70.0 to 130	0.00	20.0
BC10122	Sulfate	mg/L	-0.244	2.0	20.0	20.8	20.8	18.8	18.0 to 22.0	97.0	80.0 to 120	0.00	20.0
BC10126	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.103	0.0988	0.102	0.0850 to 0.115	103	70.0 to 130	4.16	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 14:54

Customer ID:

Delivery Date: 5/26/22 12:33

Description: Barry Ash Pond - MW-16

Laboratory ID Number: BC10116

· · · · · · · · · · · · · · · · · · ·				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10122	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10120	Total Organic Carbon	mg/L	0.240	1.00	10.0	11.1	11.2	25.3		99.9	80.0 to 120	0.897	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 14:54

Customer ID:

Delivery Date:

5/26/22 12:33

Description: Barry Ash Pond - MW-16

Laboratory ID Number: BC10116

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10128	Alkalinity, Total as CaCO3	mg/L					16.6	52.0	45.0 to 55.0			3.68	10.0
BC10120	Nitrogen, Nitrate/Nitrite	mg/L as N	0.02	0.200	2.00	1.96	-0.009	1.97	1.80 to 2.20	98.0	90.0 to 110	0.00	15.0
BC10116	Solids, Dissolved	mg/L	1.00	25.0			299	52.0	40.0 to 60.0			0.00	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-4

Laboratory ID Number: BC10117

Location Code:

WMWBARAP 5/25/22 15:35

Collected: Customer ID:

0.00455

0.000176

Not Detected

0.0207

1.44

1.015

1.015

1.015

1.015

1.015

mg/L

mg/L

mg/L

mg/L

mg/L

0.000068

0.000068

0.000152

0.000102

0.169505

0.000203

0.000203

0.000203

0.000203

0.5075

U

Submittal Date:

5/26/22 12:33

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Ana	lyst: RDA			Preparati	on Method	: EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 12:01	1	.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	5/31/22 10:50	6/2/22 12:01	1	.015	1.69	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 12:01	1 1	.015	0.124	mg/L	0.008120	0.0406	
* Lithium, Total	5/31/22 10:50	6/2/22 12:01	1	.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 13:30) 1	.015	1.38	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 12:01	1		14.5	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 12:01	1	.015	6.79	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 12:01	1	.015	6.87	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Ana	lyst: RDA							
* Boron, Dissolved	5/27/22 09:45	6/1/22 12:46	5 1	.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Dissolved	5/27/22 09:45	6/1/22 12:46	5 1	.015	1.54	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 12:46	5 1	.015	0.0889	mg/L	0.008120	0.0406	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 12:46	5 1	.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 12:46	5 1	.015	1.22	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 12:46	5 1		14.7	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 12:46	5 1	.015	6.85	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 12:46	5 1	.015	7.70	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Ana	lyst: DLJ			Preparati	on Method	: EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 19:21	1	.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 19:21	1	.015	0.0313	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 19:21	1	.015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Total	6/1/22 11:30	6/1/22 19:21	1	.015	0.0399	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 19:21	1	.015	0.000649	mg/L	0.000406	0.001015	J
* Cadmium, Total	6/1/22 11:30	6/1/22 19:21	1 1	.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 19:21	1 1	.015	0.000257	mg/L	0.000203	0.001015	J
			-	-		-			

MDL's and RL's are adjusted for sample dilution, as applicable

* Cobalt, Total

* Manganese, Total

* Molybdenum, Total

* Potassium, Total

* Lead, Total

Comments: Filtered LCS and MB were not submitted or analyzed with Dissolved Metals.

6/1/22 11:30

6/1/22 11:30

6/1/22 11:30

6/1/22 11:30

6/1/22 11:30

6/1/22 19:21

6/1/22 19:21

6/1/22 19:21

6/1/22 19:21

6/1/22 19:21

Certificate Of Analysis

Description: Barry Ash Pond - MW-4

Location Code:

WMWBARAP

Collected:

5/25/22 15:35

Customer ID:

Submittal Date:

5/26/22 12:33

Laboratory ID Number: BC10117				Submitt	al Date:	5/26/22 12:3	3	
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 19:21	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 19:21	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	lyst: DLJ						
* Antimony, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	0.0111	mg/L	0.006090	0.01015	
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	0.0000852	mg/L	0.000081	0.000203	J
* Barium, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	0.0381	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	0.000656	mg/L	0.000406	0.001015	J
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	0.000372	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	0.00431	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	0.000251	mg/L	0.000068	0.000203	
* Manganese, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	0.0187	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	1.43	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	lyst: CRB						
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 12:13	3 1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	lyst: ELH						
* Nitrogen, Nitrate/Nitrite	5/31/22 09:48	5/31/22 09:4	18 1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Anal	lyst: ALH						
Alkalinity, Total as CaCO3	6/8/22 11:53	6/8/22 13:41	I 1	1.76	mg/L		0.1	
Analytical Method: SM 2540C	Anal	lyst: CNJ						
* Solids, Dissolved	5/31/22 11:22	6/1/22 14:18	3 1	48.7	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	lyst: ALH						
Bicarbonate Alkalinity, (calc.)	6/8/22 11:53	6/8/22 13:4 ²	I 1	1.76	mg/L			
Carbonate Alkalinity, (calc.)	6/8/22 11:53	6/8/22 13:41	I 1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		lyst: ELH						
* Total Organic Carbon	6/7/22 18:31	6/7/22 18:3	1 1	Not Detected	ma/l	1.00	2	U

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

FΑ

Description: Barry Ash Pond - MW-4

Sulfide

Location Code:

WMWBARAP 5/25/22 15:35

Collected: Customer ID:

Submittal Date:

mg/L

5/26/22 12:33

Laboratory ID Number: BC10117				Submit	tai Date:	5/26/22 12	::33	
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500CI E	Anal	yst: CES						
* Chloride	5/31/22 15:37	5/31/22 15:3	7 1	16.1	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Anal	yst: JCC						
* Fluoride	6/8/22 12:33	6/8/22 12:33	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC						
* Sulfate	6/7/22 14:49	6/7/22 14:49	1	1.97	mg/L	0.6	2	J
Analytical Method: Field Measurements	Anal	yst: AWG						
Conductivity	5/25/22 15:33	5/25/22 15:3	3	72.52	uS/cm			FA
рН	5/25/22 15:33	5/25/22 15:3	3	4.60	SU			FA
Temperature	5/25/22 15:33	5/25/22 15:3	3	22.57	С			FA
Turbidity	5/25/22 15:33	5/25/22 15:3	3	1.54	NTU			FA

5/25/22 15:33 5/25/22 15:33

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 15:35

Customer ID:

Delivery Date: 5/26/22 12:33

Description: Barry Ash Pond - MW-4

Laboratory ID Number: BC10117

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10126	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.102	0.102	0.0988	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
3C10122	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.120	0.118	0.109	0.0850 to 0.115	107	70.0 to 130	1.68	20.0
3C10126	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.101	0.101	0.0948	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10122	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.0924	0.0920	0.0923	0.0850 to 0.115	92.4	70.0 to 130	0.434	20.0
3C10126	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.136	0.131	0.103	0.0850 to 0.115	103	70.0 to 130	3.75	20.0
BC10122	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.102	0.100	0.101	0.0850 to 0.115	102	70.0 to 130	1.98	20.0
BC10126	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.264	0.257	0.0990	0.0850 to 0.115	100	70.0 to 130	2.69	20.0
BC10122	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.149	0.148	0.0996	0.0850 to 0.115	99.6	70.0 to 130	0.673	20.0
BC10126	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.104	0.0996	0.101	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10122	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.106	0.104	0.100	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
BC10126	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.08	1.06	1.02	0.850 to 1.15	102	70.0 to 130	1.87	20.0
BC10122	Boron, Total	mg/L	0.000059	0.0650	1.00	1.01	1.00	1.03	0.850 to 1.15	101	70.0 to 130	0.995	20.0
BC10126	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.102	0.101	0.103	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10122	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0995	0.0988	0.0989	0.0850 to 0.115	99.5	70.0 to 130	0.706	20.0
BC10126	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	19.2	19.2	5.03	4.25 to 5.75	96.0	70.0 to 130	0.00	20.0
BC10122	Calcium, Total	mg/L	0.00326	0.152	5.00	6.24	6.04	4.95	4.25 to 5.75	99.0	70.0 to 130	3.26	20.0
BC10122	Chloride	mg/L	-0.111	1.00	10.0	23.6	23.7	9.52	9.00 to 11.0	84.0	80.0 to 120	0.423	20.0
BC10126	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0993	0.0994	0.0999	0.0850 to 0.115	98.2	70.0 to 130	0.101	20.0
BC10122	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.102	0.101	0.100	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
BC10126	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.105	0.105	0.103	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC10122	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.101	0.100	0.101	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BC10122	Fluoride	mg/L	0.0243	0.125	2.50	2.50	2.49	2.57	2.25 to 2.75	100	80.0 to 120	0.401	20.0
BC10126	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	78.8	79.0	0.201	0.170 to 0.230	-1100	70.0 to 130	0.253	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date:

Customer ID:

5/25/22 15:35

Delivery Date:

5/26/22 12:33

Description: Barry Ash Pond - MW-4

Laboratory ID Number: BC10117

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10122	Iron, Total	mg/L	0.00011	0.0176	0.2	0.210	0.207	0.200	0.170 to 0.230	101	70.0 to 130	1.44	20.0
BC10126	Lead, Dissolved	mg/L	0.000088	0.000147	0.100	0.104	0.0996	0.104	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10122	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10126	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.213	0.211	0.203	0.170 to 0.230	106	70.0 to 130	0.943	20.0
BC10122	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.190	0.188	0.201	0.170 to 0.230	95.0	70.0 to 130	1.06	20.0
BC10126	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	10.2	10.2	5.17	4.25 to 5.75	100	70.0 to 130	0.00	20.0
BC10122	Magnesium, Total	mg/L	0.00638	0.0462	5.00	6.53	6.48	5.20	4.25 to 5.75	108	70.0 to 130	0.769	20.0
BC10126	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.745	0.742	0.102	0.0850 to 0.115	71.0	70.0 to 130	0.403	20.0
BC10122	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.113	0.111	0.103	0.0850 to 0.115	104	70.0 to 130	1.79	20.0
BC10122	Mercury, Total by CVAA	mg/L	0.000124	0.000500	0.004	0.00422	0.00420	0.00424	0.00340 to 0.00460	106	70.0 to 130	0.475	20.0
BC10126	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.0992	0.0985	0.100	0.0850 to 0.115	99.0	70.0 to 130	0.708	20.0
BC10122	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0995	0.0962	0.0973	0.0850 to 0.115	99.5	70.0 to 130	3.37	20.0
BC10126	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.1	10.8	9.74	8.50 to 11.5	96.1	70.0 to 130	2.74	20.0
BC10122	Potassium, Total	mg/L	-0.0105	0.367	10.0	11.5	11.3	10.2	8.50 to 11.5	103	70.0 to 130	1.75	20.0
BC10126	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.104	0.103	0.102	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10122	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.103	0.102	0.103	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC10126	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	13.4	13.4	1.01	0.850 to 1.15	90.0	70.0 to 130	0.00	20.0
BC10122	Silicon, Total	mg/L	0.000146	0.0440	1.00	7.33	7.32	1.02	0.850 to 1.15	111	70.0 to 130	0.137	20.0
BC10126	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	27.4	27.6	5.08	4.25 to 5.75	100	70.0 to 130	0.727	20.0
BC10122	Sodium, Total	mg/L	0.0212	0.0660	5.00	12.5	12.5	5.05	4.25 to 5.75	90.4	70.0 to 130	0.00	20.0
BC10122	Sulfate	mg/L	-0.244	2.0	20.0	20.8	20.8	18.8	18.0 to 22.0	97.0	80.0 to 120	0.00	20.0
BC10126	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.103	0.0988	0.102	0.0850 to 0.115	103	70.0 to 130	4.16	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/25/22 15:35

Customer ID:

Delivery Date: 5/26/22 12:33

Description: Barry Ash Pond - MW-4

Laboratory ID Number: BC10117

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10122	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10120	Total Organic Carbon	mg/L	0.240	1.00	10.0	11.1	11.2	25.3		99.9	80.0 to 120	0.897	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 15:35

Customer ID:

Delivery Date:

5/26/22 12:33

Description: Barry Ash Pond - MW-4

Laboratory ID Number: BC10117

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10128	Alkalinity, Total as CaCO3	mg/L					16.6	52.0	45.0 to 55.0			3.68	10.0
BC10120	Nitrogen, Nitrate/Nitrite	mg/L as N	0.02	0.200	2.00	1.96	-0.009	1.97	1.80 to 2.20	98.0	90.0 to 110	0.00	15.0
BC10116	Solids, Dissolved	mg/L	1.00	25.0			299	52.0	40.0 to 60.0			0.00	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-17V

Location Code:

WMWBARAP 5/25/22 10:39

Collected: Customer ID:

Submittal Date:

5/26/22 12:36

Laboratory	ID Number:	BC10118
------------	------------	---------

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analy	Analyst: RDA			Preparation Method: EPA 1638			
* Boron, Total	5/31/22 10:50	6/2/22 12:03	1.015	0.177	mg/L	0.030000	0.1015	
* Calcium, Total	5/31/22 10:50	6/2/22 12:49	20.3	49.6	mg/L	1.4007	8.12	
* Iron, Total	5/31/22 10:50	6/2/22 12:03	1.015	0.608	mg/L	0.008120	0.0406	
* Lithium, Total	5/31/22 10:50	6/2/22 12:03	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 13:34	1.015	35.1	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 12:03	1	12.2	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 12:03	1.015	5.70	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 12:49	20.3	407	mg/L	0.609	8.12	
Analytical Method: EPA 200.7	Analy	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 12:49	1.015	0.175	mg/L	0.030000	0.1015	
* Calcium, Dissolved	5/27/22 09:45	6/1/22 13:53	20.3	50.2	mg/L	1.4007	8.12	
* Iron, Dissolved	5/27/22 09:45	6/1/22 12:49	1.015	0.412	mg/L	0.008120	0.0406	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 12:49	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 12:49	1.015	32.9	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 12:49	1	12.2	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 12:49	1.015	5.70	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 13:53	20.3	412	mg/L	0.609	8.12	
Analytical Method: EPA 200.8	Analy		Preparation Method: EPA 1638					
* Antimony, Total	6/1/22 11:30	6/1/22 19:25	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 19:25	1.015	0.0639	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 19:25	1.015	0.00192	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 19:25	1.015	0.698	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 19:25	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 19:25	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 19:25	1.015	0.000477	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 19:25	1.015	0.0685	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 19:25	1.015	0.0000737	mg/L	0.000068	0.000203	J
* Manganese, Total	6/1/22 11:30	6/1/22 21:12	5.075	2.34	mg/L	0.000761	0.001015	
* Molybdenum, Total	6/1/22 11:30	6/1/22 19:25	1.015	0.000428	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 19:25		6.70	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-17V

Location Code:

WMWBARAP 5/25/22 10:39

Collected: Customer ID:

Submittal Date:

5/26/22 12:36

Laboratory ID Number: BC10118

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 19:2	5	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 19:2	5	1.015	0.000103	mg/L	0.000068	0.000203	J
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 18:	1 5	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 18:	1 5	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 18:	1 5	1.015	0.00158	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 18:	1 5	1.015	0.683	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 18:	1 5	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 18:	1 5	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 18:	1 5	1.015	0.000236	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 18:	1 5	1.015	0.0717	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 18:	1 5	1.015	Not Detected	mg/L	0.000068	0.000203	U
 Manganese, Dissolved 	5/31/22 14:15	6/1/22 17:3	3	5.075	2.48	mg/L	0.000761	0.001015	
 Molybdenum, Dissolved 	5/31/22 14:15	5/31/22 18:	1 5	1.015	0.000574	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 18:	1 5	1.015	6.43	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 18:	15	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 18:	1 5	1.015	0.0000964	mg/L	0.000068	0.000203	J
Analytical Method: EPA 245.1	Anal	yst: CRB							
 Mercury, Total by CVAA 	6/6/22 13:52	6/7/22 12:10	6	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: ELH							
* Nitrogen, Nitrate/Nitrite	5/31/22 09:50	5/31/22 09:	50	1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/8/22 08:59	6/8/22 10:2	3	1	91.8	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/31/22 11:22	6/1/22 14:1	3	1	1270	mg/L		125	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/8/22 08:59	6/8/22 10:2:	3	1	91.7	mg/L		1	Α
Carbonate Alkalinity, (calc.)	6/8/22 08:59	6/8/22 10:2:		1	Not Detected	mg/L		0.5	Α
Analytical Method: SM 5310 B		yst: ELH				-			
* Total Organic Carbon	6/7/22 18:55	6/7/22 18:5	5	1	Not Detected	ma/L	1.00	2	U

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-17V

Location Code:

WMWBARAP

Collected:

Customer ID:

5/25/22 10:39

Submittal Date:

mittal Date: 5/26/22 12:36

Laboratory ID Number: BC10118				Subil	nillai Dale:	5/20/22 12	.30	
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500CI E	Anai	yst: CES						
* Chloride	5/31/22 15:42	5/31/22 15:4	2 40	649	mg/L	20.00	40	
Analytical Method: SM4500F G 2017	Anai	yst: JCC						
* Fluoride	6/8/22 12:34	6/8/22 12:34	. 1	0.0799	mg/L	0.06	0.125	J
Analytical Method: SM4500SO4 E 2011	Anai	lyst: JCC						
* Sulfate	6/7/22 14:59	6/7/22 14:59	2	49.1	mg/L	1.2	4	
Analytical Method: Field Measurements	Anal	lyst: DKG						
Conductivity	5/25/22 10:36	5/25/22 10:3	6	2332.61	uS/cm			FA
рН	5/25/22 10:36	5/25/22 10:3	6	6.34	SU			FA
Temperature	5/25/22 10:36	5/25/22 10:3	6	21.85	С			FA
Turbidity	5/25/22 10:36	5/25/22 10:3	6	1.38	NTU			FA
Sulfide	5/25/22 10:36	5/25/22 10:3	6	0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 10:39

Customer ID:

Delivery Date: 5/26/22 12:36

Description: Barry Ash Pond - MW-17V

Laboratory ID Number: BC10118

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10126	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.102	0.102	0.0988	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10122	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.120	0.118	0.109	0.0850 to 0.115	107	70.0 to 130	1.68	20.0
BC10126	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.101	0.101	0.0948	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10122	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.0924	0.0920	0.0923	0.0850 to 0.115	92.4	70.0 to 130	0.434	20.0
BC10126	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.136	0.131	0.103	0.0850 to 0.115	103	70.0 to 130	3.75	20.0
BC10122	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.102	0.100	0.101	0.0850 to 0.115	102	70.0 to 130	1.98	20.0
BC10126	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.264	0.257	0.0990	0.0850 to 0.115	100	70.0 to 130	2.69	20.0
BC10122	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.149	0.148	0.0996	0.0850 to 0.115	99.6	70.0 to 130	0.673	20.0
BC10126	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.104	0.0996	0.101	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10122	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.106	0.104	0.100	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
BC10126	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.08	1.06	1.02	0.850 to 1.15	102	70.0 to 130	1.87	20.0
BC10122	Boron, Total	mg/L	0.000059	0.0650	1.00	1.01	1.00	1.03	0.850 to 1.15	101	70.0 to 130	0.995	20.0
BC10126	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.102	0.101	0.103	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10122	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0995	0.0988	0.0989	0.0850 to 0.115	99.5	70.0 to 130	0.706	20.0
BC10126	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	19.2	19.2	5.03	4.25 to 5.75	96.0	70.0 to 130	0.00	20.0
BC10122	Calcium, Total	mg/L	0.00326	0.152	5.00	6.24	6.04	4.95	4.25 to 5.75	99.0	70.0 to 130	3.26	20.0
BC10122	Chloride	mg/L	-0.111	1.00	10.0	23.6	23.7	9.52	9.00 to 11.0	84.0	80.0 to 120	0.423	20.0
BC10126	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0993	0.0994	0.0999	0.0850 to 0.115	98.2	70.0 to 130	0.101	20.0
BC10122	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.102	0.101	0.100	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
BC10126	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.105	0.105	0.103	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC10122	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.101	0.100	0.101	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BC10122	Fluoride	mg/L	0.0243	0.125	2.50	2.50	2.49	2.57	2.25 to 2.75	100	80.0 to 120	0.401	20.0
BC10126	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	78.8	79.0	0.201	0.170 to 0.230	-1100	70.0 to 130	0.253	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/25/22 10:39

Delivery Date:

Customer ID:

5/26/22 12:36

Description: Barry Ash Pond - MW-17V

Laboratory ID Number: BC10118

		·		MB	·			·	Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10122	Iron, Total	mg/L	0.00011	0.0176	0.2	0.210	0.207	0.200	0.170 to 0.230	101	70.0 to 130	1.44	20.0
BC10126	Lead, Dissolved	mg/L	0.0000088	0.000147	0.100	0.104	0.0996	0.104	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10122	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10126	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.213	0.211	0.203	0.170 to 0.230	106	70.0 to 130	0.943	20.0
BC10122	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.190	0.188	0.201	0.170 to 0.230	95.0	70.0 to 130	1.06	20.0
BC10126	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	10.2	10.2	5.17	4.25 to 5.75	100	70.0 to 130	0.00	20.0
BC10122	Magnesium, Total	mg/L	0.00638	0.0462	5.00	6.53	6.48	5.20	4.25 to 5.75	108	70.0 to 130	0.769	20.0
BC10126	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.745	0.742	0.102	0.0850 to 0.115	71.0	70.0 to 130	0.403	20.0
BC10122	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.113	0.111	0.103	0.0850 to 0.115	104	70.0 to 130	1.79	20.0
BC10122	Mercury, Total by CVAA	mg/L	0.000124	0.000500	0.004	0.00422	0.00420	0.00424	0.00340 to 0.00460	106	70.0 to 130	0.475	20.0
BC10126	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.0992	0.0985	0.100	0.0850 to 0.115	99.0	70.0 to 130	0.708	20.0
BC10122	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0995	0.0962	0.0973	0.0850 to 0.115	99.5	70.0 to 130	3.37	20.0
BC10126	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.1	10.8	9.74	8.50 to 11.5	96.1	70.0 to 130	2.74	20.0
BC10122	Potassium, Total	mg/L	-0.0105	0.367	10.0	11.5	11.3	10.2	8.50 to 11.5	103	70.0 to 130	1.75	20.0
BC10126	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.104	0.103	0.102	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10122	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.103	0.102	0.103	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC10126	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	13.4	13.4	1.01	0.850 to 1.15	90.0	70.0 to 130	0.00	20.0
BC10122	Silicon, Total	mg/L	0.000146	0.0440	1.00	7.33	7.32	1.02	0.850 to 1.15	111	70.0 to 130	0.137	20.0
BC10126	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	27.4	27.6	5.08	4.25 to 5.75	100	70.0 to 130	0.727	20.0
BC10122	Sodium, Total	mg/L	0.0212	0.0660	5.00	12.5	12.5	5.05	4.25 to 5.75	90.4	70.0 to 130	0.00	20.0
BC10122	Sulfate	mg/L	-0.244	2.0	20.0	20.8	20.8	18.8	18.0 to 22.0	97.0	80.0 to 120	0.00	20.0
BC10126	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.103	0.0988	0.102	0.0850 to 0.115	103	70.0 to 130	4.16	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 10:39

Customer ID:

Delivery Date: 5/26/22 12:36

Description: Barry Ash Pond - MW-17V

Laboratory ID Number: BC10118

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10122	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10120	Total Organic Carbon	mg/L	0.240	1.00	10.0	11.1	11.2	25.3		99.9	80.0 to 120	0.897	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 10:39

Customer ID:

Delivery Date:

5/26/22 12:36

Description: Barry Ash Pond - MW-17V

Laboratory ID Number: BC10118

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10124	Alkalinity, Total as CaCO3	mg/L					8.28	52.0	45.0 to 55.0			2.94	10.0
BC10120	Nitrogen, Nitrate/Nitrite	mg/L as N	0.02	0.200	2.00	1.96	-0.009	1.97	1.80 to 2.20	98.0	90.0 to 110	0.00	15.0
BC10116	Solids, Dissolved	mg/L	1.00	25.0			299	52.0	40.0 to 60.0			0.00	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-17HLocation Code:WMWBARAPCollected:5/25/22 11:23

Customer ID:

Laboratory ID Number: BC10119 Submittal Date: 5/26/22 12:36

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analy	/st: RDA		Preparati	ion Method:	EPA 1638	·	
* Boron, Total	5/31/22 10:50	6/2/22 12:06	1.015	0.0597	mg/L	0.030000	0.1015	J
* Calcium, Total	5/31/22 10:50	6/2/22 12:06	1.015	11.6	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 12:52	50.75	78.2	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 12:06	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 13:37	1.015	5.30	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 12:06	1	15.6	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 12:06	1.015	7.31	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 12:06	1.015	16.5	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analy	/st: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 12:52	1.015	0.0559	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	5/27/22 09:45	6/1/22 12:52	1.015	10.7	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 13:57	50.75	75.1	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 12:52	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 12:52	1.015	5.08	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 12:52	1	15.6	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 12:52	1.015	7.30	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 12:52	1.015	18.5	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Analy	/st: DLJ		Preparati	ion Method: I	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 19:28	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 19:28	1.015	0.0401	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 19:28	1.015	0.0300	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 19:28	1.015	0.126	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 19:28	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 19:28	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 19:28	1.015	0.000334	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 19:28	1.015	0.00130	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 19:28	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 19:28		0.357	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 19:28	1.015	0.000454	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 19:28		1.37	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-17H

Location Code: W Collected: 5/

WMWBARAP 5/25/22 11:23

Customer ID:

Submittal Date:

5/26/22 12:36

Laboratory ID Number: BC10119				Submit	tal Date:	5/26/22 12:3	6	
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 19:28	3 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 19:28	3 1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ						
* Antimony, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	0.0307	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	0.125	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	0.000324	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	0.00140	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	0.354	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	0.000372	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	1.37	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 18:4	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	lyst: CRB						
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 12:18	3 1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Ana	lyst: ELH						
* Nitrogen, Nitrate/Nitrite	5/31/22 09:52	5/31/22 09:5	52 1	0.251	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Ana	lyst: ALH						
Alkalinity, Total as CaCO3	6/8/22 08:59	6/8/22 10:23	3 1	143	mg/L		0.1	
Analytical Method: SM 2540C	Ana	lyst: CNJ						
* Solids, Dissolved	5/31/22 11:22	6/1/22 14:18	3 1	194	mg/L		25	
Analytical Method: SM 4500CO2 D	Ana	lyst: ALH						
Bicarbonate Alkalinity, (calc.)	6/8/22 08:59	6/8/22 10:23	3 1	143	mg/L			
Carbonate Alkalinity, (calc.)	6/8/22 08:59	6/8/22 10:23	3 1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		lyst: ELH						
	6/7/22 19:13	6/7/22 19:13	3 1	5.77	mg/L	1.00	2	
					-			

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-17H

Location Code:

WMWBARAP

Collected:

Customer ID:

5/25/22 11:23

Laboratory ID Number: BC10119

Submittal Date: 5/26/22 12:36

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Anai	lyst: CES							
* Chloride	5/31/22 15:29	5/31/22 15:2	29	1	16.0	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Anai	lyst: JCC							
* Fluoride	6/8/22 12:35	6/8/22 12:35	5	1	0.138	mg/L	0.06	0.125	
Analytical Method: SM4500SO4 E 2011	Anai	lyst: JCC							
* Sulfate	6/7/22 14:51	6/7/22 14:5	1	1	3.58	mg/L	0.6	2	
Analytical Method: Field Measurements	Anai	lyst: DKG							
Conductivity	5/25/22 11:20	5/25/22 11:2	20		388.95	uS/cm			FA
рН	5/25/22 11:20	5/25/22 11:2	20		6.21	SU			FA
Temperature	5/25/22 11:20	5/25/22 11:2	20		21.46	С			FA
Turbidity	5/25/22 11:20	5/25/22 11:2	20		2.84	NTU			FA
Sulfide	5/25/22 11:20	5/25/22 11:2	20		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP Sample Date:

Customer ID:

5/25/22 11:23

Delivery Date: 5/26/22 12:36

Description: Barry Ash Pond - MW-17H

Laboratory ID Number: BC10119

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10126	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.102	0.102	0.0988	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10122	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.120	0.118	0.109	0.0850 to 0.115	107	70.0 to 130	1.68	20.0
BC10126	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.101	0.101	0.0948	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10122	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.0924	0.0920	0.0923	0.0850 to 0.115	92.4	70.0 to 130	0.434	20.0
BC10126	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.136	0.131	0.103	0.0850 to 0.115	103	70.0 to 130	3.75	20.0
BC10122	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.102	0.100	0.101	0.0850 to 0.115	102	70.0 to 130	1.98	20.0
BC10126	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.264	0.257	0.0990	0.0850 to 0.115	100	70.0 to 130	2.69	20.0
BC10122	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.149	0.148	0.0996	0.0850 to 0.115	99.6	70.0 to 130	0.673	20.0
BC10126	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.104	0.0996	0.101	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10122	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.106	0.104	0.100	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
BC10126	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.08	1.06	1.02	0.850 to 1.15	102	70.0 to 130	1.87	20.0
BC10122	Boron, Total	mg/L	0.000059	0.0650	1.00	1.01	1.00	1.03	0.850 to 1.15	101	70.0 to 130	0.995	20.0
BC10126	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.102	0.101	0.103	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10122	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0995	0.0988	0.0989	0.0850 to 0.115	99.5	70.0 to 130	0.706	20.0
BC10126	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	19.2	19.2	5.03	4.25 to 5.75	96.0	70.0 to 130	0.00	20.0
BC10122	Calcium, Total	mg/L	0.00326	0.152	5.00	6.24	6.04	4.95	4.25 to 5.75	99.0	70.0 to 130	3.26	20.0
BC10122	Chloride	mg/L	-0.111	1.00	10.0	23.6	23.7	9.52	9.00 to 11.0	84.0	80.0 to 120	0.423	20.0
BC10126	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0993	0.0994	0.0999	0.0850 to 0.115	98.2	70.0 to 130	0.101	20.0
BC10122	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.102	0.101	0.100	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
BC10126	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.105	0.105	0.103	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC10122	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.101	0.100	0.101	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BC10122	Fluoride	mg/L	0.0243	0.125	2.50	2.50	2.49	2.57	2.25 to 2.75	100	80.0 to 120	0.401	20.0
BC10126	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	78.8	79.0	0.201	0.170 to 0.230	-1100	70.0 to 130	0.253	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/25/22 11:23

Customer ID:

Delivery Date: 5/26/22 12:36

Description: Barry Ash Pond - MW-17H

Laboratory ID Number: BC10119

	•			MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10122	Iron, Total	mg/L	0.00011	0.0176	0.2	0.210	0.207	0.200	0.170 to 0.230	101	70.0 to 130	1.44	20.0
BC10126	Lead, Dissolved	mg/L	0.0000088	0.000147	0.100	0.104	0.0996	0.104	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10122	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10126	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.213	0.211	0.203	0.170 to 0.230	106	70.0 to 130	0.943	20.0
BC10122	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.190	0.188	0.201	0.170 to 0.230	95.0	70.0 to 130	1.06	20.0
BC10126	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	10.2	10.2	5.17	4.25 to 5.75	100	70.0 to 130	0.00	20.0
BC10122	Magnesium, Total	mg/L	0.00638	0.0462	5.00	6.53	6.48	5.20	4.25 to 5.75	108	70.0 to 130	0.769	20.0
BC10126	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.745	0.742	0.102	0.0850 to 0.115	71.0	70.0 to 130	0.403	20.0
BC10122	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.113	0.111	0.103	0.0850 to 0.115	104	70.0 to 130	1.79	20.0
BC10122	Mercury, Total by CVAA	mg/L	0.000124	0.000500	0.004	0.00422	0.00420	0.00424	0.00340 to 0.00460	106	70.0 to 130	0.475	20.0
BC10126	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.0992	0.0985	0.100	0.0850 to 0.115	99.0	70.0 to 130	0.708	20.0
BC10122	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0995	0.0962	0.0973	0.0850 to 0.115	99.5	70.0 to 130	3.37	20.0
BC10126	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.1	10.8	9.74	8.50 to 11.5	96.1	70.0 to 130	2.74	20.0
BC10122	Potassium, Total	mg/L	-0.0105	0.367	10.0	11.5	11.3	10.2	8.50 to 11.5	103	70.0 to 130	1.75	20.0
BC10126	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.104	0.103	0.102	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10122	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.103	0.102	0.103	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC10126	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	13.4	13.4	1.01	0.850 to 1.15	90.0	70.0 to 130	0.00	20.0
BC10122	Silicon, Total	mg/L	0.000146	0.0440	1.00	7.33	7.32	1.02	0.850 to 1.15	111	70.0 to 130	0.137	20.0
BC10126	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	27.4	27.6	5.08	4.25 to 5.75	100	70.0 to 130	0.727	20.0
BC10122	Sodium, Total	mg/L	0.0212	0.0660	5.00	12.5	12.5	5.05	4.25 to 5.75	90.4	70.0 to 130	0.00	20.0
BC10122	Sulfate	mg/L	-0.244	2.0	20.0	20.8	20.8	18.8	18.0 to 22.0	97.0	80.0 to 120	0.00	20.0
BC10126	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.103	0.0988	0.102	0.0850 to 0.115	103	70.0 to 130	4.16	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 11:23

Customer ID:

Delivery Date: 5/26/22 12:36

Description: Barry Ash Pond - MW-17H

Laboratory ID Number: BC10119

	•			MD					Standard		Doo		— Drae
				MB					Stariuaru		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	Limit
BC10122	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10120	Total Organic Carbon	mg/L	0.240	1.00	10.0	11.1	11.2	25.3		99.9	80.0 to 120	0.897	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 11:23

Customer ID:

Delivery Date:

5/26/22 12:36

Description: Barry Ash Pond - MW-17H

Laboratory ID Number: BC10119

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10124	Alkalinity, Total as CaCO3	mg/L					8.28	52.0	45.0 to 55.0			2.94	10.0
BC10120	Nitrogen, Nitrate/Nitrite	mg/L as N	0.02	0.200	2.00	1.96	-0.009	1.97	1.80 to 2.20	98.0	90.0 to 110	0.00	15.0
BC10126	Solids, Dissolved	mg/L	1.00	25.0			258	52.0	40.0 to 60.0			2.35	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-23VLocation Code:WMWBARAPCollected:5/25/22 12:50

Customer ID:

Laboratory ID Number: BC10120 Submittal Date: 5/26/22 12:36

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	on Method:	EPA 1638		_
* Boron, Total	5/31/22 10:50	6/2/22 12:09	1.015	0.307	mg/L	0.030000	0.1015	
* Calcium, Total	5/31/22 10:50	6/2/22 12:09	1.015	0.899	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 12:09	1.015	0.605	mg/L	0.008120	0.0406	
* Lithium, Total	5/31/22 10:50	6/2/22 12:09	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 13:40	1.015	0.527	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 12:09	1	12.7	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 12:09	1.015	5.94	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 12:55	20.3	139	mg/L	0.609	8.12	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 12:55	1.015	0.308	mg/L	0.030000	0.1015	
* Calcium, Dissolved	5/27/22 09:45	6/1/22 12:55	1.015	0.873	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 12:55	1.015	0.467	mg/L	0.008120	0.0406	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 12:55	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 12:55	1.015	0.485	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 12:55	1	12.8	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 12:55	1.015	5.99	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 14:00	20.3	144	mg/L	0.609	8.12	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 19:32	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 19:32	1.015	0.0466	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 19:32	1.015	0.00149	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 19:32	1.015	0.00735	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 19:32	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 19:32	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 19:32	1.015	0.000455	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 19:32	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Total	6/1/22 11:30	6/1/22 19:32	1.015	0.000124	mg/L	0.000068	0.000203	J
* Manganese, Total	6/1/22 11:30	6/1/22 19:32	1.015	0.0258	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 19:32	1.015	0.00142	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 19:32	1.015	1.50	mg/L	0.169505	0.5075	
					-			

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-23V

Location Code:

WMWBARAP

Collected:

Customer ID: Submittal Date:

5/25/22 12:50 5/26/22 12:36

Laboratory ID Number: BC10120

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 19:32		1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 19:32		1.015	Not Detected	ŭ	0.000068	0.000203	U
Analytical Method: EPA 200.8		yst: DLJ	-	1.015	Not Belevied	9/ =	0.000000	0.000200	
* Antimony, Dissolved	5/31/22 14:15	-	3	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15		_	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15			1.015	0.00158	mg/L	0.000081	0.000203	-
* Barium, Dissolved	5/31/22 14:15			1.015	0.00729	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15			1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15			1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15			1.015	0.000286	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15			1.015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Dissolved	5/31/22 14:15		53	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15		53	1.015	0.0263	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 18:5	53	1.015	0.00151	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 18:5	53	1.015	1.51	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 18:5	53	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 18:5	53	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 12:20)	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: ELH							
* Nitrogen, Nitrate/Nitrite	5/31/22 09:54	5/31/22 09:5	54	1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/8/22 08:59	6/8/22 10:23	3	1	168	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/31/22 11:22	6/1/22 14:18	3	1	359	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/8/22 08:59	6/8/22 10:23	3	1	166	mg/L			
Carbonate Alkalinity, (calc.)	6/8/22 08:59	6/8/22 10:23		1	2.01	mg/L			
Analytical Method: SM 5310 B		yst: ELH		-		J			
* Total Organic Carbon		6/7/22 19:36	:	1	1.11	mg/L	1.00	2	J
Total Organic Oarbon	6/7/22 19:36	0/1/22 19:30)	1	1.11	mg/L	1.00	۷	J

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-23V

Location Code:

WMWBARAP 5/25/22 12:50

Collected:

Customer ID:

Submittal Date: 5/26/22 12:36

Laboratory ID Number: BC10120				Subi	miliai Dale:	5/26/22 12	.30	
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500CI E	Anal	yst: CES						
* Chloride	5/31/22 15:43	5/31/22 15:4	3 20	106	mg/L	10.00	20	
Analytical Method: SM4500F G 2017	Anal	yst: JCC						
* Fluoride	6/8/22 12:36	6/8/22 12:36	1	0.385	mg/L	0.06	0.125	
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC						
* Sulfate	6/7/22 14:53	6/7/22 14:53	1	4.25	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	yst: DKG						
Conductivity	5/25/22 12:47	5/25/22 12:4	7	636.87	uS/cm			FA
рН	5/25/22 12:47	5/25/22 12:4	7	7.44	SU			FA
Temperature	5/25/22 12:47	5/25/22 12:4	7	20.55	С			FA
Turbidity	5/25/22 12:47	5/25/22 12:4	7	2.11	NTU			FA
Sulfide	5/25/22 12:47	5/25/22 12:4	7	0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP 5/25/22 12:50

Sample Date:

Customer ID:

Delivery Date: 5/26/22 12:36

Description: Barry Ash Pond - MW-23V

Laboratory ID Number: BC10120

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10126	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.102	0.102	0.0988	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10122	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.120	0.118	0.109	0.0850 to 0.115	107	70.0 to 130	1.68	20.0
BC10126	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.101	0.101	0.0948	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10122	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.0924	0.0920	0.0923	0.0850 to 0.115	92.4	70.0 to 130	0.434	20.0
BC10126	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.136	0.131	0.103	0.0850 to 0.115	103	70.0 to 130	3.75	20.0
BC10122	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.102	0.100	0.101	0.0850 to 0.115	102	70.0 to 130	1.98	20.0
BC10126	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.264	0.257	0.0990	0.0850 to 0.115	100	70.0 to 130	2.69	20.0
BC10122	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.149	0.148	0.0996	0.0850 to 0.115	99.6	70.0 to 130	0.673	20.0
BC10126	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.104	0.0996	0.101	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10122	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.106	0.104	0.100	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
BC10126	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.08	1.06	1.02	0.850 to 1.15	102	70.0 to 130	1.87	20.0
BC10122	Boron, Total	mg/L	0.000059	0.0650	1.00	1.01	1.00	1.03	0.850 to 1.15	101	70.0 to 130	0.995	20.0
BC10126	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.102	0.101	0.103	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10122	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0995	0.0988	0.0989	0.0850 to 0.115	99.5	70.0 to 130	0.706	20.0
BC10126	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	19.2	19.2	5.03	4.25 to 5.75	96.0	70.0 to 130	0.00	20.0
BC10122	Calcium, Total	mg/L	0.00326	0.152	5.00	6.24	6.04	4.95	4.25 to 5.75	99.0	70.0 to 130	3.26	20.0
BC10122	Chloride	mg/L	-0.111	1.00	10.0	23.6	23.7	9.52	9.00 to 11.0	84.0	80.0 to 120	0.423	20.0
BC10126	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0993	0.0994	0.0999	0.0850 to 0.115	98.2	70.0 to 130	0.101	20.0
BC10122	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.102	0.101	0.100	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
BC10126	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.105	0.105	0.103	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC10122	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.101	0.100	0.101	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BC10122	Fluoride	mg/L	0.0243	0.125	2.50	2.50	2.49	2.57	2.25 to 2.75	100	80.0 to 120	0.401	20.0
BC10126	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	78.8	79.0	0.201	0.170 to 0.230	-1100	70.0 to 130	0.253	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 12:50

Customer ID:

Delivery Date: 5/26/22 12:36

Description: Barry Ash Pond - MW-23V

Laboratory ID Number: BC10120

	_		MB					Standard		Rec		Prec
Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
Iron, Total	mg/L	0.00011	0.0176	0.2	0.210	0.207	0.200	0.170 to 0.230	101	70.0 to 130	1.44	20.0
Lead, Dissolved	mg/L	0.0000088	0.000147	0.100	0.104	0.0996	0.104	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.213	0.211	0.203	0.170 to 0.230	106	70.0 to 130	0.943	20.0
Lithium, Total	mg/L	0.00014	0.0154	0.200	0.190	0.188	0.201	0.170 to 0.230	95.0	70.0 to 130	1.06	20.0
Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	10.2	10.2	5.17	4.25 to 5.75	100	70.0 to 130	0.00	20.0
Magnesium, Total	mg/L	0.00638	0.0462	5.00	6.53	6.48	5.20	4.25 to 5.75	108	70.0 to 130	0.769	20.0
Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.745	0.742	0.102	0.0850 to 0.115	71.0	70.0 to 130	0.403	20.0
Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.113	0.111	0.103	0.0850 to 0.115	104	70.0 to 130	1.79	20.0
Mercury, Total by CVAA	mg/L	0.000124	0.000500	0.004	0.00422	0.00420	0.00424	0.00340 to 0.00460	106	70.0 to 130	0.475	20.0
Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.0992	0.0985	0.100	0.0850 to 0.115	99.0	70.0 to 130	0.708	20.0
Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0995	0.0962	0.0973	0.0850 to 0.115	99.5	70.0 to 130	3.37	20.0
Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.1	10.8	9.74	8.50 to 11.5	96.1	70.0 to 130	2.74	20.0
Potassium, Total	mg/L	-0.0105	0.367	10.0	11.5	11.3	10.2	8.50 to 11.5	103	70.0 to 130	1.75	20.0
Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.104	0.103	0.102	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
Selenium, Total	mg/L	0.000162	0.00100	0.100	0.103	0.102	0.103	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	13.4	13.4	1.01	0.850 to 1.15	90.0	70.0 to 130	0.00	20.0
Silicon, Total	mg/L	0.000146	0.0440	1.00	7.33	7.32	1.02	0.850 to 1.15	111	70.0 to 130	0.137	20.0
Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	27.4	27.6	5.08	4.25 to 5.75	100	70.0 to 130	0.727	20.0
Sodium, Total	mg/L	0.0212	0.0660	5.00	12.5	12.5	5.05	4.25 to 5.75	90.4	70.0 to 130	0.00	20.0
Sulfate	mg/L	-0.244	2.0	20.0	20.8	20.8	18.8	18.0 to 22.0	97.0	80.0 to 120	0.00	20.0
Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.103	0.0988	0.102	0.0850 to 0.115	103	70.0 to 130	4.16	20.0
	Iron, Total Lead, Dissolved Lead, Total Lithium, Dissolved Lithium, Total Magnesium, Dissolved Magnesium, Total Manganese, Dissolved Manganese, Total Mercury, Total by CVAA Molybdenum, Dissolved Molybdenum, Total Potassium, Dissolved Potassium, Dissolved Selenium, Total Selenium, Total Silicon, Dissolved Sodium, Total Sodium, Dissolved Sodium, Total Sodium, Dissolved Sodium, Total	Iron, Total mg/L Lead, Dissolved mg/L Lead, Total mg/L Lithium, Dissolved mg/L Lithium, Total mg/L Magnesium, Dissolved mg/L Manganese, Dissolved mg/L Manganese, Total mg/L Mercury, Total by CVAA mg/L Molybdenum, Dissolved mg/L Molybdenum, Total mg/L Selenium, Dissolved mg/L Selenium, Total mg/L Selenium, Total mg/L Sodium, Dissolved mg/L Sodium, Dissolved mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L Sodium, Total mg/L	Iron, Total	Iron, Total	Iron, Total	MB	MB	MB	MB	MB	MB	Analysis Units MB Limit Spike MS MSD Standard Limit Rec Limit Prec Iron, Total

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 12:50

Customer ID:

Delivery Date: 5/26/22 12:36

Description: Barry Ash Pond - MW-23V

Laboratory ID Number: BC10120

	•			MD					Standard		Doo		— Drae
				MB					Stariuaru		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	Limit
BC10122	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10120	Total Organic Carbon	mg/L	0.240	1.00	10.0	11.1	11.2	25.3		99.9	80.0 to 120	0.897	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date: 5/2

5/25/22 12:50

Customer ID:

Delivery Date:

5/26/22 12:36

Description: Barry Ash Pond - MW-23V

Laboratory ID Number: BC10120

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10124	Alkalinity, Total as CaCO3	mg/L					8.28	52.0	45.0 to 55.0			2.94	10.0
BC10120	Nitrogen, Nitrate/Nitrite	mg/L as N	0.02	0.200	2.00	1.96	-0.009	1.97	1.80 to 2.20	98.0	90.0 to 110	0.00	15.0
BC10126	Solids, Dissolved	mg/L	1.00	25.0			258	52.0	40.0 to 60.0			2.35	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-23HLocation Code:WMWBARAPCollected:5/25/22 13:53

Customer ID:

Laboratory ID Number: BC10121 Submittal Date: 5/26/22 12:36

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	ion Method: I	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 12:12	1.015	0.0526	mg/L	0.030000	0.1015	J
* Calcium, Total	5/31/22 10:50	6/2/22 12:12	1.015	24.5	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 13:00	50.75	56.4	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 12:12	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 13:44	1.015	7.30	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 12:12	. 1	34.2	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 12:12	1.015	16.0	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 12:12	1.015	18.9	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 12:58	1.015	0.0467	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	5/27/22 09:45	6/1/22 12:58	1.015	22.4	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 14:04	50.75	54.7	mg/L	0.40600	2.03	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 12:58	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 12:58	1.015	6.48	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 12:58	1	33.2	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 12:58	1.015	15.5	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 12:58	1.015	20.8	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	ion Method: I	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 19:35	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 19:35	1.015	0.0145	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 19:35	1.015	0.00518	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 19:35	1.015	0.174	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 19:35	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 19:35	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 19:35	1.015	0.000514	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 19:35	1.015	0.00200	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 19:35		Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 19:35	1.015	0.988	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 19:35		0.000131	mg/L	0.000102	0.000203	J
* Potassium, Total	6/1/22 11:30	6/1/22 19:35		1.06	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-23HLocation Code:WMWBARAPCollected:5/25/22 13:53

Customer ID:

Submittal Date: 5/26/22 12:36

Laboratory ID Number: BC10121

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 19:35	5	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 19:35	5	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 18:5	56	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 18:5	56	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 18:5	56	1.015	0.00478	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 18:5	56	1.015	0.176	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 18:5	56	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 18:5	56	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 18:5	56	1.015	0.000604	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 18:5	56	1.015	0.00189	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 18:5	56	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 18:5	56	1.015	0.937	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 18:5	56	1.015	0.000157	mg/L	0.000102	0.000203	J
* Potassium, Dissolved	5/31/22 14:15	5/31/22 18:5	56	1.015	0.973	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 18:5	56	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 18:5	56	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 12:23	3	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: ELH							
* Nitrogen, Nitrate/Nitrite	5/31/22 10:03	5/31/22 10:0	03	1	0.246	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/8/22 11:53	6/8/22 13:41	1	1	194	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/31/22 11:22	6/1/22 14:18	3	1	236	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/8/22 11:53	6/8/22 13:4 ²	I	1	194	mg/L			
Carbonate Alkalinity, (calc.)	6/8/22 11:53	6/8/22 13:41	1	1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		yst: ELH							
* Total Organic Carbon	6/7/22 21:09	6/7/22 21:09	a	1	5.68	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-23H

Location Code:

WMWBARAP

Collected:

Customer ID:

5/25/22 13:53

Laboratory ID Number: BC10121

Submittal Date: 5/26/22 12:36

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Ana	lyst: CES							
* Chloride	5/31/22 15:31	5/31/22 15:3	31	1	6.63	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	6/8/22 12:38	6/8/22 12:38	3	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	6/7/22 14:54	6/7/22 14:54	4	1	4.01	mg/L	0.6	2	
Analytical Method: Field Measurements	Ana	lyst: DKG							
Conductivity	5/25/22 13:50	5/25/22 13:5	50		411.87	uS/cm			FA
рН	5/25/22 13:50	5/25/22 13:5	50		5.92	SU			FA
Temperature	5/25/22 13:50	5/25/22 13:5	50		20.16	С			FA
Turbidity	5/25/22 13:50	5/25/22 13:5	50		1.45	NTU			FA
Sulfide	5/25/22 13:50	5/25/22 13:	50		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 13:53

Customer ID:

Delivery Date:

5/26/22 12:36

Description: Barry Ash Pond - MW-23H

Laboratory ID Number: BC10121

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mi
BC10126	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.102	0.102	0.0988	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10122	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.120	0.118	0.109	0.0850 to 0.115	107	70.0 to 130	1.68	20.0
BC10126	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.101	0.101	0.0948	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10122	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.0924	0.0920	0.0923	0.0850 to 0.115	92.4	70.0 to 130	0.434	20.0
BC10126	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.136	0.131	0.103	0.0850 to 0.115	103	70.0 to 130	3.75	20.0
BC10122	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.102	0.100	0.101	0.0850 to 0.115	102	70.0 to 130	1.98	20.0
BC10126	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.264	0.257	0.0990	0.0850 to 0.115	100	70.0 to 130	2.69	20.0
BC10122	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.149	0.148	0.0996	0.0850 to 0.115	99.6	70.0 to 130	0.673	20.0
BC10126	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.104	0.0996	0.101	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10122	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.106	0.104	0.100	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
BC10126	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.08	1.06	1.02	0.850 to 1.15	102	70.0 to 130	1.87	20.0
BC10122	Boron, Total	mg/L	0.000059	0.0650	1.00	1.01	1.00	1.03	0.850 to 1.15	101	70.0 to 130	0.995	20.0
BC10126	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.102	0.101	0.103	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10122	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0995	0.0988	0.0989	0.0850 to 0.115	99.5	70.0 to 130	0.706	20.0
BC10126	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	19.2	19.2	5.03	4.25 to 5.75	96.0	70.0 to 130	0.00	20.0
BC10122	Calcium, Total	mg/L	0.00326	0.152	5.00	6.24	6.04	4.95	4.25 to 5.75	99.0	70.0 to 130	3.26	20.0
BC10122	Chloride	mg/L	-0.111	1.00	10.0	23.6	23.7	9.52	9.00 to 11.0	84.0	80.0 to 120	0.423	20.0
BC10126	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0993	0.0994	0.0999	0.0850 to 0.115	98.2	70.0 to 130	0.101	20.0
BC10122	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.102	0.101	0.100	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
BC10126	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.105	0.105	0.103	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC10122	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.101	0.100	0.101	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BC10122	Fluoride	mg/L	0.0243	0.125	2.50	2.50	2.49	2.57	2.25 to 2.75	100	80.0 to 120	0.401	20.0
BC10126	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	78.8	79.0	0.201	0.170 to 0.230	-1100	70.0 to 130	0.253	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/25/22 13:53

Customer ID:

Delivery Date: 5/26/22 12:36

Description: Barry Ash Pond - MW-23H

Laboratory ID Number: BC10121

	•			MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10122	Iron, Total	mg/L	0.00011	0.0176	0.2	0.210	0.207	0.200	0.170 to 0.230	101	70.0 to 130	1.44	20.0
BC10126	Lead, Dissolved	mg/L	0.0000088	0.000147	0.100	0.104	0.0996	0.104	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10122	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10126	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.213	0.211	0.203	0.170 to 0.230	106	70.0 to 130	0.943	20.0
BC10122	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.190	0.188	0.201	0.170 to 0.230	95.0	70.0 to 130	1.06	20.0
BC10126	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	10.2	10.2	5.17	4.25 to 5.75	100	70.0 to 130	0.00	20.0
BC10122	Magnesium, Total	mg/L	0.00638	0.0462	5.00	6.53	6.48	5.20	4.25 to 5.75	108	70.0 to 130	0.769	20.0
BC10126	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.745	0.742	0.102	0.0850 to 0.115	71.0	70.0 to 130	0.403	20.0
BC10122	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.113	0.111	0.103	0.0850 to 0.115	104	70.0 to 130	1.79	20.0
BC10122	Mercury, Total by CVAA	mg/L	0.000124	0.000500	0.004	0.00422	0.00420	0.00424	0.00340 to 0.00460	106	70.0 to 130	0.475	20.0
BC10126	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.0992	0.0985	0.100	0.0850 to 0.115	99.0	70.0 to 130	0.708	20.0
BC10122	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0995	0.0962	0.0973	0.0850 to 0.115	99.5	70.0 to 130	3.37	20.0
BC10126	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.1	10.8	9.74	8.50 to 11.5	96.1	70.0 to 130	2.74	20.0
BC10122	Potassium, Total	mg/L	-0.0105	0.367	10.0	11.5	11.3	10.2	8.50 to 11.5	103	70.0 to 130	1.75	20.0
BC10126	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.104	0.103	0.102	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10122	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.103	0.102	0.103	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC10126	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	13.4	13.4	1.01	0.850 to 1.15	90.0	70.0 to 130	0.00	20.0
BC10122	Silicon, Total	mg/L	0.000146	0.0440	1.00	7.33	7.32	1.02	0.850 to 1.15	111	70.0 to 130	0.137	20.0
BC10126	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	27.4	27.6	5.08	4.25 to 5.75	100	70.0 to 130	0.727	20.0
BC10122	Sodium, Total	mg/L	0.0212	0.0660	5.00	12.5	12.5	5.05	4.25 to 5.75	90.4	70.0 to 130	0.00	20.0
BC10122	Sulfate	mg/L	-0.244	2.0	20.0	20.8	20.8	18.8	18.0 to 22.0	97.0	80.0 to 120	0.00	20.0
BC10126	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.103	0.0988	0.102	0.0850 to 0.115	103	70.0 to 130	4.16	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 13:53

Customer ID:

Delivery Date: 5/26/22 12:36

Description: Barry Ash Pond - MW-23H

Laboratory ID Number: BC10121

'				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10122	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10129	Total Organic Carbon	mg/L	0.217	1.00	10.0	10.3	10.4	25.1		103	80.0 to 120	0.966	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 13:53

Customer ID:

Delivery Date: 5/26/22 12:36

Description: Barry Ash Pond - MW-23H

Laboratory ID Number: BC10121

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10128	Alkalinity, Total as CaCO3	mg/L					16.6	52.0	45.0 to 55.0			3.68	10.0
BC10129	Nitrogen, Nitrate/Nitrite	mg/L as N	-0.01	0.200	2.00	1.90	-0.030	1.90	1.80 to 2.20	95.0	90.0 to 110	0.00	15.0
BC10126	Solids, Dissolved	mg/L	1.00	25.0			258	52.0	40.0 to 60.0			2.35	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-3Location Code:WMWBARAPCollected:5/25/22 15:05

Customer ID:

Laboratory ID Number: BC10122 Submittal Date: 5/26/22 12:36

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	on Method:	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 12:15	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	5/31/22 10:50	6/2/22 12:15	1.015	1.29	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 12:15	1.015	0.00821	mg/L	0.008120	0.0406	J
* Lithium, Total	5/31/22 10:50	6/2/22 12:15	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 13:47	1.015	1.11	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 12:15	1	13.3	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 12:15	1.015	6.22	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 12:15	1.015	7.98	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 13:01	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Dissolved	5/27/22 09:45	6/1/22 13:01	1.015	1.28	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 13:01	1.015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Dissolved	5/27/22 09:45	6/1/22 13:01	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 13:01	1.015	1.05	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 13:01	1	13.7	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 13:01	1.015	6.39	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 13:01	1.015	8.96	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 19:39	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 19:39	1.015	0.0130	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 19:39	1.015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Total	6/1/22 11:30	6/1/22 19:39	1.015	0.0494	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 19:39	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 19:39	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 19:39	1.015	0.00104	mg/L	0.000203	0.001015	
* Cobalt, Total	6/1/22 11:30	6/1/22 19:39	1.015	0.000279	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 19:39		Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 19:39	1.015	0.00891	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 19:39		Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/1/22 11:30	6/1/22 19:39		1.24	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-3

Location Code:

WMWBARAP

Collected:

Customer ID: Submittal Date: 5/25/22 15:05

5/26/22 12:36

Laboratory ID Number: BC10122

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 19:39	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 19:39	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ						
* Antimony, Dissolved	5/31/22 14:15	5/31/22 19:0	0 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 19:0	0 1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 19:00	0 1.015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Dissolved	5/31/22 14:15	5/31/22 19:00	0 1.015	0.0515	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 19:00	0 1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 19:00	0 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 19:00	0 1.015	0.00108	mg/L	0.000203	0.001015	
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 19:00	0 1.015	0.000284	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 19:00	0 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 19:00	0 1.015	0.00888	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 19:00	0 1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Dissolved	5/31/22 14:15	5/31/22 19:00	0 1.015	1.25	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 19:00	0 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 19:00	0 1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB						
 Mercury, Total by CVAA 	6/6/22 13:52	6/7/22 12:25	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: ELH						
* Nitrogen, Nitrate/Nitrite	5/31/22 10:05	5/31/22 10:0	5 1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Anal	yst: ALH						
Alkalinity, Total as CaCO3	6/8/22 11:53	6/8/22 13:41	1	2.52	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ						
* Solids, Dissolved	5/31/22 11:22	6/1/22 14:18	1	50.7	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH						
Bicarbonate Alkalinity, (calc.)	6/8/22 11:53	6/8/22 13:41	1	2.52	mg/L			
Carbonate Alkalinity, (calc.)	6/8/22 11:53	6/8/22 13:41	1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		yst: ELH						
* Total Organic Carbon	6/7/22 21:28	6/7/22 21:28	1	Not Detected	ma/L	1.00	2	U

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-3

Location Code:

WMWBARAP

Collected:

Customer ID:

5/25/22 15:05

Submittal Date:

5/26/22 12:36

Laboratory ID Number: BC10122					Submit	iai Date:	5/20/22 12	.30	
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500CI E	Anal	yst: CES							
* Chloride	5/31/22 15:32	5/31/22 15:3	32	1	15.2	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Anal	yst: JCC							
* Fluoride	6/8/22 12:39	6/8/22 12:39	9	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC							
* Sulfate	6/7/22 14:55	6/7/22 14:55	5	1	1.41	mg/L	0.6	2	J
Analytical Method: Field Measurements	Anal	yst: DKG							
Conductivity	5/25/22 15:02	5/25/22 15:0)2		65.47	uS/cm			FA
рН	5/25/22 15:02	5/25/22 15:0)2		4.64	SU			FA
Temperature	5/25/22 15:02	5/25/22 15:0)2		21.52	С			FA
Turbidity	5/25/22 15:02	5/25/22 15:0)2		0.66	NTU			FA
Sulfide	5/25/22 15:02	5/25/22 15:0)2		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 15:05

Customer ID:

ŋ·

Dallara Data

Delivery Date: 5/26/22 12:36

Description: Barry Ash Pond - MW-3

Laboratory ID Number: BC10122

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10126	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.102	0.102	0.0988	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10122	Aluminum, Total	mg/L	0.000904	0.010	0.100	0.120	0.118	0.109	0.0850 to 0.115	107	70.0 to 130	1.68	20.0
BC10126	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.101	0.101	0.0948	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10122	Antimony, Total	mg/L	0.000272	0.00100	0.100	0.0924	0.0920	0.0923	0.0850 to 0.115	92.4	70.0 to 130	0.434	20.0
BC10126	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.136	0.131	0.103	0.0850 to 0.115	103	70.0 to 130	3.75	20.0
BC10122	Arsenic, Total	mg/L	0.0000029	0.000176	0.100	0.102	0.100	0.101	0.0850 to 0.115	102	70.0 to 130	1.98	20.0
BC10126	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.264	0.257	0.0990	0.0850 to 0.115	100	70.0 to 130	2.69	20.0
BC10122	Barium, Total	mg/L	0.0000218	0.00100	0.100	0.149	0.148	0.0996	0.0850 to 0.115	99.6	70.0 to 130	0.673	20.0
BC10126	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.104	0.0996	0.101	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10122	Beryllium, Total	mg/L	0.0000219	0.000880	0.100	0.106	0.104	0.100	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
BC10126	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.08	1.06	1.02	0.850 to 1.15	102	70.0 to 130	1.87	20.0
BC10122	Boron, Total	mg/L	0.000059	0.0650	1.00	1.01	1.00	1.03	0.850 to 1.15	101	70.0 to 130	0.995	20.0
BC10126	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.102	0.101	0.103	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10122	Cadmium, Total	mg/L	0.0000031	0.000147	0.100	0.0995	0.0988	0.0989	0.0850 to 0.115	99.5	70.0 to 130	0.706	20.0
BC10126	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	19.2	19.2	5.03	4.25 to 5.75	96.0	70.0 to 130	0.00	20.0
BC10122	Calcium, Total	mg/L	0.00326	0.152	5.00	6.24	6.04	4.95	4.25 to 5.75	99.0	70.0 to 130	3.26	20.0
BC10122	Chloride	mg/L	-0.111	1.00	10.0	23.6	23.7	9.52	9.00 to 11.0	84.0	80.0 to 120	0.423	20.0
BC10126	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0993	0.0994	0.0999	0.0850 to 0.115	98.2	70.0 to 130	0.101	20.0
BC10122	Chromium, Total	mg/L	-0.0000481	0.000440	0.100	0.102	0.101	0.100	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
BC10126	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.105	0.105	0.103	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC10122	Cobalt, Total	mg/L	-0.0000034	0.000147	0.100	0.101	0.100	0.101	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BC10122	Fluoride	mg/L	0.0243	0.125	2.50	2.50	2.49	2.57	2.25 to 2.75	100	80.0 to 120	0.401	20.0
BC10126	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	78.8	79.0	0.201	0.170 to 0.230	-1100	70.0 to 130	0.253	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/25/22 15:05

Customer ID:

Delivery Date: 5/26/22 12:36

Description: Barry Ash Pond - MW-3

Laboratory ID Number: BC10122

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10122	Iron, Total	mg/L	0.00011	0.0176	0.2	0.210	0.207	0.200	0.170 to 0.230	101	70.0 to 130	1.44	20.0
BC10126	Lead, Dissolved	mg/L	0.0000088	0.000147	0.100	0.104	0.0996	0.104	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10122	Lead, Total	mg/L	0.0000025	0.000147	0.100	0.102	0.101	0.101	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10126	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.213	0.211	0.203	0.170 to 0.230	106	70.0 to 130	0.943	20.0
BC10122	Lithium, Total	mg/L	0.00014	0.0154	0.200	0.190	0.188	0.201	0.170 to 0.230	95.0	70.0 to 130	1.06	20.0
BC10126	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	10.2	10.2	5.17	4.25 to 5.75	100	70.0 to 130	0.00	20.0
BC10122	Magnesium, Total	mg/L	0.00638	0.0462	5.00	6.53	6.48	5.20	4.25 to 5.75	108	70.0 to 130	0.769	20.0
BC10126	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.745	0.742	0.102	0.0850 to 0.115	71.0	70.0 to 130	0.403	20.0
BC10122	Manganese, Total	mg/L	0.0000074	0.0002	0.100	0.113	0.111	0.103	0.0850 to 0.115	104	70.0 to 130	1.79	20.0
BC10122	Mercury, Total by CVAA	mg/L	0.000124	0.000500	0.004	0.00422	0.00420	0.00424	0.00340 to 0.00460	106	70.0 to 130	0.475	20.0
BC10126	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.0992	0.0985	0.100	0.0850 to 0.115	99.0	70.0 to 130	0.708	20.0
BC10122	Molybdenum, Total	mg/L	0.00001	0.0002	0.100	0.0995	0.0962	0.0973	0.0850 to 0.115	99.5	70.0 to 130	3.37	20.0
BC10126	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.1	10.8	9.74	8.50 to 11.5	96.1	70.0 to 130	2.74	20.0
BC10122	Potassium, Total	mg/L	-0.0105	0.367	10.0	11.5	11.3	10.2	8.50 to 11.5	103	70.0 to 130	1.75	20.0
BC10126	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.104	0.103	0.102	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10122	Selenium, Total	mg/L	0.000162	0.00100	0.100	0.103	0.102	0.103	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC10126	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	13.4	13.4	1.01	0.850 to 1.15	90.0	70.0 to 130	0.00	20.0
BC10122	Silicon, Total	mg/L	0.000146	0.0440	1.00	7.33	7.32	1.02	0.850 to 1.15	111	70.0 to 130	0.137	20.0
BC10126	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	27.4	27.6	5.08	4.25 to 5.75	100	70.0 to 130	0.727	20.0
BC10122	Sodium, Total	mg/L	0.0212	0.0660	5.00	12.5	12.5	5.05	4.25 to 5.75	90.4	70.0 to 130	0.00	20.0
BC10122	Sulfate	mg/L	-0.244	2.0	20.0	20.8	20.8	18.8	18.0 to 22.0	97.0	80.0 to 120	0.00	20.0
BC10126	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.103	0.0988	0.102	0.0850 to 0.115	103	70.0 to 130	4.16	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 15:05

Customer ID:

Delivery Date: 5/26/22 12:36

Description: Barry Ash Pond - MW-3

Laboratory ID Number: BC10122

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10122	Thallium, Total	mg/L	0.000001	0.000147	0.100	0.105	0.104	0.103	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10129	Total Organic Carbon	mg/L	0.217	1.00	10.0	10.3	10.4	25.1		103	80.0 to 120	0.966	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date: 5/25/22 15:05

Customer ID:

Delivery Date: 5/26/22 12:36

Description: Barry Ash Pond - MW-3

Laboratory ID Number: BC10122

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10128	Alkalinity, Total as CaCO3	mg/L					16.6	52.0	45.0 to 55.0			3.68	10.0
BC10129	Nitrogen, Nitrate/Nitrite	mg/L as N	-0.01	0.200	2.00	1.90	-0.030	1.90	1.80 to 2.20	95.0	90.0 to 110	0.00	15.0
BC10126	Solids, Dissolved	mg/L	1.00	25.0			258	52.0	40.0 to 60.0			2.35	10.0

Certificate Of Analysis

Description: Barry Ash Pond Field Blank-4Location Code:WMWBARAPFBCollected:5/25/22 15:20

Customer ID:

Submittal Date: 5/26/22 12:36

Laboratory ID Number: BC10123

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA			Preparati	on Method: EPA	1638	_	
* Boron, Total	5/31/22 10:50	6/2/22 12:36	,	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	5/31/22 10:50	6/2/22 12:36	,	1.015	Not Detected	mg/L	0.070035	0.406	U
* Iron, Total	5/31/22 10:50	6/2/22 12:36	,	1.015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Total	5/31/22 10:50	6/2/22 12:36	,	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 14:11		1.015	Not Detected	mg/L	0.021315	0.406	U
Silica, Total (calc.)	5/31/22 10:50	6/2/22 12:36		1	Not Detected	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 12:36		1.015	Not Detected	mg/L	0.02030	0.25375	U
* Sodium, Total	5/31/22 10:50	6/2/22 12:36	,	1.015	Not Detected	mg/L	0.03045	0.406	U
Analytical Method: EPA 200.8	Anal	yst: DLJ			Preparati	on Method: EPA	N 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 20:07	•	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 20:07	•	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Total	6/1/22 11:30	6/1/22 20:07	•	1.015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Total	6/1/22 11:30	6/1/22 20:07	•	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Beryllium, Total	6/1/22 11:30	6/1/22 20:07	•	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 20:07	•	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 20:07	•	1.015	Not Detected	mg/L	0.000203	0.001015	U
* Cobalt, Total	6/1/22 11:30	6/1/22 20:07	•	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Total	6/1/22 11:30	6/1/22 20:07	•	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 20:07	•	1.015	Not Detected	mg/L	0.000152	0.000203	U
 Molybdenum, Total 	6/1/22 11:30	6/1/22 20:07	•	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/1/22 11:30	6/1/22 20:07	•	1.015	Not Detected	mg/L	0.169505	0.5075	U
* Selenium, Total	6/1/22 11:30	6/1/22 20:07	•	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 20:07	•	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
 Mercury, Total by CVAA 	6/6/22 13:52	6/7/22 11:38		1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: ELH							
* Nitrogen, Nitrate/Nitrite	5/31/22 10:07	5/31/22 10:0	7	1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/31/22 11:22	6/1/22 14:18		1	Not Detected	ma/l		25	U

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

Certificate Of Analysis

Description: Barry Ash Pond Field Blank-4

Location Code:

WMWBARAPFB

Collected:

Customer ID: Submittal Date:

5/25/22 15:20 5/26/22 12:36

Laboratory ID Number: BC10123

Edbordtory ID Italiibor. Do 10123								
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM 5310 B	Ana	lyst: ELH						
* Total Organic Carbon	6/7/22 21:43	6/7/22 21:43	3 1	Not Detected	mg/L	1.00	2	U
Analytical Method: SM4500Cl E	Ana	lyst: CES						
* Chloride	6/3/22 12:47	6/3/22 12:47	7 1	Not Detected	mg/L	0.50	1	U
Analytical Method: SM4500F G 2017	Ana	lyst: JCC						
* Fluoride	6/8/22 12:51	6/8/22 12:51	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC						
* Sulfate	6/7/22 15:08	6/7/22 15:08	3 1	Not Detected	mg/L	0.6	2	U

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

Batch QC Summary

Customer Account: WMWBARAPFB **Sample Date:** 5/25/22 15:20

Customer ID: Delivery Date:

Customer ID:

5/26/22 12:36

Description: Barry Ash Pond Field Blank-4

Laboratory ID Number: BC10123

				MB					Standard		Rec		Prec
Sample	Analysis	Units	МВ	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10129	Aluminum, Total	mg/L	0.00104	0.010	0.100	0.111	0.110	0.105	0.0850 to 0.115	111	70.0 to 130	0.905	20.0
BC10129	Antimony, Total	mg/L	0.000293	0.00100	0.100	0.0932	0.0905	0.0899	0.0850 to 0.115	93.2	70.0 to 130	2.94	20.0
BC10129	Arsenic, Total	mg/L	0.0000146	0.000176	0.100	0.101	0.102	0.0997	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
BC10129	Barium, Total	mg/L	0.000	0.00100	0.100	0.102	0.0995	0.0984	0.0850 to 0.115	102	70.0 to 130	2.48	20.0
BC10129	Beryllium, Total	mg/L	0.0000199	0.000880	0.100	0.107	0.105	0.106	0.0850 to 0.115	107	70.0 to 130	1.89	20.0
BC10129	Boron, Total	mg/L	0.00291	0.0650	1.00	0.980	0.976	0.994	0.850 to 1.15	98.0	70.0 to 130	0.409	20.0
BC10129	Cadmium, Total	mg/L	0.000	0.000147	0.100	0.101	0.100	0.0980	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BC10129	Calcium, Total	mg/L	0.00594	0.152	5.00	4.77	4.72	4.79	4.25 to 5.75	95.4	70.0 to 130	1.05	20.0
BC10129	Chloride	mg/L	0.117	1.00	10.0	10.5	10.5	9.33	9.00 to 11.0	105	80.0 to 120	0.00	20.0
BC10129	Chromium, Total	mg/L	-0.0000922	0.000440	0.100	0.102	0.102	0.0986	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10129	Cobalt, Total	mg/L	-0.0000048	0.000147	0.100	0.103	0.102	0.0985	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC10129	Fluoride	mg/L	0.0162	0.125	2.50	2.60	2.65	2.53	2.25 to 2.75	104	80.0 to 120	1.90	20.0
BC10129	Iron, Total	mg/L	0.000506	0.0176	0.2	0.196	0.194	0.200	0.170 to 0.230	98.0	70.0 to 130	1.03	20.0
BC10129	Lead, Total	mg/L	0.0000043	0.000147	0.100	0.104	0.105	0.103	0.0850 to 0.115	104	70.0 to 130	0.957	20.0
BC10129	Lithium, Total	mg/L	0.000146	0.0154	0.200	0.188	0.186	0.187	0.170 to 0.230	94.0	70.0 to 130	1.07	20.0
BC10129	Magnesium, Total	mg/L	0.000221	0.0462	5.00	5.30	5.32	5.44	4.25 to 5.75	106	70.0 to 130	0.377	20.0
BC10129	Manganese, Total	mg/L	0.0000009	0.0002	0.100	0.105	0.104	0.101	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10129	Mercury, Total by CVAA	mg/L	0.000124	0.000500	0.004	0.00419	0.00431	0.00424	0.00340 to 0.00460	105	70.0 to 130	2.82	20.0
BC10129	Molybdenum, Total	mg/L	0.000005	0.0002	0.100	0.0979	0.0985	0.0983	0.0850 to 0.115	97.9	70.0 to 130	0.611	20.0
BC10129	Potassium, Total	mg/L	-0.00785	0.367	10.0	10.1	10.2	9.95	8.50 to 11.5	101	70.0 to 130	0.985	20.0
BC10129	Selenium, Total	mg/L	0.0000943	0.00100	0.100	0.102	0.103	0.103	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10129	Silicon, Total	mg/L	0.000536	0.0440	1.00	0.976	0.974	0.980	0.850 to 1.15	97.6	70.0 to 130	0.205	20.0
BC10129	Sodium, Total	mg/L	0.0170	0.0660	5.00	4.63	4.58	4.63	4.25 to 5.75	92.6	70.0 to 130	1.09	20.0

Comments:

Batch QC Summary

Customer Account: WMWBARAPFB Sample Date: 5/25/22 15:20

5/26/22 12:36

Customer ID: Delivery Date:

Description: Barry Ash Pond Field Blank-4

Laboratory ID Number: BC10123

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10129	Sulfate	mg/L	-0.251	2.0	20.0	19.5	19.7	18.7	18.0 to 22.0	97.5	80.0 to 120	1.02	20.0
BC10129	Thallium, Total	mg/L	0.0000041	0.000147	0.100	0.106	0.108	0.107	0.0850 to 0.115	106	70.0 to 130	1.87	20.0
BC10129	Total Organic Carbon	mg/L	0.217	1.00	10.0	10.3	10.4	25.1		103	80.0 to 120	0.966	20.0

Comments:

Batch QC Summary

Customer Account: WMWBARAPFB

Sample Date:

5/25/22 15:20

Customer ID:

Delivery Date: 5/26/22 12:36

Description: Barry Ash Pond Field Blank-4

Laboratory ID Number: BC10123

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10129	Nitrogen, Nitrate/Nitrite	mg/L as N	-0.01	0.200	2.00	1.90	-0.030	1.90	1.80 to 2.20	95.0	90.0 to 110	0.00	15.0
BC10126	Solids, Dissolved	mg/L	1.00	25.0			258	52.0	40.0 to 60.0			2.35	10.0

Comments:

Certificate Of Analysis

Description: Barry Ash Pond - MW-25VLocation Code:WMWBARAPCollected:5/25/22 10:50

Customer ID:

Laboratory ID Number: BC10124 Submittal Date: 5/26/22 12:38

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	on Method:	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 12:39	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	5/31/22 10:50	6/2/22 12:39	1.015	0.573	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 12:39	1.015	0.0431	mg/L	0.008120	0.0406	
* Lithium, Total	5/31/22 10:50	6/2/22 12:39	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 14:14	1.015	0.353	mg/L	0.021315	0.406	J
Silica, Total (calc.)	5/31/22 10:50	6/2/22 12:39	1	13.5	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 12:39	1.015	6.33	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 12:39	1.015	4.55	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 13:04	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Dissolved	5/27/22 09:45	6/1/22 13:04	1.015	0.478	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 13:04	1.015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Dissolved	5/27/22 09:45	6/1/22 13:04	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 13:04	1.015	0.298	mg/L	0.021315	0.406	J
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 13:04	1	13.7	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 13:04	1.015	6.42	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 13:04	1.015	5.16	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	on Method:	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 20:11	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 20:11	1.015	0.0129	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 20:11	1.015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Total	6/1/22 11:30	6/1/22 20:11	1.015	0.00993	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 20:11	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 20:11	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 20:11	1.015	0.00126	mg/L	0.000203	0.001015	
* Cobalt, Total	6/1/22 11:30	6/1/22 20:11	1.015	0.000277	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 20:11	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 20:11	1.015	0.00466	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 20:11	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/1/22 11:30	6/1/22 20:11		0.730	mg/L	0.169505	0.5075	
	3, ., 71.00				J			

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-25VLocation Code:WMWBARAPCollected:5/25/22 10:50

Customer ID:

Laboratory ID Number: BC10124 Submittal Date: 5/26/22 12:38

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 20:11	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 20:11	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ						
* Antimony, Dissolved	5/31/22 14:15	5/31/22 19:0	3 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 19:0	3 1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 19:0	3 1.015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Dissolved	5/31/22 14:15	5/31/22 19:0	3 1.015	0.00947	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 19:0	3 1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 19:0	3 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 19:0	3 1.015	0.00120	mg/L	0.000203	0.001015	
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 19:0	3 1.015	0.000260	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 19:0	3 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 19:0	3 1.015	0.00381	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 19:0	3 1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Dissolved	5/31/22 14:15	5/31/22 19:0	3 1.015	0.749	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 19:0	3 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 19:0	3 1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	lyst: CRB						
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 11:40	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Ana	lyst: ELH						
* Nitrogen, Nitrate/Nitrite	5/31/22 10:09	5/31/22 10:0	9 1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Ana	lyst: ALH						
Alkalinity, Total as CaCO3	6/8/22 08:59	6/8/22 10:23	1	8.04	mg/L		0.1	
Analytical Method: SM 2540C	Ana	lyst: CNJ						
* Solids, Dissolved	5/31/22 11:22	6/1/22 14:18	1	29.3	mg/L		25	
Analytical Method: SM 4500CO2 D	Ana	lyst: ALH						
Bicarbonate Alkalinity, (calc.)	6/8/22 08:59	6/8/22 10:23	1	8.02	mg/L			
Carbonate Alkalinity, (calc.)	6/8/22 08:59	6/8/22 10:23		Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		lyst: ELH			-			
* Total Organic Carbon	6/7/22 22:02	6/7/22 22:02	. 1	Not Detected	ma/l	1.00	2	U
	0///22 22.02	0/1/22 22.02	. '	NOT DETECTED	9, =	1.00	-	J

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-25V

Location Code:

WMWBARAP 5/25/22 10:50

Collected:

Customer ID: Submittal Date:

5/26/22 12:38

Laboratory ID Number: BC10124

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Ana	lyst: CES							
* Chloride	6/3/22 12:48	6/3/22 12:48	3	1	3.22	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	6/8/22 12:52	6/8/22 12:52	2	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	6/7/22 15:09	6/7/22 15:09)	1	2.13	mg/L	0.6	2	
Analytical Method: Field Measurements	Ana	lyst: TJD							
Conductivity	5/25/22 10:48	5/25/22 10:4	l8		29.82	uS/cm			FA
рН	5/25/22 10:48	5/25/22 10:4	l8		5.45	SU			FA
Temperature	5/25/22 10:48	5/25/22 10:4	l8		22.35	С			FA
Turbidity	5/25/22 10:48	5/25/22 10:4	18		1.53	NTU			FA
Sulfide	5/25/22 10:48	5/25/22 10:4	18		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 10:50

Customer ID:

Delivery Date: 5/26/22 12:38

Description: Barry Ash Pond - MW-25V

Laboratory ID Number: BC10124

				MB			•		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10126	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.102	0.102	0.0988	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10129	Aluminum, Total	mg/L	0.00104	0.010	0.100	0.111	0.110	0.105	0.0850 to 0.115	111	70.0 to 130	0.905	20.0
BC10126	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.101	0.101	0.0948	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10129	Antimony, Total	mg/L	0.000293	0.00100	0.100	0.0932	0.0905	0.0899	0.0850 to 0.115	93.2	70.0 to 130	2.94	20.0
BC10126	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.136	0.131	0.103	0.0850 to 0.115	103	70.0 to 130	3.75	20.0
BC10129	Arsenic, Total	mg/L	0.0000146	0.000176	0.100	0.101	0.102	0.0997	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
BC10126	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.264	0.257	0.0990	0.0850 to 0.115	100	70.0 to 130	2.69	20.0
BC10129	Barium, Total	mg/L	0.000	0.00100	0.100	0.102	0.0995	0.0984	0.0850 to 0.115	102	70.0 to 130	2.48	20.0
BC10126	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.104	0.0996	0.101	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10129	Beryllium, Total	mg/L	0.0000199	0.000880	0.100	0.107	0.105	0.106	0.0850 to 0.115	107	70.0 to 130	1.89	20.0
BC10126	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.08	1.06	1.02	0.850 to 1.15	102	70.0 to 130	1.87	20.0
BC10129	Boron, Total	mg/L	0.00291	0.0650	1.00	0.980	0.976	0.994	0.850 to 1.15	98.0	70.0 to 130	0.409	20.0
BC10126	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.102	0.101	0.103	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10129	Cadmium, Total	mg/L	0.000	0.000147	0.100	0.101	0.100	0.0980	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BC10126	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	19.2	19.2	5.03	4.25 to 5.75	96.0	70.0 to 130	0.00	20.0
BC10129	Calcium, Total	mg/L	0.00594	0.152	5.00	4.77	4.72	4.79	4.25 to 5.75	95.4	70.0 to 130	1.05	20.0
BC10129	Chloride	mg/L	0.117	1.00	10.0	10.5	10.5	9.33	9.00 to 11.0	105	80.0 to 120	0.00	20.0
BC10126	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0993	0.0994	0.0999	0.0850 to 0.115	98.2	70.0 to 130	0.101	20.0
BC10129	Chromium, Total	mg/L	-0.0000922	0.000440	0.100	0.102	0.102	0.0986	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10126	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.105	0.105	0.103	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC10129	Cobalt, Total	mg/L	-0.0000048	0.000147	0.100	0.103	0.102	0.0985	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC10129	Fluoride	mg/L	0.0162	0.125	2.50	2.60	2.65	2.53	2.25 to 2.75	104	80.0 to 120	1.90	20.0
BC10126	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	78.8	79.0	0.201	0.170 to 0.230	-1100	70.0 to 130	0.253	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date:

Customer ID:

5/25/22 10:50

Delivery Date:

5/26/22 12:38

Description: Barry Ash Pond - MW-25V

Laboratory ID Number: BC10124

_				MB				·	Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10129	Iron, Total	mg/L	0.000506	0.0176	0.2	0.196	0.194	0.200	0.170 to 0.230	98.0	70.0 to 130	1.03	20.0
BC10126	Lead, Dissolved	mg/L	0.0000088	0.000147	0.100	0.104	0.0996	0.104	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10129	Lead, Total	mg/L	0.0000043	0.000147	0.100	0.104	0.105	0.103	0.0850 to 0.115	104	70.0 to 130	0.957	20.0
BC10126	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.213	0.211	0.203	0.170 to 0.230	106	70.0 to 130	0.943	20.0
BC10129	Lithium, Total	mg/L	0.000146	0.0154	0.200	0.188	0.186	0.187	0.170 to 0.230	94.0	70.0 to 130	1.07	20.0
BC10126	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	10.2	10.2	5.17	4.25 to 5.75	100	70.0 to 130	0.00	20.0
BC10129	Magnesium, Total	mg/L	0.000221	0.0462	5.00	5.30	5.32	5.44	4.25 to 5.75	106	70.0 to 130	0.377	20.0
BC10126	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.745	0.742	0.102	0.0850 to 0.115	71.0	70.0 to 130	0.403	20.0
BC10129	Manganese, Total	mg/L	0.0000009	0.0002	0.100	0.105	0.104	0.101	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10129	Mercury, Total by CVAA	mg/L	0.000124	0.000500	0.004	0.00419	0.00431	0.00424	0.00340 to 0.00460	105	70.0 to 130	2.82	20.0
BC10126	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.0992	0.0985	0.100	0.0850 to 0.115	99.0	70.0 to 130	0.708	20.0
BC10129	Molybdenum, Total	mg/L	0.000005	0.0002	0.100	0.0979	0.0985	0.0983	0.0850 to 0.115	97.9	70.0 to 130	0.611	20.0
BC10126	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.1	10.8	9.74	8.50 to 11.5	96.1	70.0 to 130	2.74	20.0
BC10129	Potassium, Total	mg/L	-0.00785	0.367	10.0	10.1	10.2	9.95	8.50 to 11.5	101	70.0 to 130	0.985	20.0
BC10126	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.104	0.103	0.102	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10129	Selenium, Total	mg/L	0.0000943	0.00100	0.100	0.102	0.103	0.103	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10126	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	13.4	13.4	1.01	0.850 to 1.15	90.0	70.0 to 130	0.00	20.0
BC10129	Silicon, Total	mg/L	0.000536	0.0440	1.00	0.976	0.974	0.980	0.850 to 1.15	97.6	70.0 to 130	0.205	20.0
BC10126	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	27.4	27.6	5.08	4.25 to 5.75	100	70.0 to 130	0.727	20.0
BC10129	Sodium, Total	mg/L	0.0170	0.0660	5.00	4.63	4.58	4.63	4.25 to 5.75	92.6	70.0 to 130	1.09	20.0
BC10129	Sulfate	mg/L	-0.251	2.0	20.0	19.5	19.7	18.7	18.0 to 22.0	97.5	80.0 to 120	1.02	20.0
BC10126	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.103	0.0988	0.102	0.0850 to 0.115	103	70.0 to 130	4.16	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 10:50

Customer ID:

Delivery Date: 5/26/22 12:38

Description: Barry Ash Pond - MW-25V

Laboratory ID Number: BC10124

'				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10129	Thallium, Total	mg/L	0.0000041	0.000147	0.100	0.106	0.108	0.107	0.0850 to 0.115	106	70.0 to 130	1.87	20.0
BC10129	Total Organic Carbon	mg/L	0.217	1.00	10.0	10.3	10.4	25.1		103	80.0 to 120	0.966	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date: 5

5/25/22 10:50

Customer ID:

Delivery Date:

5/26/22 12:38

Description: Barry Ash Pond - MW-25V

Laboratory ID Number: BC10124

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10124	Alkalinity, Total as CaCO3	mg/L					8.28	52.0	45.0 to 55.0			2.94	10.0
BC10129	Nitrogen, Nitrate/Nitrite	mg/L as N	-0.01	0.200	2.00	1.90	-0.030	1.90	1.80 to 2.20	95.0	90.0 to 110	0.00	15.0
BC10126	Solids, Dissolved	mg/L	1.00	25.0			258	52.0	40.0 to 60.0			2.35	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-25HLocation Code:WMWBARAPCollected:5/25/22 11:40

Customer ID:

Submittal Date: 5/26/22 12:38

Laboratory ID Number: BC10125

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analy	yst: RDA		Preparati	on Method: I	EPA 1638	<u> </u>	
* Boron, Total	5/31/22 10:50	6/2/22 12:42	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	5/31/22 10:50	6/2/22 12:42	1.015	0.949	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 12:42	1.015	0.0796	mg/L	0.008120	0.0406	
* Lithium, Total	5/31/22 10:50	6/2/22 12:42	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 14:18	1.015	0.787	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 12:42	. 1	15.9	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 12:42	1.015	7.42	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 12:42	1.015	5.34	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analy	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 13:07	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Dissolved	5/27/22 09:45	6/1/22 13:07	1.015	0.857	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 13:07	1.015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Dissolved	5/27/22 09:45	6/1/22 13:07	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 13:07	1.015	0.679	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 13:07	1	16.0	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 13:07	1.015	7.50	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 13:07	1.015	6.16	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Analy	yst: DLJ		Preparati	on Method: I	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 20:14	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 20:14	1.015	0.0135	mg/L	0.006090	0.01015	
* Arsenic, Total	6/1/22 11:30	6/1/22 20:14	1.015	0.000196	mg/L	0.000081	0.000203	J
* Barium, Total	6/1/22 11:30	6/1/22 20:14	1.015	0.0197	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 20:14	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 20:14	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 20:14	1.015	0.00103	mg/L	0.000203	0.001015	
* Cobalt, Total	6/1/22 11:30	6/1/22 20:14	1.015	0.00132	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 20:14	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 20:14		0.00351	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 20:14	1.015	0.000103	mg/L	0.000102	0.000203	J
* Potassium, Total	6/1/22 11:30	6/1/22 20:14		0.958	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-25H

Location Code:

WMWBARAP 5/25/22 11:40

Collected: Customer ID:

Submittal Date:

5/26/22 12:38

Laboratory ID	Number:	BC10125
•		

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 20:14		1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 20:14		1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anal	yst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 19:0	7	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 19:0)7	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 19:0)7	1.015	0.000157	mg/L	0.000081	0.000203	J
* Barium, Dissolved	5/31/22 14:15	5/31/22 19:0)7	1.015	0.0178	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 19:0	7	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 19:0)7	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 19:0)7	1.015	0.00104	mg/L	0.000203	0.001015	
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 19:0)7	1.015	0.00119	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 19:0	7	1.015	0.0000752	mg/L	0.000068	0.000203	J
* Manganese, Dissolved	5/31/22 14:15	5/31/22 19:0)7	1.015	0.00297	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 19:0)7	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Dissolved	5/31/22 14:15	5/31/22 19:0)7	1.015	0.950	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 19:0)7	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 19:0)7	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anal	yst: CRB							
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 11:43	3	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: ELH							
* Nitrogen, Nitrate/Nitrite	5/31/22 10:11	5/31/22 10:1	1	1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Anal	yst: ALH							
Alkalinity, Total as CaCO3	6/8/22 10:59	6/8/22 11:32		1	6.88	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
* Solids, Dissolved	5/31/22 11:22	6/1/22 14:18	3	1	37.3	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/8/22 10:59	6/8/22 11:32		1	6.88	mg/L			
Carbonate Alkalinity, (calc.)	6/8/22 10:59	6/8/22 11:32		1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		yst: ELH				-			
* Total Organic Carbon	6/7/22 22:24	6/7/22 22:24		1	Not Detected	ma/L	1.00	2	U

MDL's and RL's are adjusted for sample dilution, as applicable

Laboratory ID Number: BC10125

Certificate Of Analysis

Description: Barry Ash Pond - MW-25H

Location Code:

WMWBARAP

Collected:

Customer ID:

5/25/22 11:40

Submittal Date:

5/26/22 12:38

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500CI E	Anal	yst: CES							
* Chloride	6/3/22 12:49	6/3/22 12:49)	1	5.32	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Anal	yst: JCC							
* Fluoride	6/8/22 12:53	6/8/22 12:53	3	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Anal	yst: JCC							
* Sulfate	6/7/22 15:11	6/7/22 15:11		1	4.24	mg/L	0.6	2	
Analytical Method: Field Measurements	Anal	yst: TJD							
Conductivity	5/25/22 11:36	5/25/22 11:3	36		43.00	uS/cm			FA
рН	5/25/22 11:36	5/25/22 11:3	36		5.23	SU			FA
Temperature	5/25/22 11:36	5/25/22 11:3	36		22.54	С			FA
Turbidity	5/25/22 11:36	5/25/22 11:3	36		0.93	NTU			FA
Sulfide	5/25/22 11:36	5/25/22 11:3	36		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP Sample Date:

Customer ID:

5/25/22 11:40

Delivery Date:

5/26/22 12:38

Description: Barry Ash Pond - MW-25H

Laboratory ID Number: BC10125

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
3C10126	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.102	0.102	0.0988	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10129	Aluminum, Total	mg/L	0.00104	0.010	0.100	0.111	0.110	0.105	0.0850 to 0.115	111	70.0 to 130	0.905	20.0
BC10126	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.101	0.101	0.0948	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10129	Antimony, Total	mg/L	0.000293	0.00100	0.100	0.0932	0.0905	0.0899	0.0850 to 0.115	93.2	70.0 to 130	2.94	20.0
3C10126	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.136	0.131	0.103	0.0850 to 0.115	103	70.0 to 130	3.75	20.0
3C10129	Arsenic, Total	mg/L	0.0000146	0.000176	0.100	0.101	0.102	0.0997	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
3C10126	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.264	0.257	0.0990	0.0850 to 0.115	100	70.0 to 130	2.69	20.0
BC10129	Barium, Total	mg/L	0.000	0.00100	0.100	0.102	0.0995	0.0984	0.0850 to 0.115	102	70.0 to 130	2.48	20.0
3C10126	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.104	0.0996	0.101	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
3C10129	Beryllium, Total	mg/L	0.0000199	0.000880	0.100	0.107	0.105	0.106	0.0850 to 0.115	107	70.0 to 130	1.89	20.0
3C10126	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.08	1.06	1.02	0.850 to 1.15	102	70.0 to 130	1.87	20.0
3C10129	Boron, Total	mg/L	0.00291	0.0650	1.00	0.980	0.976	0.994	0.850 to 1.15	98.0	70.0 to 130	0.409	20.0
3C10126	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.102	0.101	0.103	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
3C10129	Cadmium, Total	mg/L	0.000	0.000147	0.100	0.101	0.100	0.0980	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BC10126	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	19.2	19.2	5.03	4.25 to 5.75	96.0	70.0 to 130	0.00	20.0
BC10129	Calcium, Total	mg/L	0.00594	0.152	5.00	4.77	4.72	4.79	4.25 to 5.75	95.4	70.0 to 130	1.05	20.0
BC10129	Chloride	mg/L	0.117	1.00	10.0	10.5	10.5	9.33	9.00 to 11.0	105	80.0 to 120	0.00	20.0
BC10126	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0993	0.0994	0.0999	0.0850 to 0.115	98.2	70.0 to 130	0.101	20.0
3C10129	Chromium, Total	mg/L	-0.0000922	0.000440	0.100	0.102	0.102	0.0986	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10126	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.105	0.105	0.103	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
3C10129	Cobalt, Total	mg/L	-0.0000048	0.000147	0.100	0.103	0.102	0.0985	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
3C10129	Fluoride	mg/L	0.0162	0.125	2.50	2.60	2.65	2.53	2.25 to 2.75	104	80.0 to 120	1.90	20.0
BC10126	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	78.8	79.0	0.201	0.170 to 0.230	-1100	70.0 to 130	0.253	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date: 5/25/22 11:40

5/26/22 12:38

Delivery Date:

Customer ID:

Description: Barry Ash Pond - MW-25H

Laboratory ID Number: BC10125

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10129	Iron, Total	mg/L	0.000506	0.0176	0.2	0.196	0.194	0.200	0.170 to 0.230	98.0	70.0 to 130	1.03	20.0
BC10126	Lead, Dissolved	mg/L	0.0000088	0.000147	0.100	0.104	0.0996	0.104	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10129	Lead, Total	mg/L	0.0000043	0.000147	0.100	0.104	0.105	0.103	0.0850 to 0.115	104	70.0 to 130	0.957	20.0
BC10126	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.213	0.211	0.203	0.170 to 0.230	106	70.0 to 130	0.943	20.0
BC10129	Lithium, Total	mg/L	0.000146	0.0154	0.200	0.188	0.186	0.187	0.170 to 0.230	94.0	70.0 to 130	1.07	20.0
BC10126	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	10.2	10.2	5.17	4.25 to 5.75	100	70.0 to 130	0.00	20.0
BC10129	Magnesium, Total	mg/L	0.000221	0.0462	5.00	5.30	5.32	5.44	4.25 to 5.75	106	70.0 to 130	0.377	20.0
BC10126	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.745	0.742	0.102	0.0850 to 0.115	71.0	70.0 to 130	0.403	20.0
BC10129	Manganese, Total	mg/L	0.0000009	0.0002	0.100	0.105	0.104	0.101	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10129	Mercury, Total by CVAA	mg/L	0.000124	0.000500	0.004	0.00419	0.00431	0.00424	0.00340 to 0.00460	105	70.0 to 130	2.82	20.0
BC10126	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.0992	0.0985	0.100	0.0850 to 0.115	99.0	70.0 to 130	0.708	20.0
BC10129	Molybdenum, Total	mg/L	0.000005	0.0002	0.100	0.0979	0.0985	0.0983	0.0850 to 0.115	97.9	70.0 to 130	0.611	20.0
BC10126	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.1	10.8	9.74	8.50 to 11.5	96.1	70.0 to 130	2.74	20.0
BC10129	Potassium, Total	mg/L	-0.00785	0.367	10.0	10.1	10.2	9.95	8.50 to 11.5	101	70.0 to 130	0.985	20.0
BC10126	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.104	0.103	0.102	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10129	Selenium, Total	mg/L	0.0000943	0.00100	0.100	0.102	0.103	0.103	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10126	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	13.4	13.4	1.01	0.850 to 1.15	90.0	70.0 to 130	0.00	20.0
BC10129	Silicon, Total	mg/L	0.000536	0.0440	1.00	0.976	0.974	0.980	0.850 to 1.15	97.6	70.0 to 130	0.205	20.0
BC10126	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	27.4	27.6	5.08	4.25 to 5.75	100	70.0 to 130	0.727	20.0
BC10129	Sodium, Total	mg/L	0.0170	0.0660	5.00	4.63	4.58	4.63	4.25 to 5.75	92.6	70.0 to 130	1.09	20.0
BC10129	Sulfate	mg/L	-0.251	2.0	20.0	19.5	19.7	18.7	18.0 to 22.0	97.5	80.0 to 120	1.02	20.0
BC10126	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.103	0.0988	0.102	0.0850 to 0.115	103	70.0 to 130	4.16	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 11:40

Customer ID:

Delivery Date: 5/26/22 12:38

Description: Barry Ash Pond - MW-25H

Laboratory ID Number: BC10125

	•			MB					Standard		Rec		— Prec
										_			
S <u>ample</u>	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
	T T												
BC10129	Thallium, Total	mg/L	0.0000041	0.000147	0.100	0.106	0.108	0.107	0.0850 to 0.115	106	70.0 to 130	1.87	20.0
BC10129	Total Organic Carbon	mg/L	0.217	1.00	10.0	10.3	10.4	25.1		103	80.0 to 120	0.966	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 11:40

Customer ID:

Delivery Date:

5/26/22 12:38

Description: Barry Ash Pond - MW-25H

Laboratory ID Number: BC10125

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10125	Alkalinity, Total as CaCO3	mg/L					6.68	52.0	45.0 to 55.0			2.95	10.0
BC10129	Nitrogen, Nitrate/Nitrite	mg/L as N	-0.01	0.200	2.00	1.90	-0.030	1.90	1.80 to 2.20	95.0	90.0 to 110	0.00	15.0
BC10126	Solids, Dissolved	mg/L	1.00	25.0			258	52.0	40.0 to 60.0			2.35	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-5Location Code:WMWBARAPCollected:5/25/22 13:05

Customer ID:

Submittal Date: 5/26/22 12:38

Laboratory ID Number: BC10126

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	on Method: I	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 12:45	1.015	0.0630	mg/L	0.030000	0.1015	J
* Calcium, Total	5/31/22 10:50	6/2/22 12:45	1.015	14.6	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 13:03	50.75	84.9	mg/L	0.40600	2.03	
* Lithium, Total	5/31/22 10:50	6/2/22 12:45	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 14:21	1.015	5.50	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 12:45	1	26.1	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 12:45	1.015	12.2	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 12:45	1.015	19.8	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 13:09	1.015	0.0565	mg/L	0.030000	0.1015	J
* Calcium, Dissolved	5/27/22 09:45	6/1/22 13:09	1.015	14.4	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 14:07	50.75	81.0	mg/L	0.40600	2.03	R
* Lithium, Dissolved	5/27/22 09:45	6/1/22 13:09	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 13:09	1.015	5.19	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 13:09	1	26.8	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 13:09	1.015	12.5	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 13:09	1.015	22.4	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	on Method: I	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 20:18	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 20:18	1.015	0.00862	mg/L	0.006090	0.01015	J
* Arsenic, Total	6/1/22 11:30	6/1/22 20:18	1.015	0.0316	mg/L	0.000081	0.000203	
* Barium, Total	6/1/22 11:30	6/1/22 20:18	1.015	0.155	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 20:18	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 20:18	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 20:18	1.015	0.00103	mg/L	0.000203	0.001015	
* Cobalt, Total	6/1/22 11:30	6/1/22 20:18		0.00184	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 20:18		Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 20:18	1.015	0.670	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 20:18		0.000114	mg/L	0.000102	0.000203	J
* Potassium, Total	6/1/22 11:30	6/1/22 20:18		1.46	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-5

Location Code:

WMWBARAP 5/25/22 13:05

Collected:

Customer ID: Submittal Date:

5/26/22 12:38

Laboratory ID Number: BC10126

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 20:1	8 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 20:1	8 1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anai	yst: DLJ						
* Antimony, Dissolved	5/31/22 14:15	5/31/22 19:	11 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 19:	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 19:	1.015	0.0334	mg/L	0.000081	0.000203	
* Barium, Dissolved	5/31/22 14:15	5/31/22 19:	1.015	0.164	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 19:	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 19:	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Dissolved	5/31/22 14:15	5/31/22 19:	1.015	0.00110	mg/L	0.000203	0.001015	
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 19:	1.015	0.00188	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 19:	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Dissolved	5/31/22 14:15	5/31/22 19:	1.015	0.674	mg/L	0.000152	0.000203	RA
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 19:	1.015	0.000234	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 19:	1.015	1.49	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 19:	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 19:	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anai	yst: CRB						
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 11:4	5 1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: ELH						
* Nitrogen, Nitrate/Nitrite	5/31/22 10:11	5/31/22 10:	11 1	0.230	mg/L as N	0.20	0.3	J
Analytical Method: SM 2320 B	Anai	yst: ALH						
Alkalinity, Total as CaCO3	6/8/22 11:53	6/8/22 13:4	1 1	193	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ						
* Solids, Dissolved	5/31/22 11:22	6/1/22 14:1	8 1	252	mg/L		25	
Analytical Method: SM 4500CO2 D	Anai	yst: ALH						
Bicarbonate Alkalinity, (calc.)	6/8/22 11:53	6/8/22 13:4	1 1	193	mg/L			
Carbonate Alkalinity, (calc.)	6/8/22 11:53	6/8/22 13:4	1 1	Not Detected	mg/L		0.5	
Analytical Method: SM 5310 B		yst: ELH			-			
* Total Organic Carbon	6/7/22 22:43	6/7/22 22:4:	3 1	14.5	mg/L	1.00	2	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

FΑ

FΑ

Description: Barry Ash Pond - MW-5

Turbidity

Sulfide

Location Code:

WMWBARAP

Collected:

Customer ID:

NTU

mg/L

5/25/22 13:05

5/26/22 12:38

Submittal Date:

1.77

Laboratory ID Number: BC10126				Subiliit	lai Dale.	3/20/22 12	.30	
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Ana	lyst: CES						
* Chloride	6/3/22 12:51	6/3/22 12:51	1	20.0	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC						
* Fluoride	6/8/22 12:54	6/8/22 12:54	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC						
* Sulfate	6/7/22 15:12	6/7/22 15:12	2 1	5.53	mg/L	0.6	2	
Analytical Method: Field Measurements	Ana	lyst: TJD						
Conductivity	5/25/22 13:02	5/25/22 13:0)2	426.36	uS/cm			FA
рН	5/25/22 13:02	5/25/22 13:0)2	5.99	SU			FA
Temperature	5/25/22 13:02	5/25/22 13:0)2	22.21	С			FA

5/25/22 13:02 5/25/22 13:02

5/25/22 13:02 5/25/22 13:02

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP Sample Date:

Customer ID:

5/25/22 13:05

Delivery Date: 5/26/22 12:38

Description: Barry Ash Pond - MW-5

Laboratory ID Number: BC10126

-				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10126	Aluminum, Dissolved	mg/L	0.000156	0.010	0.100	0.102	0.102	0.0988	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10129	Aluminum, Total	mg/L	0.00104	0.010	0.100	0.111	0.110	0.105	0.0850 to 0.115	111	70.0 to 130	0.905	20.0
BC10126	Antimony, Dissolved	mg/L	0.000293	0.00100	0.100	0.101	0.101	0.0948	0.0850 to 0.115	101	70.0 to 130	0.00	20.0
BC10129	Antimony, Total	mg/L	0.000293	0.00100	0.100	0.0932	0.0905	0.0899	0.0850 to 0.115	93.2	70.0 to 130	2.94	20.0
BC10126	Arsenic, Dissolved	mg/L	0.0000287	0.000176	0.100	0.136	0.131	0.103	0.0850 to 0.115	103	70.0 to 130	3.75	20.0
BC10129	Arsenic, Total	mg/L	0.0000146	0.000176	0.100	0.101	0.102	0.0997	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
BC10126	Barium, Dissolved	mg/L	-0.0000115	0.00100	0.100	0.264	0.257	0.0990	0.0850 to 0.115	100	70.0 to 130	2.69	20.0
BC10129	Barium, Total	mg/L	0.000	0.00100	0.100	0.102	0.0995	0.0984	0.0850 to 0.115	102	70.0 to 130	2.48	20.0
BC10126	Beryllium, Dissolved	mg/L	0.000136	0.000880	0.100	0.104	0.0996	0.101	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10129	Beryllium, Total	mg/L	0.0000199	0.000880	0.100	0.107	0.105	0.106	0.0850 to 0.115	107	70.0 to 130	1.89	20.0
BC10126	Boron, Dissolved	mg/L	-0.000139	0.0650	1.00	1.08	1.06	1.02	0.850 to 1.15	102	70.0 to 130	1.87	20.0
BC10129	Boron, Total	mg/L	0.00291	0.0650	1.00	0.980	0.976	0.994	0.850 to 1.15	98.0	70.0 to 130	0.409	20.0
BC10126	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.102	0.101	0.103	0.0850 to 0.115	102	70.0 to 130	0.985	20.0
BC10129	Cadmium, Total	mg/L	0.000	0.000147	0.100	0.101	0.100	0.0980	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BC10126	Calcium, Dissolved	mg/L	0.000808	0.152	5.00	19.2	19.2	5.03	4.25 to 5.75	96.0	70.0 to 130	0.00	20.0
BC10129	Calcium, Total	mg/L	0.00594	0.152	5.00	4.77	4.72	4.79	4.25 to 5.75	95.4	70.0 to 130	1.05	20.0
BC10129	Chloride	mg/L	0.117	1.00	10.0	10.5	10.5	9.33	9.00 to 11.0	105	80.0 to 120	0.00	20.0
BC10126	Chromium, Dissolved	mg/L	0.0000163	0.000440	0.100	0.0993	0.0994	0.0999	0.0850 to 0.115	98.2	70.0 to 130	0.101	20.0
BC10129	Chromium, Total	mg/L	-0.0000922	0.000440	0.100	0.102	0.102	0.0986	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10126	Cobalt, Dissolved	mg/L	0.0000016	0.000147	0.100	0.105	0.105	0.103	0.0850 to 0.115	103	70.0 to 130	0.00	20.0
BC10129	Cobalt, Total	mg/L	-0.0000048	0.000147	0.100	0.103	0.102	0.0985	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC10129	Fluoride	mg/L	0.0162	0.125	2.50	2.60	2.65	2.53	2.25 to 2.75	104	80.0 to 120	1.90	20.0
BC10126	Iron, Dissolved	mg/L	0.000179	0.0176	0.2	78.8	79.0	0.201	0.170 to 0.230	-1100	70.0 to 130	0.253	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 13:05

Customer ID:

Delivery Date: 5/26/22 12:38

Description: Barry Ash Pond - MW-5

Laboratory ID Number: BC10126

	•			MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10129	Iron, Total	mg/L	0.000506	0.0176	0.2	0.196	0.194	0.200	0.170 to 0.230	98.0	70.0 to 130	1.03	20.0
BC10126	Lead, Dissolved	mg/L	0.0000088	0.000147	0.100	0.104	0.0996	0.104	0.0850 to 0.115	104	70.0 to 130	4.32	20.0
BC10129	Lead, Total	mg/L	0.0000043	0.000147	0.100	0.104	0.105	0.103	0.0850 to 0.115	104	70.0 to 130	0.957	20.0
BC10126	Lithium, Dissolved	mg/L	0.000048	0.0154	0.200	0.213	0.211	0.203	0.170 to 0.230	106	70.0 to 130	0.943	20.0
BC10129	Lithium, Total	mg/L	0.000146	0.0154	0.200	0.188	0.186	0.187	0.170 to 0.230	94.0	70.0 to 130	1.07	20.0
BC10126	Magnesium, Dissolved	mg/L	0.00696	0.0462	5.00	10.2	10.2	5.17	4.25 to 5.75	100	70.0 to 130	0.00	20.0
BC10129	Magnesium, Total	mg/L	0.000221	0.0462	5.00	5.30	5.32	5.44	4.25 to 5.75	106	70.0 to 130	0.377	20.0
BC10126	Manganese, Dissolved	mg/L	0.0000609	0.0002	0.100	0.745	0.742	0.102	0.0850 to 0.115	71.0	70.0 to 130	0.403	20.0
BC10129	Manganese, Total	mg/L	0.0000009	0.0002	0.100	0.105	0.104	0.101	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10129	Mercury, Total by CVAA	mg/L	0.000124	0.000500	0.004	0.00419	0.00431	0.00424	0.00340 to 0.00460	105	70.0 to 130	2.82	20.0
BC10126	Molybdenum, Dissolved	mg/L	0.0000009	0.0002	0.100	0.0992	0.0985	0.100	0.0850 to 0.115	99.0	70.0 to 130	0.708	20.0
BC10129	Molybdenum, Total	mg/L	0.000005	0.0002	0.100	0.0979	0.0985	0.0983	0.0850 to 0.115	97.9	70.0 to 130	0.611	20.0
BC10126	Potassium, Dissolved	mg/L	-0.0279	0.367	10.0	11.1	10.8	9.74	8.50 to 11.5	96.1	70.0 to 130	2.74	20.0
BC10129	Potassium, Total	mg/L	-0.00785	0.367	10.0	10.1	10.2	9.95	8.50 to 11.5	101	70.0 to 130	0.985	20.0
BC10126	Selenium, Dissolved	mg/L	-0.0000585	0.00100	0.100	0.104	0.103	0.102	0.0850 to 0.115	104	70.0 to 130	0.966	20.0
BC10129	Selenium, Total	mg/L	0.0000943	0.00100	0.100	0.102	0.103	0.103	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10126	Silicon, Dissolved	mg/L	0.000042	0.0440	1.00	13.4	13.4	1.01	0.850 to 1.15	90.0	70.0 to 130	0.00	20.0
BC10129	Silicon, Total	mg/L	0.000536	0.0440	1.00	0.976	0.974	0.980	0.850 to 1.15	97.6	70.0 to 130	0.205	20.0
BC10126	Sodium, Dissolved	mg/L	0.0124	0.0660	5.00	27.4	27.6	5.08	4.25 to 5.75	100	70.0 to 130	0.727	20.0
BC10129	Sodium, Total	mg/L	0.0170	0.0660	5.00	4.63	4.58	4.63	4.25 to 5.75	92.6	70.0 to 130	1.09	20.0
BC10129	Sulfate	mg/L	-0.251	2.0	20.0	19.5	19.7	18.7	18.0 to 22.0	97.5	80.0 to 120	1.02	20.0
BC10126	Thallium, Dissolved	mg/L	0.0000014	0.000147	0.100	0.103	0.0988	0.102	0.0850 to 0.115	103	70.0 to 130	4.16	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 13:05

Customer ID:

Delivery Date: 5/26/22 12:38

Description: Barry Ash Pond - MW-5

Laboratory ID Number: BC10126

'				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10129	Thallium, Total	mg/L	0.0000041	0.000147	0.100	0.106	0.108	0.107	0.0850 to 0.115	106	70.0 to 130	1.87	20.0
BC10129	Total Organic Carbon	mg/L	0.217	1.00	10.0	10.3	10.4	25.1		103	80.0 to 120	0.966	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 13:05

Customer ID:

Delivery Date:

5/26/22 12:38

Description: Barry Ash Pond - MW-5

Laboratory ID Number: BC10126

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10128	Alkalinity, Total as CaCO3	mg/L					16.6	52.0	45.0 to 55.0			3.68	10.0
BC10129	Nitrogen, Nitrate/Nitrite	mg/L as N	-0.01	0.200	2.00	1.90	-0.030	1.90	1.80 to 2.20	95.0	90.0 to 110	0.00	15.0
BC10126	Solids, Dissolved	mg/L	1.00	25.0			258	52.0	40.0 to 60.0			2.35	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-5VLocation Code:WMWBARAPCollected:5/25/22 14:03

Customer ID:

Laboratory ID Number: BC10127 Submittal Date: 5/26/22 12:38

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	on Method: I	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 12:48	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	5/31/22 10:50	6/2/22 12:48	1.015	2.62	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 12:48	1.015	0.543	mg/L	0.008120	0.0406	
* Lithium, Total	5/31/22 10:50	6/2/22 12:48	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 14:24	1.015	1.97	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 12:48	1	13.8	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 12:48	1.015	6.46	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 12:48	1.015	18.1	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 13:30	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Dissolved	5/27/22 09:45	6/1/22 13:30	1.015	2.58	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 13:30	1.015	0.328	mg/L	0.008120	0.0406	
* Lithium, Dissolved	5/27/22 09:45	6/1/22 13:30	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 13:30	1.015	1.90	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 13:30	1	14.3	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 13:30	1.015	6.69	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 13:30	1.015	20.5	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	on Method: I	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 20:22	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 20:22	1.015	0.00715	mg/L	0.006090	0.01015	J
* Arsenic, Total	6/1/22 11:30	6/1/22 20:22	1.015	0.000171	mg/L	0.000081	0.000203	J
* Barium, Total	6/1/22 11:30	6/1/22 20:22	1.015	0.0574	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 20:22	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 20:22	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 20:22	1.015	0.000476	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 20:22	1.015	0.00106	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 20:22	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 20:22	1.015	0.0325	mg/L	0.000152	0.000203	
* Molybdenum, Total	6/1/22 11:30	6/1/22 20:22	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/1/22 11:30	6/1/22 20:22	1.015	1.04	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-5VLocation Code:WMWBARAPCollected:5/25/22 14:03

Customer ID:

Submittal Date: 5/26/22 12:38

Laboratory ID Number: BC10127

	· · · · · · · · · · · · · · · · · · ·		Vio Spec		Results			RL	Q
Selenium, Total	6/1/22 11:30	6/1/22 20:22	2	1.015	Not Detected	mg/L	0.000508	0.001015	U
Thallium, Total	6/1/22 11:30	6/1/22 20:22	2	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analy	yst: DLJ							
Antimony, Dissolved	5/31/22 14:15	5/31/22 19:4	10	1.015	Not Detected	mg/L	0.000508	0.001015	U
Aluminum, Dissolved	5/31/22 14:15	5/31/22 19:4	10	1.015	Not Detected	mg/L	0.006090	0.01015	U
Arsenic, Dissolved	5/31/22 14:15	5/31/22 19:4	10	1.015	Not Detected	mg/L	0.000081	0.000203	U
Barium, Dissolved	5/31/22 14:15	5/31/22 19:4	10	1.015	0.0578	mg/L	0.000508	0.001015	
Beryllium, Dissolved	5/31/22 14:15	5/31/22 19:4	10	1.015	Not Detected	mg/L	0.000406	0.001015	U
Cadmium, Dissolved	5/31/22 14:15	5/31/22 19:4	10	1.015	Not Detected	mg/L	0.000068	0.000203	U
Chromium, Dissolved	5/31/22 14:15	5/31/22 19:4	10	1.015	0.000438	mg/L	0.000203	0.001015	J
Cobalt, Dissolved	5/31/22 14:15	5/31/22 19:4	10	1.015	0.00106	mg/L	0.000068	0.000203	
Lead, Dissolved	5/31/22 14:15	5/31/22 19:4	10	1.015	Not Detected	mg/L	0.000068	0.000203	U
Manganese, Dissolved	5/31/22 14:15	5/31/22 19:4	10	1.015	0.0312	mg/L	0.000152	0.000203	
Molybdenum, Dissolved	5/31/22 14:15	5/31/22 19:4	10	1.015	Not Detected	mg/L	0.000102	0.000203	U
Potassium, Dissolved	5/31/22 14:15	5/31/22 19:4	10	1.015	1.06	mg/L	0.169505	0.5075	
Selenium, Dissolved	5/31/22 14:15	5/31/22 19:4	10	1.015	Not Detected	mg/L	0.000508	0.001015	U
Thallium, Dissolved	5/31/22 14:15	5/31/22 19:4	10	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Analy	yst: CRB							
Mercury, Total by CVAA	6/6/22 13:52	6/7/22 11:47	7	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anal	yst: ELH							
Nitrogen, Nitrate/Nitrite	5/31/22 10:12	5/31/22 10:1	12	1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Analy	yst: ALH							
Alkalinity, Total as CaCO3	6/8/22 11:53	6/8/22 13:41	l	1	28.1	mg/L		0.1	
Analytical Method: SM 2540C	Anal	yst: CNJ							
Solids, Dissolved	5/31/22 11:22	6/1/22 14:18	3	1	75.3	mg/L		25	
Analytical Method: SM 4500CO2 D	Anal	yst: ALH							
Bicarbonate Alkalinity, (calc.)	6/8/22 11:53	6/8/22 13:41		1	28.0	mg/L			
Carbonate Alkalinity, (calc.)	6/8/22 11:53	6/8/22 13:41		1	Not Detected	Ū		0.5	
Analytical Method: SM 5310 B		yst: ELH				J			
Total Organic Carbon	6/7/22 23:07	6/7/22 23:07	7	1	Not Detected	mg/L	1.00	2	U

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-5V

Location Code:

WMWBARAP

Collected:

Customer ID:

5/25/22 14:03

Submittal Date:

5/26/22 12:38

Laboratory ID Number: BC10127				Subillit	iai Date:	5/20/22 12	30	
Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500CI E	Ana	lyst: CES						
* Chloride	6/3/22 12:58	6/3/22 12:58	3	22.6	mg/L	1.50	3	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC						
* Fluoride	6/8/22 12:56	6/8/22 12:56	5 1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC						
* Sulfate	6/7/22 15:13	6/7/22 15:13	3 1	2.91	mg/L	0.6	2	
Analytical Method: Field Measurements	Ana	lyst: TJD						
Conductivity	5/25/22 14:00	5/25/22 14:0	00	114.39	uS/cm			FA
рН	5/25/22 14:00	5/25/22 14:0	00	5.88	SU			FA
Temperature	5/25/22 14:00	5/25/22 14:0	00	22.54	С			FA
Turbidity	5/25/22 14:00	5/25/22 14:0	00	1.64	NTU			FA
Sulfide	5/25/22 14:00	5/25/22 14:0	00	0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 14:03

Customer ID:

Sustomer ID:

Delivery Date: 5/26/22 12:38

Description: Barry Ash Pond - MW-5V

Laboratory ID Number: BC10127

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10128	Aluminum, Dissolved	mg/L	0.0000617	0.010	0.100	0.105	0.102	0.103	0.0850 to 0.115	105	70.0 to 130	2.90	20.0
BC10129	Aluminum, Total	mg/L	0.00104	0.010	0.100	0.111	0.110	0.105	0.0850 to 0.115	111	70.0 to 130	0.905	20.0
BC10128	Antimony, Dissolved	mg/L	0.000254	0.00100	0.100	0.0972	0.0969	0.0953	0.0850 to 0.115	97.2	70.0 to 130	0.309	20.0
BC10129	Antimony, Total	mg/L	0.000293	0.00100	0.100	0.0932	0.0905	0.0899	0.0850 to 0.115	93.2	70.0 to 130	2.94	20.0
BC10128	Arsenic, Dissolved	mg/L	0.0000147	0.000176	0.100	0.100	0.101	0.103	0.0850 to 0.115	99.9	70.0 to 130	0.995	20.0
BC10129	Arsenic, Total	mg/L	0.0000146	0.000176	0.100	0.101	0.102	0.0997	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
BC10128	Barium, Dissolved	mg/L	-0.0000108	0.00100	0.100	0.128	0.123	0.105	0.0850 to 0.115	101	70.0 to 130	3.98	20.0
BC10129	Barium, Total	mg/L	0.000	0.00100	0.100	0.102	0.0995	0.0984	0.0850 to 0.115	102	70.0 to 130	2.48	20.0
BC10128	Beryllium, Dissolved	mg/L	0.000102	0.000880	0.100	0.100	0.0997	0.101	0.0850 to 0.115	100	70.0 to 130	0.300	20.0
BC10129	Beryllium, Total	mg/L	0.0000199	0.000880	0.100	0.107	0.105	0.106	0.0850 to 0.115	107	70.0 to 130	1.89	20.0
BC10128	Boron, Dissolved	mg/L	-0.00005	0.0650	1.00	1.02	1.03	1.02	0.850 to 1.15	102	70.0 to 130	0.976	20.0
BC10129	Boron, Total	mg/L	0.00291	0.0650	1.00	0.980	0.976	0.994	0.850 to 1.15	98.0	70.0 to 130	0.409	20.0
BC10128	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.102	0.100	0.102	0.0850 to 0.115	102	70.0 to 130	1.98	20.0
BC10129	Cadmium, Total	mg/L	0.000	0.000147	0.100	0.101	0.100	0.0980	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BC10128	Calcium, Dissolved	mg/L	0.00171	0.152	5.00	6.14	6.22	4.66	4.25 to 5.75	91.8	70.0 to 130	1.29	20.0
BC10129	Calcium, Total	mg/L	0.00594	0.152	5.00	4.77	4.72	4.79	4.25 to 5.75	95.4	70.0 to 130	1.05	20.0
BC10129	Chloride	mg/L	0.117	1.00	10.0	10.5	10.5	9.33	9.00 to 11.0	105	80.0 to 120	0.00	20.0
BC10128	Chromium, Dissolved	mg/L	0.0000018	0.000440	0.100	0.101	0.0985	0.103	0.0850 to 0.115	101	70.0 to 130	2.51	20.0
BC10129	Chromium, Total	mg/L	-0.0000922	0.000440	0.100	0.102	0.102	0.0986	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10128	Cobalt, Dissolved	mg/L	0.0000036	0.000147	0.100	0.106	0.104	0.106	0.0850 to 0.115	105	70.0 to 130	1.90	20.0
BC10129	Cobalt, Total	mg/L	-0.0000048	0.000147	0.100	0.103	0.102	0.0985	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC10129	Fluoride	mg/L	0.0162	0.125	2.50	2.60	2.65	2.53	2.25 to 2.75	104	80.0 to 120	1.90	20.0
BC10128	Iron, Dissolved	mg/L	0.000109	0.0176	0.2	0.205	0.206	0.197	0.170 to 0.230	96.8	70.0 to 130	0.487	20.0

Batch QC Summary

Customer Account: WMWBARAP Sample Date:

Customer ID:

5/25/22 14:03

Delivery Date: 5/26/22 12:38

Description: Barry Ash Pond - MW-5V

Laboratory ID Number: BC10127

		·		MB		·		·	Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10129	Iron, Total	mg/L	0.000506	0.0176	0.2	0.196	0.194	0.200	0.170 to 0.230	98.0	70.0 to 130	1.03	20.0
BC10128	Lead, Dissolved	mg/L	0.0000165	0.000147	0.100	0.112	0.106	0.105	0.0850 to 0.115	105	70.0 to 130	5.50	20.0
BC10129	Lead, Total	mg/L	0.0000043	0.000147	0.100	0.104	0.105	0.103	0.0850 to 0.115	104	70.0 to 130	0.957	20.0
BC10128	Lithium, Dissolved	mg/L	0.000111	0.0154	0.200	0.221	0.221	0.214	0.170 to 0.230	110	70.0 to 130	0.00	20.0
BC10129	Lithium, Total	mg/L	0.000146	0.0154	0.200	0.188	0.186	0.187	0.170 to 0.230	94.0	70.0 to 130	1.07	20.0
BC10128	Magnesium, Dissolved	mg/L	0.00724	0.0462	5.00	6.28	6.31	5.16	4.25 to 5.75	104	70.0 to 130	0.477	20.0
BC10129	Magnesium, Total	mg/L	0.000221	0.0462	5.00	5.30	5.32	5.44	4.25 to 5.75	106	70.0 to 130	0.377	20.0
BC10128	Manganese, Dissolved	mg/L	0.0000281	0.0002	0.100	0.109	0.107	0.106	0.0850 to 0.115	104	70.0 to 130	1.85	20.0
BC10129	Manganese, Total	mg/L	0.0000009	0.0002	0.100	0.105	0.104	0.101	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10129	Mercury, Total by CVAA	mg/L	0.000124	0.000500	0.004	0.00419	0.00431	0.00424	0.00340 to 0.00460	105	70.0 to 130	2.82	20.0
BC10128	Molybdenum, Dissolved	mg/L	0.0000013	0.0002	0.100	0.102	0.0980	0.103	0.0850 to 0.115	102	70.0 to 130	4.00	20.0
BC10129	Molybdenum, Total	mg/L	0.000005	0.0002	0.100	0.0979	0.0985	0.0983	0.0850 to 0.115	97.9	70.0 to 130	0.611	20.0
BC10128	Potassium, Dissolved	mg/L	-0.0248	0.367	10.0	10.8	10.7	10.1	8.50 to 11.5	97.7	70.0 to 130	0.930	20.0
BC10129	Potassium, Total	mg/L	-0.00785	0.367	10.0	10.1	10.2	9.95	8.50 to 11.5	101	70.0 to 130	0.985	20.0
BC10128	Selenium, Dissolved	mg/L	-0.0000481	0.00100	0.100	0.100	0.0999	0.102	0.0850 to 0.115	100	70.0 to 130	0.100	20.0
BC10129	Selenium, Total	mg/L	0.0000943	0.00100	0.100	0.102	0.103	0.103	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10128	Silicon, Dissolved	mg/L	-0.000059	0.0440	1.00	7.84	7.85	0.994	0.850 to 1.15	104	70.0 to 130	0.127	20.0
BC10129	Silicon, Total	mg/L	0.000536	0.0440	1.00	0.976	0.974	0.980	0.850 to 1.15	97.6	70.0 to 130	0.205	20.0
BC10128	Sodium, Dissolved	mg/L	0.0164	0.0660	5.00	13.2	13.1	5.30	4.25 to 5.75	108	70.0 to 130	0.760	20.0
BC10129	Sodium, Total	mg/L	0.0170	0.0660	5.00	4.63	4.58	4.63	4.25 to 5.75	92.6	70.0 to 130	1.09	20.0
BC10129	Sulfate	mg/L	-0.251	2.0	20.0	19.5	19.7	18.7	18.0 to 22.0	97.5	80.0 to 120	1.02	20.0
BC10128	Thallium, Dissolved	mg/L	0.0000059	0.000147	0.100	0.104	0.0986	0.103	0.0850 to 0.115	104	70.0 to 130	5.33	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 14:03

Customer ID:

Delivery Date: 5/26/22 12:38

Description: Barry Ash Pond - MW-5V

Laboratory ID Number: BC10127

'				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10129	Thallium, Total	mg/L	0.0000041	0.000147	0.100	0.106	0.108	0.107	0.0850 to 0.115	106	70.0 to 130	1.87	20.0
BC10129	Total Organic Carbon	mg/L	0.217	1.00	10.0	10.3	10.4	25.1		103	80.0 to 120	0.966	20.0

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 14:03

Customer ID:

Delivery Date:

5/26/22 12:38

Description: Barry Ash Pond - MW-5V

Laboratory ID Number: BC10127

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10128	Alkalinity, Total as CaCO3	mg/L					16.6	52.0	45.0 to 55.0			3.68	10.0
BC10129	Nitrogen, Nitrate/Nitrite	mg/L as N	-0.01	0.200	2.00	1.90	-0.030	1.90	1.80 to 2.20	95.0	90.0 to 110	0.00	15.0
BC10126	Solids, Dissolved	mg/L	1.00	25.0			258	52.0	40.0 to 60.0			2.35	10.0

Certificate Of Analysis

Description: Barry Ash Pond - MW-6Location Code:WMWBARAPCollected:5/25/22 15:22

Customer ID:

Submittal Date: 5/26/22 12:38

Laboratory ID Number: BC10128

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Anal	yst: RDA		Preparati	on Method: I	EPA 1638		
* Boron, Total	5/31/22 10:50	6/2/22 12:51	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	5/31/22 10:50	6/2/22 12:51	1.015	1.62	mg/L	0.070035	0.406	
* Iron, Total	5/31/22 10:50	6/2/22 12:51	1.015	0.00905	mg/L	0.008120	0.0406	J
* Lithium, Total	5/31/22 10:50	6/2/22 12:51	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 14:28	1.015	1.20	mg/L	0.021315	0.406	
Silica, Total (calc.)	5/31/22 10:50	6/2/22 12:51	1	14.2	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 12:51	1.015	6.62	mg/L	0.02030	0.25375	
* Sodium, Total	5/31/22 10:50	6/2/22 12:51	1.015	6.62	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Anal	yst: RDA						
* Boron, Dissolved	5/27/22 09:45	6/1/22 13:33	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Dissolved	5/27/22 09:45	6/1/22 13:33	1.015	1.55	mg/L	0.070035	0.406	
* Iron, Dissolved	5/27/22 09:45	6/1/22 13:33	1.015	0.0113	mg/L	0.008120	0.0406	J
* Lithium, Dissolved	5/27/22 09:45	6/1/22 13:33	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Dissolved	5/27/22 09:45	6/1/22 13:33	1.015	1.09	mg/L	0.021315	0.406	
Silica, Dissolved (calc.)	5/27/22 09:45	6/1/22 13:33	1	14.6	mg/L			
Silicon, Dissolved	5/27/22 09:45	6/1/22 13:33	1.015	6.80	mg/L	0.02030	0.25375	
* Sodium, Dissolved	5/27/22 09:45	6/1/22 13:33	1.015	7.78	mg/L	0.03045	0.406	
Analytical Method: EPA 200.8	Anal	yst: DLJ		Preparati	on Method: I	EPA 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 20:25	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 20:25	1.015	0.00926	mg/L	0.006090	0.01015	J
* Arsenic, Total	6/1/22 11:30	6/1/22 20:25	1.015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Total	6/1/22 11:30	6/1/22 20:25	1.015	0.0268	mg/L	0.000508	0.001015	
* Beryllium, Total	6/1/22 11:30	6/1/22 20:25	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 20:25	1.015	0.000306	mg/L	0.000068	0.000203	
* Chromium, Total	6/1/22 11:30	6/1/22 20:25	1.015	0.000286	mg/L	0.000203	0.001015	J
* Cobalt, Total	6/1/22 11:30	6/1/22 20:25	1.015	0.000977	mg/L	0.000068	0.000203	
* Lead, Total	6/1/22 11:30	6/1/22 20:25		0.0112	mg/L	0.000068	0.000203	
* Manganese, Total	6/1/22 11:30	6/1/22 20:25		0.00532	mg/L	0.000152	0.000203	
Molybdenum, Total	6/1/22 11:30	6/1/22 20:25		0.000325	mg/L	0.000102	0.000203	
* Potassium, Total	6/1/22 11:30	6/1/22 20:25		0.987	mg/L	0.169505	0.5075	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-6

Location Code:

WMWBARAP 5/25/22 15:22

Collected: Customer ID:

Submittal Date:

5/26/22 12:38

Laboratory ID Number: BC10128

Name	Prepared	Analyzed	Vio Spec [DF	Results	Units	MDL	RL	Q
* Selenium, Total	6/1/22 11:30	6/1/22 20:25	5 1.	.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	6/1/22 11:30	6/1/22 20:25	5 1.	.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Anai	lyst: DLJ							
* Antimony, Dissolved	5/31/22 14:15	5/31/22 19:4	43 1.	.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Dissolved	5/31/22 14:15	5/31/22 19:4	43 1.	.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Dissolved	5/31/22 14:15	5/31/22 19:4	43 1.	.015	0.000105	mg/L	0.000081	0.000203	J
* Barium, Dissolved	5/31/22 14:15	5/31/22 19:4	43 1.	.015	0.0272	mg/L	0.000508	0.001015	
* Beryllium, Dissolved	5/31/22 14:15	5/31/22 19:4	43 1.	.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Dissolved	5/31/22 14:15	5/31/22 19:4	43 1.	.015	0.000197	mg/L	0.000068	0.000203	J
* Chromium, Dissolved	5/31/22 14:15	5/31/22 19:4	43 1.	.015	0.000245	mg/L	0.000203	0.001015	J
* Cobalt, Dissolved	5/31/22 14:15	5/31/22 19:4	43 1.	.015	0.000938	mg/L	0.000068	0.000203	
* Lead, Dissolved	5/31/22 14:15	5/31/22 19:4	43 1.	.015	0.00662	mg/L	0.000068	0.000203	
* Manganese, Dissolved	5/31/22 14:15	5/31/22 19:4	43 1.	.015	0.00511	mg/L	0.000152	0.000203	
* Molybdenum, Dissolved	5/31/22 14:15	5/31/22 19:4	43 1.	.015	0.000319	mg/L	0.000102	0.000203	
* Potassium, Dissolved	5/31/22 14:15	5/31/22 19:4	43 1.	.015	1.03	mg/L	0.169505	0.5075	
* Selenium, Dissolved	5/31/22 14:15	5/31/22 19:4	43 1.	.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Dissolved	5/31/22 14:15	5/31/22 19:4	43 1.	.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Anai	lyst: CRB							
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 11:50) 1		Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Anai	lyst: ELH							
* Nitrogen, Nitrate/Nitrite	5/31/22 10:13	5/31/22 10:1	13 1		Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2320 B	Anai	lyst: ALH							
Alkalinity, Total as CaCO3	6/8/22 11:53	6/8/22 13:41	1 1		16.0	mg/L		0.1	
Analytical Method: SM 2540C	Anai	lyst: CNJ							
* Solids, Dissolved	5/31/22 11:22	6/1/22 14:18	3 1		40.7	mg/L		25	
Analytical Method: SM 4500CO2 D		lyst: ALH							
Bicarbonate Alkalinity, (calc.)	6/8/22 11:53	6/8/22 13:41	1 1		16.0	mg/L			
Carbonate Alkalinity, (calc.)	6/8/22 11:53	6/8/22 13:4				mg/L		0.5	
Analytical Method: SM 5310 B		lyst: ELH	· '		101 = 210 310 4	J		-	
* Total Organic Carbon	6/7/22 23:23	6/7/22 23:23	3 1		Not Detected	ma/l	1.00	2	U
Total Organio Garbon	0/1/22 23:23	0/1/22 23.23) I		Not Detected	mg/∟	1.00	_	U

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond - MW-6

Location Code:

WMWBARAP

Collected:

Customer ID: Submittal Date:

5/25/22 15:22 5/26/22 12:38

Laboratory ID Number: BC10128

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500Cl E	Ana	lyst: CES							
* Chloride	6/3/22 12:53	6/3/22 12:53	3	1	6.63	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	6/8/22 12:57	6/8/22 12:5	7	1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	6/7/22 15:14	6/7/22 15:14	4	1	1.27	mg/L	0.6	2	J
Analytical Method: Field Measurements	Ana	lyst: TJD							
Conductivity	5/25/22 15:18	5/25/22 15:	18		52.89	uS/cm			FA
рН	5/25/22 15:18	5/25/22 15:	18		4.57	SU			FA
Temperature	5/25/22 15:18	3 5/25/22 15:	18		21.47	С			FA
Turbidity	5/25/22 15:18	3 5/25/22 15:	18		0.87	NTU			FA
Sulfide	5/25/22 15:18	3 5/25/22 15: ⁻	18		0	mg/L			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 15:22

Customer ID:

Delivery Date: 5/26/22 12:38

Description: Barry Ash Pond - MW-6

Laboratory ID Number: BC10128

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10128	Aluminum, Dissolved	mg/L	0.0000617	0.010	0.100	0.105	0.102	0.103	0.0850 to 0.115	105	70.0 to 130	2.90	20.0
BC10129	Aluminum, Total	mg/L	0.00104	0.010	0.100	0.111	0.110	0.105	0.0850 to 0.115	111	70.0 to 130	0.905	20.0
BC10128	Antimony, Dissolved	mg/L	0.000254	0.00100	0.100	0.0972	0.0969	0.0953	0.0850 to 0.115	97.2	70.0 to 130	0.309	20.0
BC10129	Antimony, Total	mg/L	0.000293	0.00100	0.100	0.0932	0.0905	0.0899	0.0850 to 0.115	93.2	70.0 to 130	2.94	20.0
BC10128	Arsenic, Dissolved	mg/L	0.0000147	0.000176	0.100	0.100	0.101	0.103	0.0850 to 0.115	99.9	70.0 to 130	0.995	20.0
BC10129	Arsenic, Total	mg/L	0.0000146	0.000176	0.100	0.101	0.102	0.0997	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
BC10128	Barium, Dissolved	mg/L	-0.0000108	0.00100	0.100	0.128	0.123	0.105	0.0850 to 0.115	101	70.0 to 130	3.98	20.0
BC10129	Barium, Total	mg/L	0.000	0.00100	0.100	0.102	0.0995	0.0984	0.0850 to 0.115	102	70.0 to 130	2.48	20.0
BC10128	Beryllium, Dissolved	mg/L	0.000102	0.000880	0.100	0.100	0.0997	0.101	0.0850 to 0.115	100	70.0 to 130	0.300	20.0
BC10129	Beryllium, Total	mg/L	0.0000199	0.000880	0.100	0.107	0.105	0.106	0.0850 to 0.115	107	70.0 to 130	1.89	20.0
BC10128	Boron, Dissolved	mg/L	-0.00005	0.0650	1.00	1.02	1.03	1.02	0.850 to 1.15	102	70.0 to 130	0.976	20.0
BC10129	Boron, Total	mg/L	0.00291	0.0650	1.00	0.980	0.976	0.994	0.850 to 1.15	98.0	70.0 to 130	0.409	20.0
BC10128	Cadmium, Dissolved	mg/L	0.0000000	0.000147	0.100	0.102	0.100	0.102	0.0850 to 0.115	102	70.0 to 130	1.98	20.0
BC10129	Cadmium, Total	mg/L	0.000	0.000147	0.100	0.101	0.100	0.0980	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BC10128	Calcium, Dissolved	mg/L	0.00171	0.152	5.00	6.14	6.22	4.66	4.25 to 5.75	91.8	70.0 to 130	1.29	20.0
BC10129	Calcium, Total	mg/L	0.00594	0.152	5.00	4.77	4.72	4.79	4.25 to 5.75	95.4	70.0 to 130	1.05	20.0
BC10129	Chloride	mg/L	0.117	1.00	10.0	10.5	10.5	9.33	9.00 to 11.0	105	80.0 to 120	0.00	20.0
BC10128	Chromium, Dissolved	mg/L	0.0000018	0.000440	0.100	0.101	0.0985	0.103	0.0850 to 0.115	101	70.0 to 130	2.51	20.0
BC10129	Chromium, Total	mg/L	-0.0000922	0.000440	0.100	0.102	0.102	0.0986	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10128	Cobalt, Dissolved	mg/L	0.0000036	0.000147	0.100	0.106	0.104	0.106	0.0850 to 0.115	105	70.0 to 130	1.90	20.0
BC10129	Cobalt, Total	mg/L	-0.0000048	0.000147	0.100	0.103	0.102	0.0985	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC10129	Fluoride	mg/L	0.0162	0.125	2.50	2.60	2.65	2.53	2.25 to 2.75	104	80.0 to 120	1.90	20.0
BC10128	Iron, Dissolved	mg/L	0.000109	0.0176	0.2	0.205	0.206	0.197	0.170 to 0.230	96.8	70.0 to 130	0.487	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 15:22

Customer ID:

Delivery Date: 5/26/22 12:38

Description: Barry Ash Pond - MW-6

Laboratory ID Number: BC10128

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10129	Iron, Total	mg/L	0.000506	0.0176	0.2	0.196	0.194	0.200	0.170 to 0.230	98.0	70.0 to 130	1.03	20.0
BC10128	Lead, Dissolved	mg/L	0.0000165	0.000147	0.100	0.112	0.106	0.105	0.0850 to 0.115	105	70.0 to 130	5.50	20.0
BC10129	Lead, Total	mg/L	0.0000043	0.000147	0.100	0.104	0.105	0.103	0.0850 to 0.115	104	70.0 to 130	0.957	20.0
BC10128	Lithium, Dissolved	mg/L	0.000111	0.0154	0.200	0.221	0.221	0.214	0.170 to 0.230	110	70.0 to 130	0.00	20.0
BC10129	Lithium, Total	mg/L	0.000146	0.0154	0.200	0.188	0.186	0.187	0.170 to 0.230	94.0	70.0 to 130	1.07	20.0
BC10128	Magnesium, Dissolved	mg/L	0.00724	0.0462	5.00	6.28	6.31	5.16	4.25 to 5.75	104	70.0 to 130	0.477	20.0
BC10129	Magnesium, Total	mg/L	0.000221	0.0462	5.00	5.30	5.32	5.44	4.25 to 5.75	106	70.0 to 130	0.377	20.0
BC10128	Manganese, Dissolved	mg/L	0.0000281	0.0002	0.100	0.109	0.107	0.106	0.0850 to 0.115	104	70.0 to 130	1.85	20.0
BC10129	Manganese, Total	mg/L	0.0000009	0.0002	0.100	0.105	0.104	0.101	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10129	Mercury, Total by CVAA	mg/L	0.000124	0.000500	0.004	0.00419	0.00431	0.00424	0.00340 to 0.00460	105	70.0 to 130	2.82	20.0
BC10128	Molybdenum, Dissolved	mg/L	0.0000013	0.0002	0.100	0.102	0.0980	0.103	0.0850 to 0.115	102	70.0 to 130	4.00	20.0
BC10129	Molybdenum, Total	mg/L	0.000005	0.0002	0.100	0.0979	0.0985	0.0983	0.0850 to 0.115	97.9	70.0 to 130	0.611	20.0
BC10128	Potassium, Dissolved	mg/L	-0.0248	0.367	10.0	10.8	10.7	10.1	8.50 to 11.5	97.7	70.0 to 130	0.930	20.0
BC10129	Potassium, Total	mg/L	-0.00785	0.367	10.0	10.1	10.2	9.95	8.50 to 11.5	101	70.0 to 130	0.985	20.0
BC10128	Selenium, Dissolved	mg/L	-0.0000481	0.00100	0.100	0.100	0.0999	0.102	0.0850 to 0.115	100	70.0 to 130	0.100	20.0
BC10129	Selenium, Total	mg/L	0.0000943	0.00100	0.100	0.102	0.103	0.103	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10128	Silicon, Dissolved	mg/L	-0.000059	0.0440	1.00	7.84	7.85	0.994	0.850 to 1.15	104	70.0 to 130	0.127	20.0
BC10129	Silicon, Total	mg/L	0.000536	0.0440	1.00	0.976	0.974	0.980	0.850 to 1.15	97.6	70.0 to 130	0.205	20.0
BC10128	Sodium, Dissolved	mg/L	0.0164	0.0660	5.00	13.2	13.1	5.30	4.25 to 5.75	108	70.0 to 130	0.760	20.0
BC10129	Sodium, Total	mg/L	0.0170	0.0660	5.00	4.63	4.58	4.63	4.25 to 5.75	92.6	70.0 to 130	1.09	20.0
BC10129	Sulfate	mg/L	-0.251	2.0	20.0	19.5	19.7	18.7	18.0 to 22.0	97.5	80.0 to 120	1.02	20.0
BC10128	Thallium, Dissolved	mg/L	0.0000059	0.000147	0.100	0.104	0.0986	0.103	0.0850 to 0.115	104	70.0 to 130	5.33	20.0

Batch QC Summary

Customer Account: WMWBARAP **Sample Date:** 5/25/22 15:22

Customer ID:

Delivery Date: 5/26/22 12:38

Description: Barry Ash Pond - MW-6

Laboratory ID Number: BC10128

'				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10129	Thallium, Total	mg/L	0.0000041	0.000147	0.100	0.106	0.108	0.107	0.0850 to 0.115	106	70.0 to 130	1.87	20.0
BC10129	Total Organic Carbon	mg/L	0.217	1.00	10.0	10.3	10.4	25.1		103	80.0 to 120	0.966	20.0

Comments: Filtered LCS and MB were not submitted or analyzed with Dissolved Metals.

Batch QC Summary

Customer Account: WMWBARAP

Sample Date:

5/25/22 15:22

Customer ID:

Delivery Date:

5/26/22 12:38

Description: Barry Ash Pond - MW-6

Laboratory ID Number: BC10128

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10128	Alkalinity, Total as CaCO3	mg/L					16.6	52.0	45.0 to 55.0			3.68	10.0
BC10129	Nitrogen, Nitrate/Nitrite	mg/L as N	-0.01	0.200	2.00	1.90	-0.030	1.90	1.80 to 2.20	95.0	90.0 to 110	0.00	15.0
BC10126	Solids, Dissolved	mg/L	1.00	25.0			258	52.0	40.0 to 60.0			2.35	10.0

Comments: Filtered LCS and MB were not submitted or analyzed with Dissolved Metals.

Certificate Of Analysis

Description: Barry Ash Pond Field Blank-2Location Code:WMWBARAPFBCollected:5/25/22 15:45

Customer ID:

Submittal Date: 5/26/22 12:38

Laboratory ID Number: BC10129

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analy	yst: RDA		Preparat	ion Method: EP	A 1638		
* Boron, Total	5/31/22 10:50	6/2/22 12:54	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	5/31/22 10:50	6/2/22 12:54	1.015	Not Detected	mg/L	0.070035	0.406	U
* Iron, Total	5/31/22 10:50	6/2/22 12:54	1.015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Total	5/31/22 10:50	6/2/22 12:54	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	5/31/22 10:50	6/2/22 14:31	1.015	Not Detected	mg/L	0.021315	0.406	U
Silica, Total (calc.)	5/31/22 10:50	6/2/22 12:54	1	Not Detected	mg/L			
Silicon, Total	5/31/22 10:50	6/2/22 12:54	1.015	Not Detected	mg/L	0.02030	0.25375	U
* Sodium, Total	5/31/22 10:50	6/2/22 12:54	1.015	Not Detected	mg/L	0.03045	0.406	U
Analytical Method: EPA 200.8	Analy	yst: DLJ		Preparat	ion Method: EP	A 1638		
* Antimony, Total	6/1/22 11:30	6/1/22 20:29	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Aluminum, Total	6/1/22 11:30	6/1/22 20:29	1.015	Not Detected	mg/L	0.006090	0.01015	U
* Arsenic, Total	6/1/22 11:30	6/1/22 20:29	1.015	Not Detected	mg/L	0.000081	0.000203	U
* Barium, Total	6/1/22 11:30	6/1/22 20:29	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Beryllium, Total	6/1/22 11:30	6/1/22 20:29	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	6/1/22 11:30	6/1/22 20:29	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	6/1/22 11:30	6/1/22 20:29	1.015	Not Detected	mg/L	0.000203	0.001015	U
* Cobalt, Total	6/1/22 11:30	6/1/22 20:29	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Total	6/1/22 11:30	6/1/22 20:29	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	6/1/22 11:30	6/1/22 20:29	1.015	Not Detected	mg/L	0.000152	0.000203	U
* Molybdenum, Total	6/1/22 11:30	6/1/22 20:29	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Potassium, Total	6/1/22 11:30	6/1/22 20:29	1.015	Not Detected	mg/L	0.169505	0.5075	U
* Selenium, Total	6/1/22 11:30	6/1/22 20:29	1.015	Not Detected	mg/L	0.000508	0.001015	U
 Thallium, Total 	6/1/22 11:30	6/1/22 20:29	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Analy	yst: CRB						
* Mercury, Total by CVAA	6/6/22 13:52	6/7/22 11:52	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: EPA 353.2	Analy	yst: ELH			-			
Nitrogen, Nitrate/Nitrite	5/31/22 10:14	•	4 1	Not Detected	mg/L as N	0.20	0.3	U
Analytical Method: SM 2540C	Analy	yst: CNJ						
* Solids, Dissolved	6/1/22 10:39	6/2/22 13:18	1	Not Detected	ma/l		25	U

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Barry Ash Pond Field Blank-2

Location Code:

WMWBARAPFB 5/25/22 15:45

Collected:

Customer ID: Submittal Date:

5/26/22 12:38

Laboratory ID Number: BC10129

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM 5310 B	Ana	lyst: ELH						
* Total Organic Carbon	6/7/22 23:45	6/7/22 23:45	5 1	Not Detected	mg/L	1.00	2	U
Analytical Method: SM4500Cl E	Ana	lyst: CES						
* Chloride	6/3/22 12:54	6/3/22 12:54	1	Not Detected	mg/L	0.50	1	U
Analytical Method: SM4500F G 2017	Ana	lyst: JCC						
* Fluoride	6/8/22 12:58	6/8/22 12:58	3 1	Not Detected	mg/L	0.06	0.125	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC						
* Sulfate	6/7/22 15:15	6/7/22 15:15	5 1	Not Detected	mg/L	0.6	2	U

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWBARAPFB

Sample Date: 5/25/22 15:45

Customer ID:

Delivery Date: 5/26/22 12:38

Description: Barry Ash Pond Field Blank-2

Laboratory ID Number: BC10129

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10129	Aluminum, Total	mg/L	0.00104	0.010	0.100	0.111	0.110	0.105	0.0850 to 0.115	111	70.0 to 130	0.905	20.0
BC10129	Antimony, Total	mg/L	0.000293	0.00100	0.100	0.0932	0.0905	0.0899	0.0850 to 0.115	93.2	70.0 to 130	2.94	20.0
BC10129	Arsenic, Total	mg/L	0.0000146	0.000176	0.100	0.101	0.102	0.0997	0.0850 to 0.115	101	70.0 to 130	0.985	20.0
BC10129	Barium, Total	mg/L	0.000	0.00100	0.100	0.102	0.0995	0.0984	0.0850 to 0.115	102	70.0 to 130	2.48	20.0
BC10129	Beryllium, Total	mg/L	0.0000199	0.000880	0.100	0.107	0.105	0.106	0.0850 to 0.115	107	70.0 to 130	1.89	20.0
BC10129	Boron, Total	mg/L	0.00291	0.0650	1.00	0.980	0.976	0.994	0.850 to 1.15	98.0	70.0 to 130	0.409	20.0
BC10129	Cadmium, Total	mg/L	0.000	0.000147	0.100	0.101	0.100	0.0980	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BC10129	Calcium, Total	mg/L	0.00594	0.152	5.00	4.77	4.72	4.79	4.25 to 5.75	95.4	70.0 to 130	1.05	20.0
BC10129	Chloride	mg/L	0.117	1.00	10.0	10.5	10.5	9.33	9.00 to 11.0	105	80.0 to 120	0.00	20.0
BC10129	Chromium, Total	mg/L	-0.0000922	0.000440	0.100	0.102	0.102	0.0986	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BC10129	Cobalt, Total	mg/L	-0.0000048	0.000147	0.100	0.103	0.102	0.0985	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BC10129	Fluoride	mg/L	0.0162	0.125	2.50	2.60	2.65	2.53	2.25 to 2.75	104	80.0 to 120	1.90	20.0
BC10129	Iron, Total	mg/L	0.000506	0.0176	0.2	0.196	0.194	0.200	0.170 to 0.230	98.0	70.0 to 130	1.03	20.0
BC10129	Lead, Total	mg/L	0.0000043	0.000147	0.100	0.104	0.105	0.103	0.0850 to 0.115	104	70.0 to 130	0.957	20.0
BC10129	Lithium, Total	mg/L	0.000146	0.0154	0.200	0.188	0.186	0.187	0.170 to 0.230	94.0	70.0 to 130	1.07	20.0
BC10129	Magnesium, Total	mg/L	0.000221	0.0462	5.00	5.30	5.32	5.44	4.25 to 5.75	106	70.0 to 130	0.377	20.0
BC10129	Manganese, Total	mg/L	0.0000009	0.0002	0.100	0.105	0.104	0.101	0.0850 to 0.115	105	70.0 to 130	0.957	20.0
BC10129	Mercury, Total by CVAA	mg/L	0.000124	0.000500	0.004	0.00419	0.00431	0.00424	0.00340 to 0.00460	105	70.0 to 130	2.82	20.0
BC10129	Molybdenum, Total	mg/L	0.000005	0.0002	0.100	0.0979	0.0985	0.0983	0.0850 to 0.115	97.9	70.0 to 130	0.611	20.0
BC10129	Potassium, Total	mg/L	-0.00785	0.367	10.0	10.1	10.2	9.95	8.50 to 11.5	101	70.0 to 130	0.985	20.0
BC10129	Selenium, Total	mg/L	0.0000943	0.00100	0.100	0.102	0.103	0.103	0.0850 to 0.115	102	70.0 to 130	0.976	20.0
BC10129	Silicon, Total	mg/L	0.000536	0.0440	1.00	0.976	0.974	0.980	0.850 to 1.15	97.6	70.0 to 130	0.205	20.0
BC10129	Sodium, Total	mg/L	0.0170	0.0660	5.00	4.63	4.58	4.63	4.25 to 5.75	92.6	70.0 to 130	1.09	20.0

Batch QC Summary

Customer Account: WMWBARAPFB **Sample Date:** 5/25/22 15:45

Customer ID:

Delivery Date: 5/26/22 12:38

Description: Barry Ash Pond Field Blank-2

Laboratory ID Number: BC10129

	•			MB					Standard		Rec		— Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	Limit
BC10129	Sulfate	mg/L	-0.251	2.0	20.0	19.5	19.7	18.7	18.0 to 22.0	97.5	80.0 to 120	1.02	20.0
BC10129	Thallium, Total	mg/L	0.0000041	0.000147	0.100	0.106	0.108	0.107	0.0850 to 0.115	106	70.0 to 130	1.87	20.0
BC10129	Total Organic Carbon	mg/L	0.217	1.00	10.0	10.3	10.4	25.1		103	80.0 to 120	0.966	20.0

Batch QC Summary

Customer Account: WMWBARAPFB

Sample Date:

5/25/22 15:45

Customer ID:

Delivery Date:

5/26/22 12:38

Description: Barry Ash Pond Field Blank-2

Laboratory ID Number: BC10129

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BC10129	Nitrogen, Nitrate/Nitrite	mg/L as N	-0.01	0.200	2.00	1.90	-0.030	1.90	1.80 to 2.20	95.0	90.0 to 110	0.00	15.0
BC10129	Solids, Dissolved	mg/L	1.00	25.0			0.0000	51.0	40.0 to 60.0			0.00	10.0

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040 (205) 664-6001

Definitions

U

Project Number: WM\	NBARAP_1367
Abbreviation	Description
DF	Dilution Factor
LCS	Lab Control Sample
LFM	Lab Fortified Matrix
MB	Method Blank
MDL	Method Detection Limit; minimum concentration of an analyte that can be determined with 99% confidence that the concentration is greater than zero.
MS	Matrix Spike
MSD	Matrix Spike Duplicate
Prec	Precision (% RPD)
Q	Qualifier; comment used to note deviations or additional information associated with analytical results.
QC	Quality Control
Rec	Recovery of Matrix Spike
RL	Reporting Limit; lowest concentration at which an analyte can be quantitatively measured.
Vio Spec	Violation Specification; regulatory limit which has been exceeded by the sample analyzed.
Qualifier	Description
Α	Bicarbonate alkalinity, carbonate alkalinity, hydroxide alkalinity, free carbon dioxide,
	and/or total carbon dioxide calculations are estimates due to pH>10SU and/or TDS>500mg/L.
FA	Field results were reviewed by the Water Field Group. Refer to APC Field Case Narrative.
J	Reported value is an estimate because concentration is less than reporting limit.
R	Matrix spike recovery and/or matrix spike duplicate recovery is outside of specification limit.
RA	Matrix spike is invalid due to sample concentration.

Compound was analyzed, but not detected.

k ab⊗	Chain	of Custody dwater	Fi	eld Com	·						
SERVICES	APC Gene	dwater eral Testing Labo	∠ La oratory	ab Comp		Lab ETA					
Reque		ete Date Routine				Brooks, Gre					
Reque	_	ollector Dallas G	entry		Requested By Greg D		g Dyei				
	C	oncetor Bando e	.011.19		^	Ash Pond					
			1	1							
Bottles	1 Metals	500 mL 3	Hg	250			kalinity 250 mL				
	2 Dissolved Me	etals 500 mL 4	Nitrate/Nitrite;	тос 250	mL 6 Anions 250 mL	_ 8 N/A	N/A				
	Comments	N/N, TOC pH < 2 SU. B	C 05/25/2022								
				D1		T 1	<u> </u>				
	Campala #	Data	Time	Bottle	Description	Lab Filter	Tab Id				
	Sample # //W-20H	Date 05/23/2022	Time	Count	Description Groundwater	Filter	Lab Id BC09974				
<u> </u>	1W-8V	05/23/2022	15:48	7	Groundwater	+	BC09975				
⊢			17:26	7							
⊢	1W-22H	05/24/2022	09:14	7	Groundwater	<u> </u>	BC09976				
-	1W-8	05/24/2022	10:50	7	Groundwater	 	BC09977				
⊢	B-1	05/24/2022	11:15	5	Field Blank		BC09978 BC09979				
⊢	IW-10	05/24/2022	12:46	7	Groundwater	<u> </u>	BC09979 BC09980				
	B-1	05/24/2022	13:43	5	Equipment Blank Groundwater						
⊢	1W-10V	05/24/2022	14:44	7	Groundwater	-	BC09981				
⊢	1W-13		15:55	7	BC09982						
IIV	IW-13 dup	05/24/2022	15:55	/	7 Sample Duplicate BC0998						
-		-									
		-									
-											
-											
F		+									
F		-				<u> </u>					
F											
F		+				1					
F		-									
	Relir	nquished By			Received By		Date/Time				
		Mu Saty					05/25/2022 09:35				
		de la company de			Bushe Ciltien		05/25/2022 13:53				
	-			<u> </u>							
	ł	7586-41443-5-2			All metals and radiological	bottles l	nave pH < 2 🔽				
		3901-20010-2-2		_	Cooler Temp 1.6 ℃						
Sa	mple Event	1367			Thermometer ID 7044-38						
					pH Strip ID 9772-56	585-100-	7				

Page 351 of 362

Bottles/Pre-Preserved Bottles are provided by the GTL

Alabama Pow	Chain	•			•	Ou	tside Lab						
SERVICES	,			ab Comp	lete		L	ab ETA					
Reques	sted Comple	ete Date Routine	•			Results	To Dustin Br	ooks, Gre	g Dyer				
1						-			 				
						-	′ 	sh Pond					
Rottles	1 Metals	500 ml	∃ Ha	250	ml	5 TDS	500 ml	7 A II	kalinity	250 ml			
Dottics	_						_						
ı	Commonto		25.05/25/202				1====						
	Comments	N/N, TOC pH < 2 SU.	BC 05/25/2022										
				Rottle				Lah					
	Sample #DateTimeCountDescriptionFilterLab IdMW-18H05/23/202216:147GroundwaterBC09984												
М		05/23/2022		7	Grou								
М	1W-11	05/23/2022	17:20	7	Grou	ndwater		_	BC0998	35			
М	IW-19H	05/24/2022	09:27	7	Grou	ndwater			BC0998	6			
М	IW-15V	05/24/2022	10:57	7	Grou	ndwater			BC0998	7			
М	IW-7	05/24/2022	13:10	7	Grou	ndwater			BC0998	8			
М	W-7 DUP	05/24/2022	13:10	7	Samp	ole Duplicate			BC0998	9			
FI	B-3	05/24/2022	14:05	5	Field	Blank	_		BC0999	0			
М	IW-7V	05/24/2022	14:14	7	Grou	ndwater			BC0999	1			
⊢		05/24/2022	15:15	7	-				BC0999	2			
М	IW-14V	05/24/2022	16:24	7	Grou	ndwater			BC0999	3			
	Chain of Custody Groundwater APC General Testing Laboratory Lab Complete Collector Anthony Goggins Requested By Location Requested By Location Requested By Location Replace Boundwater APC General Testing Laboratory Lab ETA Lab ETA Lab ETA Lab ETA Lab ETA Lab ETA Lab ETA Lab ETA Lab ETA Lab ETA Lab ETA Lab ETA Lab ETA Lab ETA Lab ETA Lab ETA Lab ETA Lab ETA Metals 500 mL 2 Dissolved Metals 500 mL 3 Hg 250 mL 4 Nitrito-Nitrato:TOC 250 mL 6 Anions 250 mL Lab Anions 250 mL 8 N/A N/A N/A Comments N/N, TOC pH < 2 SU. BC 05/25/2022 Sample # Date Description Lab Anions Description												
	2 Dissolved Metals 500 mL 4 Nitrite/Nitrate;TOC 250 mL 6 Anions 250 mL 8 N/A N/A												
		_											
		+											
		+		1									
		-			<u> </u>								
				1									
		.1.15				D 1 1		,	·				
	Relin			1		Received	Ву						
] [<u> </u>			05/25/20)22 09:50			
		85/1				Burste at	ten		05/25/20	22 13:41			
				1									
Sm	narTroll ID			7	All	metals and r	adiological l	oottles l	nave pH <	(2 [
	ł			7					1				
	mple Event				Т	hermometer	^	281-2-1					

Bottles/Pre-Preserved Bottles are provided by the GTL

Page 352 of 362

pH Strip ID 9772-56585-100-7

Lab S	Chain	of	Custod	ly	Fi	eld	Com	plete		Out	side Lab					
Field	Chain of Custody Field Complete Groundwater APC General Testing Laboratory Lab Complete Lab ETA Guested Complete Date Routine Results To Dustin Brooks, Greg Dyer															
D					ratory				_	D 1(. ?						
Reques	_		ector TJ Da		herty				┨,	Results . Requested 1			s, Gre	g Dyer		
	,	COHE	ector 10 De	lug	Tierty					-	on Barry A		Pond	<u> </u>		
.	,		500 1		111		050					7 [_		1050	
Bottles	1 Metals2 Dissolved N	/otals	500 mL 500 mL	3	Hg Nitrates/Nitrites,	TOC	250 250		5 6	TDS	500 mL	4	/ A II 8 N/A	kalinity	250	mL
	2 Dissolved N	rietais	500 IIIL	4	Miliales/Mililes,	100	250	IIIL	6	Anions	250 mL	١Ľ	8 N/A	1	N/A	
	Comment	S N/I	N, TOC pH < 2 S	U. Bo	C 05/25/2022											
						Во	ottle					I	Lab			
	Sample #	<u> </u>	Date		Time		ount			Descriptio	n	1	ilter	Lab	Id	
N	1W-12		05/23/202	2	16:15		7	Grou	ndv	vater				BC09	994	
N	MW-12V 05/23/2022 17:05 7 Groundwater BC09995															
М	IW-20V		05/24/202	2	09:05	7 Groundwater						BC099	996			
М	IW-20V Dup		05/24/202	2	09:05	7 Sample Duplicate								BC099	997	
М	IW-24H		05/24/202	-	10:33	7 Groundwa				ater				BC099		
М	IW-1		05/24/202	2	12:58		7	Grou	ndw	ater		L		BC099		
М	IW-1V		05/24/202	-	15:15	7 Groundwater					BC10000					
М	IW-2		05/24/202	2	16:58		7 Groundwater					BC100	001			
				4								_				
				\dashv								┞				
				\dashv								┝				
_				\dashv								┝				
				\dashv								┝				
-				\dashv								┝				
				\dashv				<u> </u>				┢				
				\dashv								\vdash	_			
				\dashv								H				
				\dashv								\vdash				
				\dashv								T				
	Reli	inqu	ished By							Received I				Dat	e/Tim	e
		4	Mb .							6				05/25/2	2022 1	0:00
	Bule Get 1 05/25/2022 13:40															
Sn	narTroll ID	759	36-41446-5-	-5				Д 11	m	etals and ra	diological	hot	tles 1	nave nH	< 2 F	
	urbidity ID					\dashv		7311		Cooler Tem		500		iave pii	\ <u>\</u>	
	mple Event			•		\dashv		Т			^	281	-2-1			
ou.			-				Thermometer ID 7044-38281-2-1 pH Strip ID 9772-56585-100-7									

Page 353 of 362

Bottles/Pre-Preserved Bottles are provided by the GTL

≵ ab& Field	Chain of	t Custody	F1	eld Com	iplete	Outsic	ie Lab						
SERVICES	Chain of Custody Field Complete Field Groundwater APC General Testing Laboratory Requested Complete Date Collector Anthony Goggins Chain of Custody Lab Complete Lab ETA Results To Requested By Greg Dyer Requested By Greg Dyer												
Degue						Deculte To							
Reque	_		, Goagins						g Dyer				
	Cor	Tector Anthony	doggins			Location							
Bottles		500 mL 3	19	250		+	500 mL		kalinity	250 mL			
	2 Dissolved Metal	s 500 mL 4	Nitrite/Nitrate	;TOC 250	mL 6	Anions	250 mL	8 N/A		N/A			
	Comments	I/N, TOC pH < 2 SU. I	BC 05/26/2022										
				Bottle				Lab					
	Sample #	Date	Time	Count		Description		Filter	Lab I	d			
N	ЛW-13V	05/25/2022	10:52	7	Ground	water			BC101	11			
N	ЛW-14	05/25/2022	11:55	7	Ground	water			BC101	12			
N	/W-15	05/25/2022	13:07	7	Ground	water			BC101	13			
N	MW-15DUP 05/25/2022 13:07 7 Sample Duplicate BC10114												
N	1W-16V	05/25/2022	14:06	7	Ground	water			BC101	15			
Ν	1W-16	05/25/2022	14:54	7	Ground	water			BC101	16			
Ν	1W-4	05/25/2022	15:35	7	Ground	water			BC101	17			
	Reling	uished By				Received By			Date	e/Time			
		uy Gji				Budo ation	1		05/26/2	022 11:54			
						Calling College	1						
	m 11 [<u> </u>	. 44		1						
	<u> </u>	586-41442-5-1		-		etals and radi		ottles l	nave pH «	< 2 🗾			
	· · ⊢	677-23343-4-2		\dashv		Cooler Temp		01 2 1					
Sa	mple Event 1	50/			The	rmometer ID)				
Bottles/I	Pre-Preserved Bottles	are provided by the	GTL	_		pH Strip ID	102/5-59	300-10-2	2				

Page 354 of 362

Eab Field	Groundy APC General			eld Com ab Comp	1	Outsid		ab ETA			
Degue	ested Complete					Results To					-
Reque		ector Dallas G	entry		-	Requested By			g Dyer		\dashv
	Conc	Ctto1 Banao e	, or itiny		-	Location			 		\dashv
			1	1						1	닉
Bottles	1 Metals	500 mL 3	Hg	250		_	500 mL	1 —	kalinity	250 r	nL
	2 Dissolved Metals	500 mL 4	Nitrate/Nitrite;	тос 250	mL 6	Anions	250 mL	8 N/A	1	N/A	
	Comments N/I	N, TOC pH < 2 SU. B	C 05/26/2022								
				Bottle				Lab			
	Sample #	Date	Time	Count		Description		Filter	Lab I	d	
V	ЛW-17V	05/25/2022	10:39	7	Groundv	vater			BC101	18	
V	ЛW-17H	05/25/2022	11:23	7	Groundv	vater			BC101	19	
M	/IW-23V	05/25/2022	12:50	7	Groundy	vater			BC1012	20	
M	/IW-23H	05/25/2022	13:53	7	Groundv	vater			BC1012	21	
M	/IW-3	05/25/2022	15:05	7	Groundy	vater			BC1012	22	
F	B-4	05/25/2022	15:20	5	Field Bla	nk			BC1012	23	
L											
	Relinqu	ished By				Received By		· ·	Date	/Time	
		Daty.				Bushe Catur)		05/26/20)22 11:	55
	,	- Oldy				<u>Dunie Cassir</u>	-		00/20/2		\dashv
											<u> </u>
Sr	narTroll ID 758	86-41443-5-2			All m	etals and radi	ological b	ottles l	nave pH <	< 2 V	
T	urbidity ID 390	01-20010-2-2			(Cooler Temp	1.3 °C				
Sa	mple Event 136	67			Ther	mometer ID	7044-382	81-2-1			
Bottlee/I	Pre-Preserved Bottles a	re provided by the G	₹TI.			pH Strip ID	10275-59	506-10-2	2		

Page 355 of 362

Coundwater	\$		Custody		eld Com	•	Ot	ıtside Lab				
Requested Complete Date Routine Routine Results To Requested By Requested By Requested By Location Regreg Oyer Barry Ash Pond	S				ab Comp	lete		L	ab ETA]
TJ Daugherty Requested By Greg Dyer Barry Ash Pond Barry Ash Pond Barry Ash Pond Barry Ash Pond Barry Ash Pond To Alkalinity 250 mL To Alkalinity	R						Results	s To Dustin Br	ooks, Gre	g Dyer		Τ
Bottles				herty			┥			<u> </u>		1
2 Dissolved Metals 500 mL 4 Patascanamast, 100 250 mL 6 Anions 250 mL 8 NVA NVA							Locat	tion Barry A	sh Pond	I		1
2 Dissolved Metals 500 mL 4 Patascanamast, 100 250 mL 6 Anions 250 mL 8 NVA NVA	Bot	ttles Metals	500 mL 3	Hg	250	mL	5 TDS	500 mL	7 AI	kalinitv	250 mL	Ī
Sample # Date Time Count Description Lab Filter Lab Id				+					-		1	٦
Sample # Date Time Count Description Filter Lab Id		Comments	/N, TOC pH < 2 SU. B	C 05/26/2022	•						•	Ī
Sample # Date Time Count Description Filter Lab Id		L										
MW-25V 05/25/2022 10:50 7 Groundwater BC10124					Bottle				Lab			
MW-25H 05/25/2022 11:40 7 Groundwater BC10125 MW-5 05/25/2022 13:05 7 Groundwater BC10126 MW-5V 05/25/2022 14:03 7 Groundwater BC10127 MW-6 05/25/2022 15:22 7 Groundwater BC10128 FB-2 05/25/2022 15:45 5 Field Blank BC10129 FB-2 05/25/2022 15:45 5 Field Blank BC10129 MW-6 MW-				Time	Count			ion	Filter			
MW-5			 	10:50								
MW-5V 05/25/2022 14:03 7 Groundwater BC10127 MW-6 05/25/2022 15:22 7 Groundwater BC10128 FB-2 05/25/2022 15:45 5 Field Blank BC10129 Relinquished By Received By Date/Time Relinquished By Received By Date/Time SmarTroll ID 7586-41446-5-5 Turbidity ID Sample Event 1367 All metals and radiological bottles have pH < 2 ✓ Cooler Temp Thermometer ID pH Strip ID 9772-56585-100-7												
MW-6 05/25/2022 15:22 7 Groundwater BC10128			 									
Relinquished By Received By Date/Time												
Relinquished By Received By Date/Time Bull City Date/Time Date/Date/Date/Date/Date/Date/Date/Date/			 									
SmarTroll ID 7586-41446-5-5 All metals and radiological bottles have pH < 2		1 0-2	03/23/2022	15.45	<u> </u>	i ieiu	DIATIK	<u>.</u>		Deloi		
SmarTroll ID 7586-41446-5-5 All metals and radiological bottles have pH < 2												
SmarTroll ID 7586-41446-5-5 All metals and radiological bottles have pH < 2												
SmarTroll ID 7586-41446-5-5 All metals and radiological bottles have pH < 2												
SmarTroll ID 7586-41446-5-5 All metals and radiological bottles have pH < 2												
SmarTroll ID 7586-41446-5-5 All metals and radiological bottles have pH < 2								_				
SmarTroll ID 7586-41446-5-5 All metals and radiological bottles have pH < 2												
SmarTroll ID 7586-41446-5-5 All metals and radiological bottles have pH < 2												
SmarTroll ID 7586-41446-5-5 All metals and radiological bottles have pH < 2												
SmarTroll ID 7586-41446-5-5 All metals and radiological bottles have pH < 2												
SmarTroll ID 7586-41446-5-5 All metals and radiological bottles have pH < 2												
SmarTroll ID 7586-41446-5-5 All metals and radiological bottles have pH < 2												
SmarTroll ID 7586-41446-5-5 All metals and radiological bottles have pH < 2												
SmarTroll ID 7586-41446-5-5 All metals and radiological bottles have pH < 2												
SmarTroll ID 7586-41446-5-5 All metals and radiological bottles have pH < 2 Cooler Temp 1.2 °C												_
SmarTroll ID					1			•		Date	/Time	٦
Turbidity ID 4677-23342-4-1 Cooler Temp 1.2 °C Sample Event 1367 Thermometer ID pH Strip ID 9772-56585-100-7		<i>\\</i>	PO				Busheld	ton		05/26/2	022 11:54	
Turbidity ID 4677-23342-4-1 Cooler Temp 1.2 °C Sample Event 1367 Thermometer ID 7044-38281-2-1 pH Strip ID 9772-56585-100-7												
Turbidity ID 4677-23342-4-1 Cooler Temp 1.2 °C Sample Event 1367 Thermometer ID 7044-38281-2-1 pH Strip ID 9772-56585-100-7												+
Turbidity ID 4677-23342-4-1 Cooler Temp 1.2 °C Sample Event 1367 Thermometer ID 7044-38281-2-1 pH Strip ID 9772-56585-100-7												<u>_</u>
Turbidity ID 4677-23342-4-1 Cooler Temp 1.2 °C Sample Event 1367 Thermometer ID pH Strip ID 9772-56585-100-7		SmarTroll ID 75				All	l metals and 1	radiological l	oottles l	have pH ·	< 2 🔽	
Sample Event 1367 Thermometer ID 7044-38281-2-1 pH Strip ID 9772-56585-100-7												
		Sample Event 13	67			Т	hermometer	ID 7044-382	281-2-1			
	n	attlas/Dua Durrent 1D vil			=		pH Strip	ID 9772-565	85-100-	7		

Page 356 of 362

≥ ab& Field	Chain o	of Custody lwater	Fi	eld Com	•	Outsi	de Lab			
SERVICES		1Water ral Testing Labo		ab Comp	olete		L	ab ETA		
Reque	sted Comple	te Date Routine				Results To	Dustin Br	ooks, Gre	g Dyer	
•	_	ollector Dallas G	entry			Requested By	Greg Dy	er	· ·	
						Location	n Barry A	sh Pond		
Bottles	1 Radium	1 L 3	N/A	N/A		5 N/A	N/A	7 N/	A N/A	
Domes	2 N/A	N/A 4	+	N/A		6 N/A	N/A	8 N/A		<u> </u>
			ļ		·	· [14// t	14//-		110/74	
	Comments	Radium MS/MSD co	nected at MV	V-8 V						
				Bottle				Lab		1
	Sample #	Date	Time	Count		Description		Filter	Lab Id	
N	1W-20H	05/23/2022	15:48	1	Groun	dwater		111101	BC10007	
N	/W-8V	05/23/2022	17:26	3	Groun	dwater			BC10008	
⊢	1W-22H	05/24/2022	09:14	1		dwater			BC10009	
-	1W-8	05/24/2022	10:50	1	 	dwater	_		BC10010	
F	B-1	05/24/2022	11:15	1	Field E				BC10011	
N	1W-10	05/24/2022	12:46	1	Groun	dwater			BC10012	
E	B-1	05/24/2022	13:43	1	Equipr	nent Blank	_		BC10013	
N	1W-10V	05/24/2022	14:44	1	Groun	dwater	_		BC10014	
M	1W-13	05/24/2022	15:55	1	Groun	dwater			BC10015	
N	IW-13 dup	05/24/2022	15:55	1	Sampl	e Duplicate			BC10016	
							_			
L										
	Reline	quished By				Received By	-		Date/Tim	ne
	[la	As Paty O				KZ			05/25/2022 0	9:35
		84				Bule Octon			05/25/2022 1	3:43
				, L						
	-	7586-41443-5-2		_	All	metals and rad		oottles h	nave pH < 2	
	· · ·	3901-20010-2-2		-		Cooler Temp				
Sa	mple Event	136/			Ίh	ermometer ID		OF 100 -	,	
						pH Strip ID	9772-565	85-100-7		

Page 357 of 362

Bottles/Pre-Preserved Bottles are provided by the GTL

Lat Fie	Chain of Cha	f Custody water	Fi	ield Com ab Comp	- <u>-</u>	,		
	APC Genera	al Testing Labo	oratory			Lab ETA		
Req	uested Complete				Results To Dusti	in Brooks, Gre	g Dyer	
	Col	lector Anthony	Goggins		Requested By Greg	g Dyer		
					Location Barr	y Ash Pond	<u> </u>	
Bottle	es 1 Radium	1 L 3	N/A	N/A	5 N/A N/A	7 N/A	A N/A	
	2 N/A	N/A 4	N/A	N/A	6 N/A N/A	8 N/A	N/A	
	Comments	1S/MSD collected @	[®] MW-11					
				Bottle		Lab		
	Sample #	Date	Time	Count	Description	Filter	Lab Id	
	MW-18H	05/23/2022	16:14	1	Groundwater		BC10017	
	MW-11	05/23/2022	17:20	3	Groundwater		BC10018	
	MW-19H	05/24/2022	09:27	1	Groundwater		BC10019	
	MW-15V	05/24/2022	10:57	1	Groundwater		BC10020	
	MW-7	05/24/2022	13:10	1	Groundwater		BC10021	
	MW-7 DUP	05/24/2022	13:10	1	Sample Duplicate		BC10022	
	FB-3	05/24/2022	14:05	1	Field Blank		BC10023	
	MW-7V	05/24/2022	14:14	1	Groundwater		BC10024	
	MW-9	05/24/2022	15:15	1	Groundwater		BC10025	
	MW-14V	05/24/2022	16:24	1	Groundwater		BC10026	
		uished By		11	Received By		Date/Tim	ie
	U.	*}************************************			6		05/25/2022 0	9:50
	L	5			Rimacition		05/25/2022 1	3:40
				┤├ ──				
				<u> </u>			<u> </u>	
	SmarTroll ID 75	586-41442-5-1			All metals and radiologic	cal bottles	have pH < 2 [.	 71
	Turbidity ID 46			\dashv	All metals and radiologic Cooler Temp NA	ai bottles l	nave pri < 2	
	Sample Event 13			\dashv	Thermometer ID NA			
	Sample Event 11	<i></i>		_		-56585-100-	7	
					hii 2011h ID 2772	20303 100		

Page 358 of 362

Bottles/Pre-Preserved Bottles are provided by the GTL

≥ ab& Field	Chain	of Custody dwater	Fi	ield Com ab Comp	- <u>—</u>	e Lab	
SERVICES	APC Gene	ral Testing Labo	oratory		nete	Lab ETA	
Reque	sted Comple	ete Date Routine			Results To	Dustin Brooks, Gre	g Dyer
	C	ollector TJ Daug	herty		Requested By	Greg Dyer	
					Location	Barry Ash Pond	l
Bottles	1 Radium	1 L 3	N/A	N/A	5 N/A N	I/A 7 N/	'A N/A
	2 N/A	N/A 4	N/A	N/A	6 N/A N	I/A 8 N/A	N/A
	Comments	MS/MSD collected @ N	MW-1V				
	Sample #	Data	Time	Bottle	Description	Lab Filter	Lab Id
N	Sample # 1W-12	Date 05/23/2022	16:15	Count 1	Groundwater	Filter	BC10027
-	1W-12V	05/23/2022	17:05	1	Groundwater		BC10028
⊢	IW-20V	05/24/2022	09:05	1	Groundwater		BC10029
-	1W-20V Dup	05/24/2022	09:05	1	Sample Duplicate		BC10030
	IW-24H	05/24/2022	10:33	1	Groundwater		BC10031
⊢	IW-1	05/24/2022	12:58	1	Groundwater		BC10032
М	1W-1V	05/24/2022	15:15	3	Groundwater		BC10033
M	IW-2	05/24/2022	16:58	1	Groundwater		BC10034
L							
<u> </u>							
-							
	Relin	quished By			Received By	\	Date/Time
					Acceived by		05/25/2022 10:00
		4 M		 	O LOR.		
		07			Burkeaton		05/25/2022 13:40
Sn	narTroll ID	7586-41446-5-5			All metals and radio	logical bottles l	have pH < 2 🔽
	}	4677-23342-4-1		7		NA	
	·	1367		7		NA	
				_	-	9772-56585-100-	7

Page 359 of 362

Bottles/Pre-Preserved Bottles are provided by the GTL

≥ ab Fiel	Chain o	i Custody water	Fi V L	ab Comp	•] Outsid	e Lab				
SERVIC		al Testing Labo		ao comp	1010			L	ab ETA]
Requ	ested Complet	e Date Routine				Re	sults To	Dustin Bro	ooks, Gre	g Dyer		
	Co	llector Anthony	Goggins			Reque	ested By	Greg Dye	er			
						L	ocation	Barry As	sh Pond			
Bottle	Radium	1 L 3	N/A	N/A		5 N/A	1	N/A	7 N/A		N/A	
	2 N/A	N/A 4	N/A	N/A		6 N/A	1	N/A	8 N/A		N/A	
	Comments											\neg
												Ш
				Bottle					Lab			
	Sample #	Date	Time	Count		Desc	ription		Filter	Lab Io	1	
	MW-13V	05/25/2022	10:52	1	Grour	ndwater				BC1013		
	MW-14	05/25/2022	11:55	1		ndwater				BC1013		
ŀ	MW-15	05/25/2022	13:07	1		ndwater				BC1013		
ŀ	MW-15DUP	05/25/2022	13:07	1		le Duplic	ate			BC1013		
ŀ	MW-16V	05/25/2022	14:06	1		ndwater				BC1013		
ŀ	MW-16	05/25/2022	14:54	1		ndwater				BC1013		
	MW-4	05/25/2022	15:35	1	Grour	ndwater				BC1013	66	
		+										
		1										
-												
								1				
•												
Ì												
İ												
	Relino	uished By				Rece	ived By			Date	/Time	
		atz Gj				R	he Colon			05/26/20)22 11:53	3
												\dashv
												↲
C	SmarTroll ID 7	7EOG 41440 F 1		7	д 11	metals	nd radi	ological L	ottles L	NAVE DU		
	Turbidity ID 4	677-23343-4-2		-	All		r Temp		outes I	nave pH <	. Z 💆	
	ample Event 1			\dashv	Тŀ	nermom	- 1	N/A				
3	ampie Event			_	11		trip ID		506-10-2	2		
Bottles	/Pre-Preserved Rottles	s are provided by the C	TI.			Y11 0	r 1D [

Page 360 of 362

Alabama Pow	Chain of	Custody	✓ Fi	eld Com	plete	✓ Ou	ıtside Lab			
Field	Groundv APC General			ab Comp	lete		ī	ab ETA		
D.			natory			D 1/				
Reque	sted Complete	Date Routine ector Dallas G	Contru			Results		ooks, Gree	g Dyer	-
	Con	ector Dallas C	eriti y			Requested	·			\dashv
			Tarana				tion Barry A			
Bottles	1 Radium	1 L 3	N/A	N/A		5 N/A	N/A	7 N/		١
	2 N/A	N/A 4	N/A	N/A		6 N/A	N/A	8 N/A	N/A	
	Comments									
				Bottle				Lab		
	Sample #	Date	Time	Count		Descripti	ion	Filter	Lab Id	
N	1W-17V	05/25/2022	10:39	1	Groun	dwater	1011	THE	BC10137	
<u> </u>	 1W-17H	05/25/2022	11:23	1		dwater		-	BC10138	1
<u> </u>	1W-23V	05/25/2022	12:50	1		dwater			BC10139	1
<u> </u>	IW-23H	05/25/2022	13:53	1		dwater			BC10140	1
N	1W-3	05/25/2022	15:05	1		dwater			BC10141	1
F	B-4	05/25/2022	15:20	1	Field E	Blank			BC10142	i
										1
							-			1
										1
										1
							_			
L										
L										1
L										
	Relingu	ished By				Received	By		Date/Tin	ne
	-	1 Daty				Rusheat			05/26/2022	1:55
		· Newy				Durico	<u> </u>		00/20/2022	
]						
Sn	narTroll ID 7 5	86-41443-5-2			All	metals and 1	radiological l	bottles h	nave pH < 2 [
Ti	urbidity ID 39	01-20010-2-2				Cooler Te				
Sa	mple Event 13	67			Th	ermometer	ID N/A			
n :=		.1 11 3 -				pH Strip	ID 10275-59	9506-10-2	2	
Bottles/P	Pre-Preserved Bottles a	re provided by the C	ıIL	Page	361 of	362				8.0

Alabama Po	APC General Testing Laboratory Lab ETA equested Complete Date Routine Collector TJ Daugherty Results To Dustin Brooks, Greg Dyer Requested By Greg Dyer Location Barry Ash Pond															
	" /	eral Testing La	aborato	ry							L	∠at	ETA	1		
Reque	ested Comple	ete Date Routi	ne						Res	ults To	Dustin Br	roc	ks, Gre	eg Dyer		
	С	ollector TJ D	augherty	/					Reques	sted By	Greg Dy	⁄er				
									Lo	ocation	Barry A	sh	Pond	<u> </u>		
Bottles	1 Radium	1 L	3 N/A	١	N.	/A		5	N/A		N/A	\prod	7 N	/A	N/A	
	2 N/A	N/A	4 N/A	4	N.	/A		6	N/A		N/A]	8 N/A	4	N/A	
	Comments															
					Bottl	e							Lab			
	Sample #	Date	Ti	me	Cour	nt			Descr	iption		I	Filter	Lab I	d	
N	MW-25V	05/25/202	22 10	:50	1	- 0	Grour	ndv	vater			Ļ	_	BC101	43	
ľ	MW-25H			:40	1	- 0	Grour	ndv	vater			Ļ				
⊢				1	1	_						\downarrow				
⊢		- 				-						\downarrow	_			
- F		_	_	$\overline{}$		_						╀				
	-B-2	05/25/202	22 15	:45	1	- ⊦	-ield	Bla	ınk			H		BC1014	48	
				-		+					_	╁				
-				1		_						╁	_			
-						+						╁				
F				<u> </u>		+						╁				
						\dashv						T				
r						\top						╁				
						\top						T				
												Г				
												L				
						\perp						Ļ				
L						\perp						Ļ				
L																
												_		Date	/Tim	e
		外的							Bush	Cater	<u> </u>			05/26/2	022 11	:54
				\dashv								_		 		$\overline{}$
												=]		
Sı	marTroll ID	7586-41446-5	-5				All	m	etals ar	nd radi	ological l	bc	ttles	have pH <	< 2]
	· ·	4677-23342-4	-1							Temp						
Sa	imple Event	1367					П	her	mome		N/A					
Rottles/	Dro-Drocomiad Ratt	es are provided by t	he CTI						pH St	rip ID	9772-565	58	5-100-	7		

Page 362 of 362

July 13, 2022

Brooke Caton Alabama Power 744 Highway 87 Calera, AL 35040

RE: Project: WMWBARAP_1367

Pace Project No.: 30494074

Dear Brooke Caton:

Enclosed are the analytical results for sample(s) received by the laboratory on June 02, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

(Greensburg, PA) - Revision 1 - This report replaces the 7/12/22 report. This project was revised on 7/13/22 to revise a sample ID per client request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Skyler C. Richmond

skyler.richmond@pacelabs.com (724)850-5600

Richard

Project Manager

Enclosures

cc: Blaine Denton, Alabama Power Renee Jernigan, Alabama Power

CERTIFICATIONS

Project: WMWBARAP_1367

Pace Project No.: 30494074

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification
California Certification #

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification

Florida: Cert E871149 SEKS WET

Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082

Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457

New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: WMWBARAP_1367

Pace Project No.: 30494074

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30494074001	BC10007 MW-20H	Water	05/23/22 15:48	06/02/22 10:15
30494074002	BC10008 MW-8V	Water	05/23/22 17:26	06/02/22 10:15
30494074003	BC10008 MW-8V MS	Water	05/23/22 17:26	06/02/22 10:15
30494074004	BC10008 MW-8V MSD	Water	05/23/22 17:26	06/02/22 10:15
30494074005	BC10009 MW-22H	Water	05/24/22 09:14	06/02/22 10:15
30494074006	BC10010 MW-8	Water	05/24/22 10:50	06/02/22 10:15
30494074007	BC10011 FB-1	Water	05/24/22 11:15	06/02/22 10:15
30494074008	BC10012 MW-10	Water	05/24/22 12:46	06/02/22 10:15
30494074009	BC10013 EB-1	Water	05/24/22 13:43	06/02/22 10:15
30494074010	BC10014 MW-10V	Water	05/24/22 14:44	06/02/22 10:15
30494074011	BC10015 MW-13	Water	05/24/22 15:55	06/02/22 10:15
30494074012	BC10016 MW-13 Dup	Water	05/24/22 15:55	06/02/22 10:15
30494074013	BC10017 MW-18H	Water	05/23/22 16:14	06/02/22 10:15
30494074014	BC10018 MW-11	Water	05/23/22 17:20	06/02/22 10:15
30494074015	BC10018 MW-11 MS	Water	05/23/22 17:20	06/02/22 10:15
30494074016	BC10018 MW-11 MSD	Water	05/23/22 17:20	06/02/22 10:15
30494074017	BC10019 MW-19H	Water	05/24/22 09:27	06/02/22 10:15
30494074018	BC10020 MW-15V	Water	05/24/22 10:57	06/02/22 10:15
30494074019	BC10021 MW-7	Water	05/24/22 13:10	06/02/22 10:15
30494074020	BC10022 MW-7 DUP	Water	05/24/22 13:10	06/02/22 10:15
30494074021	BC10023 FB-3	Water	05/24/22 14:05	06/02/22 10:15
30494074022	BC10024 MW-7V	Water	05/24/22 14:14	06/02/22 10:15
30494074023	BC10025 MW-9	Water	05/24/22 15:15	06/02/22 10:15
30494074024	BC10026 MW-14V	Water	05/24/22 16:24	06/02/22 10:15
30494074025	BC10027 MW-12	Water	05/23/22 16:15	06/02/22 10:15
30494074026	BC10028 MW-12V	Water	05/23/22 17:05	06/02/22 10:15
30494074027	BC10029 MW-20V	Water	05/24/22 09:05	06/02/22 10:15
30494074028	BC10030 MW-20V Dup	Water	05/24/22 09:05	06/02/22 10:15
30494074029	BC10031 MW-24H	Water	05/24/22 10:33	06/02/22 10:15
30494074030	BC10032 MW-1	Water	05/24/22 12:58	06/02/22 10:15
30494074031	BC10033 MW-1V	Water	05/24/22 15:15	06/02/22 10:15
30494074032	BC10033 MW-1V MS	Water	05/24/22 15:15	06/02/22 10:15
30494074033	BC10033 MW-1V MSD	Water	05/24/22 15:15	06/02/22 10:15
30494074034	BC10034 MW-2	Water	05/24/22 16:58	06/02/22 10:15
30494074035	BC10130 MW-13V	Water	05/25/22 10:52	06/02/22 10:15
30494074036	BC10131 MW-14	Water	05/25/22 11:55	06/02/22 10:15
30494074037	BC10132 MW-15	Water	05/25/22 13:07	06/02/22 10:15

SAMPLE SUMMARY

Project: WMWBARAP_1367

Pace Project No.: 30494074

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30494074038	BC10133 MW-15 Dup		05/25/22 13:07	06/02/22 10:15
30494074039	BC10134 MW-16V	Water	05/25/22 14:06	06/02/22 10:15
30494074040	BC10135 MW-16	Water	05/25/22 14:54	06/02/22 10:15
30494074041	BC10136 MW-4	Water	05/25/22 15:35	06/02/22 10:15
30494074042	BC10137 MW-17V	Water	05/25/22 10:39	06/02/22 10:15
30494074043	BC10138 MW-17H	Water	05/25/22 11:23	06/02/22 10:15
30494074044	BC10139 MW-23V	Water	05/25/22 12:50	06/02/22 10:15
30494074045	BC10140 MW-23H	Water	05/25/22 13:53	06/02/22 10:15
30494074046	BC10141 MW-3	Water	05/25/22 15:05	06/02/22 10:15
30494074047	BC10142 FB-4	Water	05/25/22 15:20	06/02/22 10:15
30494074048	BC10143 MW-25V	Water	05/25/22 10:50	06/02/22 10:15
30494074049	BC10144 MW-25H	Water	05/25/22 11:40	06/02/22 10:15
30494074050	BC10145 MW-5	Water	05/25/22 13:05	06/02/22 10:15
30494074051	BC10146 MW-5V	Water	05/25/22 14:03	06/02/22 10:15
30494074052	BC10147 MW-6	Water	05/25/22 15:22	06/02/22 10:15
30494074053	BC10148 FB-2	Water	05/25/22 15:45	06/02/22 10:15

Project:

WMWBARAP_1367

Pace Project No.: 30494074

	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30494074001	BC10007 MW-20H	EPA 9315		1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074002	BC10008 MW-8V	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
80494074003	BC10008 MW-8V MS	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
0494074004	BC10008 MW-8V MSD	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
0494074005	BC10009 MW-22H	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
0494074006	BC10010 MW-8	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
0494074007	BC10011 FB-1	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
0494074008	BC10012 MW-10	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
0494074009	BC10013 EB-1	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
80494074010	BC10014 MW-10V	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
0494074011	BC10015 MW-13	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
0494074012	BC10016 MW-13 Dup	EPA 9315	JC2	1	PASI-PA
	-	EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074013	BC10017 MW-18H	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA

Project: WMWBARAP_1367

Pace Project No.: 30494074

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30494074014	BC10018 MW-11	EPA 9315		1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074015	BC10018 MW-11 MS	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
30494074016	BC10018 MW-11 MSD	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
30494074017	BC10019 MW-19H	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074018	BC10020 MW-15V	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074019	BC10021 MW-7	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
80494074020	BC10022 MW-7 DUP	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074021	BC10023 FB-3	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074022	BC10024 MW-7V	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074023	BC10025 MW-9	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074024	BC10026 MW-14V	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
0494074025	BC10027 MW-12	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074026	BC10028 MW-12V	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

Project: WN

WMWBARAP_1367

Pace Project No.: 30494074

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30494074027	BC10029 MW-20V	EPA 9315		1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074028	BC10030 MW-20V Dup	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074029	BC10031 MW-24H	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074030	BC10032 MW-1	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074031	BC10033 MW-1V	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074032	BC10033 MW-1V MS	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
30494074033	BC10033 MW-1V MSD	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
0494074034	BC10034 MW-2	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074035	BC10130 MW-13V	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074036	BC10131 MW-14	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074037	BC10132 MW-15	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
0494074038	BC10133 MW-15 Dup	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074039	BC10134 MW-16V	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

Project:

WMWBARAP_1367

Pace Project No.: 30494074

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30494074040	BC10135 MW-16	EPA 9315		1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074041	BC10136 MW-4	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074042	BC10137 MW-17V	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074043	BC10138 MW-17H	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074044	BC10139 MW-23V	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074045	BC10140 MW-23H	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074046	BC10141 MW-3	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074047	BC10142 FB-4	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074048	BC10143 MW-25V	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074049	BC10144 MW-25H	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074050	BC10145 MW-5	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074051	BC10146 MW-5V	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
			JC2		

Project: WMWBARAP_1367

Pace Project No.: 30494074

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30494074053	BC10148 FB-2	EPA 9315	JC2	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

PROJECT NARRATIVE

Project: WMWBARAP_1367

Pace Project No.: 30494074

Method: EPA 9315

Description: 9315 Total Radium **Client:** Alabama Power **Date:** July 13, 2022

General Information:

53 samples were analyzed for EPA 9315 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: WMWBARAP_1367

Pace Project No.: 30494074

Method: EPA 9320

Description:9320 Radium 228Client:Alabama PowerDate:July 13, 2022

General Information:

53 samples were analyzed for EPA 9320 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: WMWBARAP_1367

Pace Project No.: 30494074

Method:Total Radium CalculationDescription:Total Radium 228+226Client:Alabama PowerDate:July 13, 2022

General Information:

47 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10007 MW-20H PWS:	Lab ID: 304940 Site ID:	74001 Collected: 05/23/22 15:48 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg				
Radium-226	EPA 9315	0.242U ± 0.172 (0.282) C:89% T:NA	pCi/L	07/08/22 16:40	13982-63-3	
	Pace Analytical Se	ervices - Greensburg				
Radium-228	EPA 9320	0.415U ± 0.362 (0.726) C:68% T:91%	pCi/L	07/07/22 14:26	5 15262-20-1	
	Pace Analytical Se	ervices - Greensburg				
Total Radium	Total Radium Calculation	0.657U ± 0.534 (1.01)	pCi/L	07/11/22 22:42	2 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10008 MW-8V PWS:	Lab ID: 3049407 Site ID:	4002 Collected: 05/23/22 17:26 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 9315	0.449 ± 0.218 (0.268) C:89% T:NA	pCi/L	07/08/22 16:40	13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 9320	0.684U ± 0.391 (0.706) C:65% T:97%	pCi/L	07/07/22 14:26	5 15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	1.13 ± 0.609 (0.974)	pCi/L	07/11/22 22:42	2 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10008 MW-8V MS Lab ID: 30494074003 Collected: 05/23/22 17:26 Received: 06/02/22 10:15 Matrix: Water

C:NA T:NA

PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg 98.21 %REC ± NA (NA) EPA 9315 Radium-226 pCi/L 07/08/22 16:40 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg 107.38 %REC ± NA (NA) EPA 9320 Radium-228 pCi/L 07/07/22 14:31 15262-20-1

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10008 MW-8V MSD Lab ID: 30494074004 Collected: 05/23/22 17:26 Received: 06/02/22 10:15 Matrix: Water PWS: Site ID: Sample Type:

Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg 102.23 %REC 4.01 RPD ± Radium-226 EPA 9315 pCi/L 07/08/22 16:40 13982-63-3 NA (NA) C:NA T:NA Pace Analytical Services - Greensburg EPA 9320 91.99 %REC 15.43 RPD ± Radium-228 pCi/L 07/07/22 14:31 15262-20-1

NA (NA) C:NA T:NA

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10009 MW-22H PWS:	Lab ID: 3049 Site ID:	4074005 Collected: 05/24/22 09:14 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.368 ± 0.205 (0.297) C:85% T:NA	pCi/L	07/08/22 16:40	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.288U ± 0.322 (0.669) C:65% T:95%	pCi/L	07/07/22 14:31	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.656U ± 0.527 (0.966)	pCi/L	07/11/22 22:42	2 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10010 MW-8 PWS:	Lab ID: 3049407 Site ID:	4006 Collected: 05/24/22 10:50 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 9315	0.203U ± 0.201 (0.398) C:87% T:NA	pCi/L	07/08/22 16:40	13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 9320	0.530U ± 0.364 (0.692) C:73% T:88%	pCi/L	07/07/22 14:3	1 15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	0.733U ± 0.565 (1.09)	pCi/L	07/11/22 22:42	2 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10011 FB-1 PWS:	Lab ID: 30494 Site ID:	4074007 Collected: 05/24/22 11:1 Sample Type:	5 Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	-0.00931U ± 0.104 (0.301) C:80% T:NA	pCi/L	07/08/22 16:40	0 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.00434U ± 0.280 (0.655) C:72% T:97%	pCi/L	07/07/22 14:3	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.00434U ± 0.384 (0.956)	pCi/L	07/11/22 22:42	2 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10012 MW-10 PWS:	Lab ID: 30494 Site ID:	074008 Collected: 05/24/22 12:46 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg		•	•	
Radium-226	EPA 9315	0.739U ± 0.465 (0.763) C:84% T:NA	pCi/L	07/10/22 11:00	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 9320	0.625U ± 0.370 (0.673) C:69% T:94%	pCi/L	07/07/22 14:3	1 15262-20-1	
	Pace Analytical S	Services - Greensburg				
Total Radium	Total Radium Calculation	1.36U ± 0.835 (1.44)	pCi/L	07/11/22 22:42	2 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10013 EB-1 PWS:	Lab ID: 3049 Site ID:	4074009 Collected: 05/24/22 13:43 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.148U ± 0.161 (0.317) C:85% T:NA	pCi/L	07/10/22 11:00	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.572U ± 0.361 (0.672) C:71% T:95%	pCi/L	07/07/22 14:3	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.720U ± 0.522 (0.989)	pCi/L	07/11/22 22:42	2 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10014 MW-10V PWS:	Lab ID: 30494 Site ID:	O74010 Collected: 05/24/22 14:44 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				,
Radium-226	EPA 9315	0.708 ± 0.282 (0.296) C:88% T:NA	pCi/L	07/10/22 11:00	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 9320	0.495U ± 0.337 (0.637) C:71% T:97%	pCi/L	07/07/22 14:32	2 15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.20 ± 0.619 (0.933)	pCi/L	07/11/22 22:42	2 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10015 MW-13 PWS:	Lab ID: 30494 Site ID:	Collected: 05/24/22 15:55 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 9315	0.241U ± 0.199 (0.368) C:94% T:NA	pCi/L	07/10/22 11:00	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 9320	0.674 ± 0.358 (0.624) C:73% T:98%	pCi/L	07/07/22 14:32	2 15262-20-1	
	Pace Analytical S	Services - Greensburg				
Total Radium	Total Radium Calculation	0.915U ± 0.557 (0.992)	pCi/L	07/11/22 22:42	2 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10016 MW-13 Dup PWS:	Lab ID: 30494 Site ID:	4074012 Collected: 05/24/22 15:55 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.314U ± 0.204 (0.347) C:98% T:NA	pCi/L	07/10/22 11:00	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.0312U ± 0.312 (0.721) C:68% T:97%	pCi/L	07/07/22 14:3	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.345U ± 0.516 (1.07)	pCi/L	07/11/22 22:42	2 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10017 MW-18H PWS:	Lab ID: 3049 Site ID:	4074013 Collected: 05/23/22 16:14 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.358 ± 0.218 (0.318) C:85% T:NA	pCi/L	07/10/22 11:06	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.669U ± 0.535 (1.07) C:58% T:90%	pCi/L	07/05/22 13:42	2 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.03U ± 0.753 (1.39)	pCi/L	07/11/22 22:43	3 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10018 MW-11 PWS:	Lab ID: 3049407 Site ID:	'4014 Collected: 05/23/22 17:20 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	rvices - Greensburg				
Radium-226	EPA 9315	0.0967U ± 0.159 (0.354) C:88% T:NA	pCi/L	07/10/22 11:07	7 13982-63-3	
	Pace Analytical Ser	rvices - Greensburg				
Radium-228	EPA 9320	0.355U ± 0.433 (0.917) C:61% T:98%	pCi/L	07/05/22 13:42	2 15262-20-1	
	Pace Analytical Ser	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.452U ± 0.592 (1.27)	pCi/L	07/11/22 22:43	3 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10018 MW-11 MS Lab ID: 30494074015 Collected: 05/23/22 17:20 Received: 06/02/22 10:15 Matrix: Water

C:NA T:NA

PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg EPA 9315 91.63 %REC ± NA (NA) Radium-226 pCi/L 07/10/22 11:07 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg 103.18 %REC ± NA (NA) EPA 9320 Radium-228 pCi/L 07/05/22 13:42 15262-20-1

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10018 MW-11 MSD Lab ID: 30494074016 Collected: 05/23/22 17:20 Received: 06/02/22 10:15 Matrix: Water

PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg 92.18 %REC 0.61 RPD ± Radium-226 EPA 9315 pCi/L 07/10/22 11:07 13982-63-3 NA (NA) C:NA T:NA Pace Analytical Services - Greensburg EPA 9320 127.91 %REC 21.40 RPD ± Radium-228 pCi/L 07/05/22 13:42 15262-20-1

NA (NA) C:NA T:NA

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10019 MW-19H PWS:	Lab ID: 3049 Site ID:	4074017 Collected: 05/24/22 09:27 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.164U ± 0.159 (0.292) C:82% T:NA	pCi/L	07/10/22 11:07	7 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.898U ± 0.543 (1.02) C:64% T:84%	pCi/L	07/05/22 13:42	2 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.06U ± 0.702 (1.31)	pCi/L	07/11/22 22:43	3 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10020 MW-15V PWS:	Lab ID: 3049 Site ID:	4074018 Collected: 05/24/22 10:57 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.618U ± 0.500 (0.856) C:76% T:NA	pCi/L	07/10/22 11:07	7 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.23 ± 0.576 (0.987) C:69% T:91%	pCi/L	07/05/22 13:42	2 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.85 ± 1.08 (1.84)	pCi/L	07/11/22 22:43	3 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10021 MW-7 PWS:	Lab ID: 3049 Site ID:	4074019 Collected: 05/24/22 13:10 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.297U ± 0.214 (0.346) C:83% T:NA	pCi/L	07/10/22 11:07	7 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.754U ± 0.437 (0.804) C:75% T:87%	pCi/L	07/05/22 13:43	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.05U ± 0.651 (1.15)	pCi/L	07/11/22 22:43	3 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10022 MW-7 DUP PWS:	Lab ID: 3049 Site ID:	4074020 Collected: 05/24/22 13:10 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.138U ± 0.154 (0.300) C:82% T:NA	pCi/L	07/10/22 11:07	7 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.709U ± 0.560 (1.12) C:64% T:81%	pCi/L	07/05/22 13:43	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.847U ± 0.714 (1.42)	pCi/L	07/11/22 22:43	3 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10023 FB-3 PWS:	Lab ID: 3049 Site ID:	4074021 Collected: 05/24/22 14:05 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0957U ± 0.169 (0.382) C:83% T:NA	pCi/L	07/10/22 11:07	7 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.707U ± 0.458 (0.871) C:62% T:96%	pCi/L	07/05/22 13:43	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.803U ± 0.627 (1.25)	pCi/L	07/11/22 22:43	3 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10024 MW-7V PWS:	Lab ID: 3049 Site ID:	4074022 Collected: 05/24/22 14:14 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.304 ± 0.181 (0.239) C:81% T:NA	pCi/L	07/10/22 11:07	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.315U ± 0.332 (0.685) C:66% T:95%	pCi/L	07/05/22 13:43	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.619U ± 0.513 (0.924)	pCi/L	07/11/22 22:43	7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10025 MW-9 PWS:	Lab ID: 3049407 Site ID:	74023 Collected: 05/24/22 15:15 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	rvices - Greensburg		•		
Radium-226	EPA 9315	0.481 ± 0.227 (0.273) C:84% T:NA	pCi/L	07/10/22 11:07	13982-63-3	
	Pace Analytical Ser	rvices - Greensburg				
Radium-228	EPA 9320	1.63 ± 0.648 (1.03) C:67% T:84%	pCi/L	07/05/22 13:43	3 15262-20-1	
	Pace Analytical Ser	rvices - Greensburg				
Total Radium	Total Radium Calculation	2.11 ± 0.875 (1.30)	pCi/L	07/11/22 22:43	7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10026 MW-14V PWS:	Lab ID: 3049 Site ID:	4074024 Collected: 05/24/22 16:24 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.172U ± 0.167 (0.311) C:81% T:NA	pCi/L	07/10/22 11:07	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.09 ± 0.531 (0.922) C:67% T:86%	pCi/L	07/05/22 13:43	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.26 ± 0.698 (1.23)	pCi/L	07/11/22 22:43	7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10027 MW-12 PWS:	Lab ID: 3049 Site ID:	4074025 Collected: 05/23/22 16:15 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.503 ± 0.248 (0.290) C:81% T:NA	pCi/L	07/10/22 11:07	7 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.897 ± 0.443 (0.770) C:78% T:87%	pCi/L	07/05/22 13:44	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.40 ± 0.691 (1.06)	pCi/L	07/11/22 22:43	3 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10028 MW-12V PWS:	Lab ID: 3049 Site ID:	4074026 Collected: 05/23/22 17:05 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.234U ± 0.195 (0.352) C:83% T:NA	pCi/L	07/10/22 11:08	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.728U ± 0.434 (0.802) C:63% T:100%	pCi/L	07/05/22 13:44	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.962U ± 0.629 (1.15)	pCi/L	07/11/22 22:43	3 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10029 MW-20V PWS:	Lab ID: 3049 Site ID:	4074027 Collected: 05/24/22 09:05 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.332U ± 0.220 (0.352) C:85% T:NA	pCi/L	07/10/22 11:08	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.638U ± 0.435 (0.799) C:79% T:90%	pCi/L	07/10/22 19:04	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.970U ± 0.655 (1.15)	pCi/L	07/11/22 22:43	3 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10030 MW-20V Dup PWS:	Lab ID: 3049 Site ID:	4074028 Collected: 05/24/22 09:05 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.324U ± 0.208 (0.333) C:83% T:NA	pCi/L	07/10/22 11:08	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.993 ± 0.437 (0.677) C:69% T:85%	pCi/L	07/05/22 13:4	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.32 ± 0.645 (1.01)	pCi/L	07/11/22 22:43	3 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10031 MW-24H PWS:	Lab ID: 3049 Site ID:	4074029 Collected: 05/24/22 10:33 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.733 ± 0.363 (0.484) C:70% T:NA	pCi/L	07/10/22 11:07	7 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.351U ± 0.355 (0.728) C:71% T:87%	pCi/L	07/05/22 13:4	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.08U ± 0.718 (1.21)	pCi/L	07/11/22 22:43	3 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10032 MW-1 PWS:	Lab ID: 3049407 Site ID:	4030 Collected: 05/24/22 12:58 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 9315	0.950 ± 0.375 (0.351) C:85% T:NA	pCi/L	07/10/22 11:07	13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 9320	1.17 ± 0.482 (0.747) C:74% T:96%	pCi/L	07/05/22 17:30	15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	2.12 ± 0.857 (1.10)	pCi/L	07/11/22 22:43	7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10033 MW-1V PWS:	Lab ID: 30494 Site ID:	4074031 Collected: 05/24/22 15:15 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg		•	•	
Radium-226	EPA 9315	0.426 ± 0.197 (0.213) C:92% T:NA	pCi/L	07/10/22 11:13	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.57 ± 0.549 (0.772) C:74% T:88%	pCi/L	07/05/22 13:4	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	$2.00 \pm 0.746 (0.985)$	pCi/L	07/11/22 22:44	7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10033 MW-1V MS Lab ID: 30494074032 Collected: 05/24/22 15:15 Received: 06/02/22 10:15 Matrix: Water

C:NA T:NA

PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg EPA 9315 103.74 %REC ± NA (NA) Radium-226 pCi/L 07/10/22 11:13 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg 95.46 %REC ± NA (NA) EPA 9320 07/05/22 13:45 15262-20-1 Radium-228 pCi/L

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10033 MW-1V MSD Lab ID: 30494074033 Collected: 05/24/22 15:15 Received: 06/02/22 10:15 Matrix: Water

PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 9315 97.40 %REC 6.31 RPD ± Radium-226 pCi/L 07/10/22 11:13 13982-63-3 NA (NA) C:NA T:NA Pace Analytical Services - Greensburg EPA 9320 82.96 %REC 14.01 RPD ± Radium-228 pCi/L 07/05/22 13:45 15262-20-1

NA (NA) C:NA T:NA

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10034 MW-2 PWS:	Lab ID: 30494 0 Site ID:	O74034 Collected: 05/24/22 16:58 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				-
Radium-226	EPA 9315	0.231U ± 0.199 (0.352) C:89% T:NA	pCi/L	07/10/22 11:07	7 13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 9320	0.501U ± 0.480 (0.996) C:75% T:90%	pCi/L	07/05/22 13:5	1 15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	0.732U ± 0.679 (1.35)	pCi/L	07/11/22 22:43	3 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10130 MW-13V PWS:	Lab ID: 3049 Site ID:	4074035 Collected: 05/25/22 10:52 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.341U ± 0.227 (0.346) C:99% T:NA	pCi/L	07/10/22 11:07	7 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.610U ± 0.530 (1.09) C:73% T:94%	pCi/L	07/05/22 13:5	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.951U ± 0.757 (1.44)	pCi/L	07/11/22 22:43	3 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10131 MW-14 PWS:	Lab ID: 30494 Site ID:	4074036 Collected: 05/25/22 11:55 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.377 ± 0.232 (0.347) C:100% T:NA	pCi/L	07/10/22 11:13	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.871 ± 0.477 (0.829) C:74% T:86%	pCi/L	07/05/22 17:22	2 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.25 ± 0.709 (1.18)	pCi/L	07/11/22 22:44	7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10132 MW-15 PWS:	Lab ID: 3049 Site ID:	4074037 Collected: 05/25/22 13:07 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.397 ± 0.206 (0.249) C:95% T:NA	pCi/L	07/10/22 11:14	4 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.906 ± 0.425 (0.686) C:77% T:93%	pCi/L	07/10/22 19:0	4 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.30 ± 0.631 (0.935)	pCi/L	07/11/22 22:44	4 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10133 MW-15 Dup PWS:	Lab ID: 3049 Site ID:	4074038 Collected: 05/25/22 13:07 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.478 ± 0.248 (0.291) C:91% T:NA	pCi/L	07/10/22 11:14	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.03 ± 0.486 (0.798) C:71% T:91%	pCi/L	07/05/22 17:24	4 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.51 ± 0.734 (1.09)	pCi/L	07/11/22 22:44	4 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10134 MW-16V PWS:	Lab ID: 3049 Site ID:	4074039 Collected: 05/25/22 14:06 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.185U ± 0.161 (0.275) C:88% T:NA	pCi/L	07/10/22 11:14	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.846 ± 0.458 (0.788) C:72% T:91%	pCi/L	07/05/22 17:24	4 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.03U ± 0.619 (1.06)	pCi/L	07/11/22 22:44	7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10135 MW-16 PWS:	Lab ID: 3049 Site ID:	4074040 Collected: 05/25/22 14:54 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.216U ± 0.154 (0.234) C:98% T:NA	pCi/L	07/10/22 11:14	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.711U ± 0.457 (0.829) C:70% T:87%	pCi/L	07/05/22 17:22	2 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.927U ± 0.611 (1.06)	pCi/L	07/11/22 22:44	7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10136 MW-4 PWS:	Lab ID: 304940 Site ID:	O74041 Collected: 05/25/22 15:35 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 9315	0.219U ± 0.173 (0.278) C:94% T:NA	pCi/L	07/10/22 11:14	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 9320	0.602U ± 0.398 (0.745) C:73% T:92%	pCi/L	07/05/22 17:52	2 15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	0.821U ± 0.571 (1.02)	pCi/L	07/11/22 22:44	7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10137 MW-17V PWS:	Lab ID: 3049 Site ID:	4074042 Collected: 05/25/22 10:39 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	1.98 ± 0.478 (0.203) C:93% T:NA	pCi/L	07/10/22 11:14	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	3.39 ± 0.910 (0.911) C:69% T:84%	pCi/L	07/05/22 17:52	2 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	5.37 ± 1.39 (1.11)	pCi/L	07/11/22 22:44	7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10138 MW-17H PWS:	Lab ID: 3049 Site ID:	4074043 Collected: 05/25/22 11:23 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.480 ± 0.217 (0.245) C:95% T:NA	pCi/L	07/10/22 11:14	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.23 ± 0.489 (0.772) C:71% T:94%	pCi/L	07/05/22 17:53	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.71 ± 0.706 (1.02)	pCi/L	07/11/22 22:44	4 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10139 MW-23V PWS:	Lab ID: 3049407 4 Site ID:	4044 Collected: 05/25/22 12:50 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 9315	-0.143U ± 0.220 (0.807) C:28% T:NA	pCi/L	07/10/22 11:14	13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 9320	0.285U ± 0.389 (0.832) C:74% T:87%	pCi/L	07/05/22 17:52	2 15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	0.285U ± 0.609 (1.64)	pCi/L	07/11/22 22:44	4 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10140 MW-23H PWS:	Lab ID: 3049 Site ID:	4074045 Collected: 05/25/22 13:53 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.430 ± 0.213 (0.266) C:97% T:NA	pCi/L	07/10/22 11:14	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.244U ± 0.382 (0.826) C:71% T:88%	pCi/L	07/05/22 17:53	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.674U ± 0.595 (1.09)	pCi/L	07/11/22 22:44	7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10141 MW-3 PWS:	Lab ID: 3049407 Site ID:	4046 Collected: 05/25/22 15:05 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 9315	0.354 ± 0.216 (0.324) C:91% T:NA	pCi/L	07/10/22 11:14	13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 9320	1.37 ± 0.555 (0.872) C:69% T:83%	pCi/L	07/05/22 17:53	3 15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	1.72 ± 0.771 (1.20)	pCi/L	07/11/22 22:44	7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10142 FB-4 PWS:	Lab ID: 3049 Site ID:	4074047 Collected: 05/25/22 15:20 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0289U ± 0.117 (0.299) C:94% T:NA	pCi/L	07/10/22 11:14	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.506U ± 0.419 (0.833) C:73% T:88%	pCi/L	07/05/22 17:53	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.535U ± 0.536 (1.13)	pCi/L	07/11/22 22:44	7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10143 MW-25V PWS:	Lab ID: 30494 Site ID:	4074048 Collected: 05/25/22 10:50 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.105U ± 0.135 (0.278) C:91% T:NA	pCi/L	07/10/22 11:18	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.422U ± 0.410 (0.836) C:74% T:84%	pCi/L	07/05/22 17:49	9 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.527U ± 0.545 (1.11)	pCi/L	07/11/22 22:44	7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10144 MW-25H PWS:	Lab ID: 3049 Site ID:	4074049 Collected: 05/25/22 11:40 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.182U ± 0.141 (0.216) C:96% T:NA	pCi/L	07/10/22 11:18	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.500U ± 0.428 (0.845) C:72% T:81%	pCi/L	07/05/22 17:5	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.682U ± 0.569 (1.06)	pCi/L	07/11/22 22:44	7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10145 MW-5 PWS:	Lab ID: 30494 Site ID:	4074050 Collected: 05/25/22 13:05 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.487 ± 0.228 (0.244) C:100% T:NA	pCi/L	07/10/22 11:18	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.22 ± 0.502 (0.791) C:69% T:89%	pCi/L	07/05/22 17:5	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.71 ± 0.730 (1.04)	pCi/L	07/11/22 22:44	7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10146 MW-5V PWS:	Lab ID: 30494 Site ID:	4074051 Collected: 05/25/22 14:03 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.167U ± 0.149 (0.268) C:98% T:NA	pCi/L	07/10/22 11:18	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.860 ± 0.439 (0.768) C:73% T:92%	pCi/L	07/05/22 17:5	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.03U ± 0.588 (1.04)	pCi/L	07/11/22 22:44	4 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10147 MW-6 PWS:	Lab ID: 3049 Site ID:	4074052 Collected: 05/25/22 15:22 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0338U ± 0.113 (0.286) C:100% T:NA	pCi/L	07/10/22 11:18	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.03 ± 0.483 (0.826) C:76% T:86%	pCi/L	07/05/22 17:5	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.06U ± 0.596 (1.11)	pCi/L	07/11/22 22:44	4 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

Sample: BC10148 FB-2 PWS:	Lab ID: 3049 Site ID:	4074053 Collected: 05/25/22 15:45 Sample Type:	Received:	06/02/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0878U ± 0.116 (0.237) C:89% T:NA	pCi/L	07/11/22 09:59	9 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.714 ± 0.333 (0.531) C:69% T:95%	pCi/L	07/07/22 11:2	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.802 ± 0.449 (0.768)	pCi/L	07/11/22 22:45	5 7440-14-4	

Project: WMWBARAP_1367

Pace Project No.: 30494074

QC Batch: 511756

QC Batch Method:

Analysis Method:

EPA 9315

Analysis Description:

9315 Total Radium

Laboratory:

Pace Analytical Services - Greensburg

Associated Lab Samples: 30494074053

EPA 9315

METHOD BLANK: 2480257

Matrix: Water

Associated Lab Samples: 30494074053

Parameter

Act ± Unc (MDC) Carr Trac

Units

Analyzed

Qualifiers

Radium-226

0.215 ± 0.115 (0.148) C:93% T:NA

pCi/L

07/11/22 09:59

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WMWBARAP_1367

Pace Project No.: 30494074

QC Batch: 510506 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30494074001, 30494074002, 30494074003, 30494074004, 30494074005, 30494074006, 30494074007,

30494074008, 30494074009, 30494074010, 30494074011, 30494074012

METHOD BLANK: 2474498 Matrix: Water

Associated Lab Samples: 30494074001, 30494074002, 30494074003, 30494074004, 30494074005, 30494074006, 30494074007,

30494074008, 30494074009, 30494074010, 30494074011, 30494074012

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.0487 ± 0.230 (0.530) C:76% T:89%
 pCi/L
 07/07/22 11:29

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WMWBARAP_1367

Pace Project No.: 30494074

QC Batch: 510507 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30494074001, 30494074002, 30494074003, 30494074004, 30494074005, 30494074006, 30494074007,

30494074008, 30494074009, 30494074010, 30494074011, 30494074012

METHOD BLANK: 2474499 Matrix: Water

Associated Lab Samples: 30494074001, 30494074002, 30494074003, 30494074004, 30494074005, 30494074006, 30494074007,

30494074008, 30494074009, 30494074010, 30494074011, 30494074012

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0236 ± 0.0549 (0.132) C:86% T:NA
 pCi/L
 07/08/22 16:28

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WMWBARAP_1367

Pace Project No.: 30494074

QC Batch: 510510 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30494074013, 30494074014, 30494074015, 30494074016, 30494074017, 30494074018, 30494074019,

30494074020, 30494074021, 30494074022, 30494074023, 30494074024, 30494074025, 30494074026, 30494074027, 30494074028, 30494074029, 30494074030, 30494074034, 30494074035

METHOD BLANK: 2474504 Matrix: Water

Associated Lab Samples: 30494074013, 30494074014, 30494074015, 30494074016, 30494074017, 30494074018, 30494074019,

30494074020, 30494074021, 30494074022, 30494074023, 30494074024, 30494074025, 30494074026,

30494074027, 30494074028, 30494074029, 30494074030, 30494074034, 30494074035

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 -0.0306 ± 0.0468 (0.172) C:85% T:NA
 pCi/L
 07/10/22 11:06

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

WMWBARAP_1367

Pace Project No.:

30494074

QC Batch:

QC Batch Method:

511755

EPA 9320

Analysis Method:

EPA 9320

Analysis Description:

9320 Radium 228

Laboratory:

Pace Analytical Services - Greensburg

Associated Lab Samples:

30494074053

METHOD BLANK: 2480254

Matrix: Water

Associated Lab Samples: 30494074053

Parameter

Act ± Unc (MDC) Carr Trac

Units

Analyzed

Qualifiers

Radium-228

0.729 ± 0.340 (0.552) C:70% T:96%

pCi/L

07/07/22 11:25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WMWBARAP_1367

Pace Project No.: 30494074

QC Batch: 510512 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30494074031, 30494074032, 30494074033, 30494074036, 30494074037, 30494074038, 30494074039,

30494074040, 30494074041, 30494074042, 30494074043, 30494074044, 30494074045, 30494074046,

30494074047, 30494074048, 30494074049, 30494074050, 30494074051, 30494074052

METHOD BLANK: 2474506 Matrix: Water

Associated Lab Samples: 30494074031, 30494074032, 30494074033, 30494074036, 30494074037, 30494074038, 30494074039,

30494074040, 30494074041, 30494074042, 30494074043, 30494074044, 30494074045, 30494074046,

30494074047, 30494074048, 30494074049, 30494074050, 30494074051, 30494074052

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.706 ± 0.431 (0.805) C:71% T:90%
 pCi/L
 07/05/22 13:44

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WMWBARAP_1367

Pace Project No.: 30494074

QC Batch: 510509 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30494074013, 30494074014, 30494074015, 30494074016, 30494074017, 30494074018, 30494074019,

30494074020, 30494074021, 30494074022, 30494074023, 30494074024, 30494074025, 30494074026,

30494074027, 30494074028, 30494074029, 30494074030, 30494074034, 30494074035

METHOD BLANK: 2474503 Matrix: Water

Associated Lab Samples: 30494074013, 30494074014, 30494074015, 30494074016, 30494074017, 30494074018, 30494074019,

30494074020, 30494074021, 30494074022, 30494074023, 30494074024, 30494074025, 30494074026,

30494074027, 30494074028, 30494074029, 30494074030, 30494074034, 30494074035

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.365 ± 0.353 (0.714) C:59% T:91%
 pCi/L
 07/05/22 13:44

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WMWBARAP_1367

Pace Project No.: 30494074

QC Batch: 510513 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30494074031, 30494074032, 30494074033, 30494074036, 30494074037, 30494074038, 30494074039,

30494074047, 30494074048, 30494074049, 30494074050, 30494074051, 30494074052

METHOD BLANK: 2474508 Matrix: Water

Associated Lab Samples: 30494074031, 30494074032, 30494074033, 30494074036, 30494074037, 30494074038, 30494074039,

30494074040, 30494074041, 30494074042, 30494074043, 30494074044, 30494074045, 30494074046,

30494074047, 30494074048, 30494074049, 30494074050, 30494074051, 30494074052

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0166 ± 0.0585 (0.149) C:90% T:NA
 pCi/L
 07/10/22 11:13

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: WMWBARAP_1367

Pace Project No.: 30494074

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 07/13/2022 02:36 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Project: WMWBARAP_1367

Pace Project No.: 30494074

Date: 07/13/2022 02:36 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
30494074001	BC10007 MW-20H	EPA 9315	510507	_	· · · · · · · · · · · · · · · · · · ·
30494074002	BC10008 MW-8V	EPA 9315	510507		
0494074003	BC10008 MW-8V MS	EPA 9315	510507		
0494074004	BC10008 MW-8V MSD	EPA 9315	510507		
0494074005	BC10009 MW-22H	EPA 9315	510507		
0494074006	BC10010 MW-8	EPA 9315	510507		
0494074007	BC10011 FB-1	EPA 9315	510507		
0494074008	BC10012 MW-10	EPA 9315	510507		
0494074009	BC10013 EB-1	EPA 9315	510507		
0494074010	BC10014 MW-10V	EPA 9315	510507		
0494074011	BC10015 MW-13	EPA 9315	510507		
0494074012	BC10016 MW-13 Dup	EPA 9315	510507		
0494074012	BC 10010 MW-13 Dup	EFA 9313	310307		
0494074013	BC10017 MW-18H	EPA 9315	510510		
0494074014	BC10018 MW-11	EPA 9315	510510		
0494074015	BC10018 MW-11 MS	EPA 9315	510510		
0494074016	BC10018 MW-11 MSD	EPA 9315	510510		
0494074017	BC10019 MW-19H	EPA 9315	510510		
0494074018	BC10020 MW-15V	EPA 9315	510510		
0494074019	BC10021 MW-7	EPA 9315	510510		
0494074020	BC10022 MW-7 DUP	EPA 9315	510510		
0494074021	BC10023 FB-3	EPA 9315	510510		
0494074022	BC10024 MW-7V	EPA 9315	510510		
0494074023	BC10025 MW-9	EPA 9315	510510		
0494074024	BC10026 MW-14V	EPA 9315	510510		
0494074025	BC10027 MW-12	EPA 9315	510510		
0494074026	BC10028 MW-12V	EPA 9315	510510		
0494074027	BC10029 MW-20V	EPA 9315	510510		
0494074028	BC10030 MW-20V Dup	EPA 9315	510510		
0494074029	BC10031 MW-24H	EPA 9315	510510		
0494074030	BC10032 MW-1	EPA 9315	510510		
0404074034	DC40022 MW 4V				
0494074031	BC10033 MW-1V	EPA 9315	510513		
0494074032	BC10033 MW-1V MS	EPA 9315	510513		
0494074033	BC10033 MW-1V MSD	EPA 9315	510513		
0494074034	BC10034 MW-2	EPA 9315	510510		
0494074035	BC10130 MW-13V	EPA 9315	510510		
0494074036	BC10131 MW-14	EPA 9315	510513		
0494074037	BC10131 MW-14 BC10132 MW-15	EPA 9315	510513		
0494074038	BC10132 MW-15 Dup	EPA 9315	510513		
0494074039	BC10133 MW-13 Dup BC10134 MW-16V	EPA 9315	510513		
0494074040	BC10135 MW-16	EPA 9315	510513 510513		
0494074041	BC10136 MW-4	EPA 9315	510513 510513		
0494074042	BC10137 MW-17V	EPA 9315	510513 510513		
0494074043	BC10138 MW-17H	EPA 9315	510513		
0494074044	BC10139 MW-23V	EPA 9315	510513		
0494074045	BC10140 MW-23H	EPA 9315	510513		
0494074046	BC10141 MW-3	EPA 9315	510513		
0494074047	BC10142 FB-4	EPA 9315	510513		

Project: WMWBARAP_1367

Pace Project No.: 30494074

Date: 07/13/2022 02:36 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
30494074048	BC10143 MW-25V	EPA 9315	510513	_	
30494074049	BC10144 MW-25H	EPA 9315	510513		
0494074050	BC10145 MW-5	EPA 9315	510513		
0494074051	BC10146 MW-5V	EPA 9315	510513		
0494074052	BC10147 MW-6	EPA 9315	510513		
0494074053	BC10148 FB-2	EPA 9315	511756		
0494074001	BC10007 MW-20H	EPA 9320	510506		
0494074002	BC10008 MW-8V	EPA 9320	510506		
0494074003	BC10008 MW-8V MS	EPA 9320	510506		
0494074004	BC10008 MW-8V MSD	EPA 9320	510506		
0494074005	BC10009 MW-22H	EPA 9320	510506		
0494074006	BC10010 MW-8	EPA 9320	510506		
0494074007	BC10011 FB-1	EPA 9320	510506		
0494074008	BC10012 MW-10	EPA 9320	510506		
0494074009	BC10013 EB-1	EPA 9320	510506		
0494074010	BC10014 MW-10V	EPA 9320	510506		
0494074011	BC10015 MW-13	EPA 9320	510506		
0494074012	BC10016 MW-13 Dup	EPA 9320	510506		
0494074013	BC10017 MW-18H	EPA 9320	510509		
0494074014	BC10018 MW-11	EPA 9320	510509		
0494074015	BC10018 MW-11 MS	EPA 9320	510509		
0494074016	BC10018 MW-11 MSD	EPA 9320	510509		
0494074017	BC10019 MW-19H	EPA 9320	510509		
0494074018	BC10020 MW-15V	EPA 9320	510509		
0494074019	BC10021 MW-7	EPA 9320	510509		
0494074020	BC10022 MW-7 DUP	EPA 9320	510509		
0494074021	BC10023 FB-3	EPA 9320	510509		
0494074022	BC10024 MW-7V	EPA 9320	510509		
0494074023	BC10025 MW-9	EPA 9320	510509		
0494074024	BC10026 MW-14V	EPA 9320	510509		
0494074025	BC10027 MW-12	EPA 9320	510509		
0494074026	BC10028 MW-12V	EPA 9320	510509		
0494074027	BC10029 MW-20V	EPA 9320	510509		
0494074028	BC10030 MW-20V Dup	EPA 9320	510509		
0494074029	BC10031 MW-24H	EPA 9320	510509		
0494074030	BC10032 MW-1	EPA 9320	510509		
0494074031	BC10033 MW-1V	EPA 9320	510512		
0494074032	BC10033 MW-1V MS	EPA 9320	510512		
0494074033	BC10033 MW-1V MSD	EPA 9320	510512		
0494074034	BC10034 MW-2	EPA 9320	510509		
0494074035	BC10130 MW-13V	EPA 9320	510509		
0494074036	BC10131 MW-14	EPA 9320	510512		
0494074037	BC10132 MW-15	EPA 9320	510512		
0494074038	BC10133 MW-15 Dup	EPA 9320	510512		
0494074039	BC10134 MW-16V	EPA 9320	510512		
0494074040	BC10135 MW-16	EPA 9320	510512		

Project: WMWBARAP_1367

Pace Project No.: 30494074

Date: 07/13/2022 02:36 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
30494074041	BC10136 MW-4	EPA 9320	510512	_	
0494074042	BC10137 MW-17V	EPA 9320	510512		
0494074043	BC10138 MW-17H	EPA 9320	510512		
0494074044	BC10139 MW-23V	EPA 9320	510512		
0494074045	BC10140 MW-23H	EPA 9320	510512		
0494074046	BC10141 MW-3	EPA 9320	510512		
0494074047	BC10142 FB-4	EPA 9320	510512		
0494074048	BC10143 MW-25V	EPA 9320	510512		
0494074049	BC10144 MW-25H	EPA 9320	510512		
0494074050	BC10145 MW-5	EPA 9320	510512		
0494074051	BC10146 MW-5V	EPA 9320	510512		
0494074052	BC10147 MW-6	EPA 9320	510512		
80494074053	BC10148 FB-2	EPA 9320	511755		
0494074001	BC10007 MW-20H	Total Radium Calculation	517872		
0494074002	BC10008 MW-8V	Total Radium Calculation	517872		
0494074005	BC10009 MW-22H	Total Radium Calculation	517872		
0494074006	BC10010 MW-8	Total Radium Calculation	517872		
0494074007	BC10011 FB-1	Total Radium Calculation	517872		
0494074008	BC10012 MW-10	Total Radium Calculation	517872		
0494074009	BC10013 EB-1	Total Radium Calculation	517872		
0494074010	BC10014 MW-10V	Total Radium Calculation	517872		
0494074011	BC10015 MW-13	Total Radium Calculation	517872		
0494074012	BC10016 MW-13 Dup	Total Radium Calculation	517872		
0494074013	BC10017 MW-18H	Total Radium Calculation	517873		
0494074014	BC10018 MW-11	Total Radium Calculation	517873		
0494074017	BC10019 MW-19H	Total Radium Calculation	517873		
0494074018	BC10020 MW-15V	Total Radium Calculation	517873		
0494074019	BC10021 MW-7	Total Radium Calculation	517873		
0494074020	BC10022 MW-7 DUP	Total Radium Calculation	517873		
0494074021	BC10023 FB-3	Total Radium Calculation	517873		
0494074022	BC10024 MW-7V	Total Radium Calculation	517873		
0494074023	BC10025 MW-9	Total Radium Calculation	517873		
0494074024	BC10026 MW-14V	Total Radium Calculation	517873		
0494074025	BC10027 MW-12	Total Radium Calculation	517873		
0494074026	BC10028 MW-12V	Total Radium Calculation	517873		
0494074027	BC10029 MW-20V	Total Radium Calculation	517873		
0494074028	BC10030 MW-20V Dup	Total Radium Calculation	517873		
30494074029	BC10031 MW-24H	Total Radium Calculation	517873		
0494074030	BC10032 MW-1	Total Radium Calculation	517873		
0494074031	BC10033 MW-1V	Total Radium Calculation	517874		
0494074034	BC10034 MW-2	Total Radium Calculation	517873		
30494074035	BC10130 MW-13V	Total Radium Calculation	517873		
0494074036	BC10131 MW-14	Total Radium Calculation	517874		
30494074037	BC10132 MW-15	Total Radium Calculation	517874		
30494074038	BC10133 MW-15 Dup	Total Radium Calculation	517874		
30494074039	BC10134 MW-16V	Total Radium Calculation	517874		

Project: WMWBARAP_1367

Pace Project No.: 30494074

Date: 07/13/2022 02:36 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
30494074040	BC10135 MW-16	Total Radium Calculation	517874		
30494074041	BC10136 MW-4	Total Radium Calculation	517874		
30494074042	BC10137 MW-17V	Total Radium Calculation	517874		
30494074043	BC10138 MW-17H	Total Radium Calculation	517874		
30494074044	BC10139 MW-23V	Total Radium Calculation	517874		
30494074045	BC10140 MW-23H	Total Radium Calculation	517874		
30494074046	BC10141 MW-3	Total Radium Calculation	517874		
30494074047	BC10142 FB-4	Total Radium Calculation	517874		
30494074048	BC10143 MW-25V	Total Radium Calculation	517874		
30494074049	BC10144 MW-25H	Total Radium Calculation	517874		
30494074050	BC10145 MW-5	Total Radium Calculation	517874		
30494074051	BC10146 MW-5V	Total Radium Calculation	517874		
30494074052	BC10147 MW-6	Total Radium Calculation	517874		
30494074053	BC10148 FB-2	Total Radium Calculation	517875		

H and Military	
♥ F All Lances (1988)	
4 1985	1
W Vivil	
	54
	30
T 1977 Million 1970	
A488	-0
	二 ①
MO#:30494074	

st Document s must be completed accurately.

1 Of 6	•	new .									(1)) əninc	W 7 IP	noise	Š	562,003.00G	03		33	3/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5	33	13	2000	3	219			SAMPLE CONDITIONS		2			υορ	stod) Jelet Jelet	IUIS (A) (A) (Con (Con (Con (Con (Con (Con (Con (Con		
Page:		Barrington Agency	Veganica	COMPANY IN COMPANY	States	TW	Requested Analysis Fiftered (Y/N)		N/A				wnjp O	156 A4 SE6 A4 BA le16	ia ×	×	†	<u> </u>	××××	×××	× ×	×××	×××	×××	Ľ		- - -	TIME TIME	\$	5747 100							
			9# 8p		ond	ļ	Requested Anal		Savitercoord	Preservatives		St		IO3 2O4 blesel COM	ZH O#	1	17:26 3 ×	9:14 X	10:50	× ×	12.46	×			1	15:55	1		ACCEPTED BY / AFFILIATION					Centry	Dallas Section DATE Signed		
	Caton	Alahama Power Co.	744 Highway 87 GSC Bidg	COR	Skyler Richmond	46700	00/01		(dl			ARD=5			IMAS DATE	GW G 5/23/2022 15	GW G 5/23/2022 17	GW G 5/24/2022 9	G 5/24/2022	0.00400000	5 5124/2022	1	G 5/24/2022	╀	GW G 5/24/2022 1	GW G 5/24/2022			ACCEPTED	SN 100							
54	Invoice Information:	Attention:	Company Name.	Address:	Pace Quote:	Pace Project Manager.	Pace Profile #:			8	pplicate	зЫКе Dr		Sbike(V		APCO Barry AshPond	X		APCO_Barry_AshPond	APCO_Barry_AshPond	APCO Barry AshPond	APCO_Barry_AshPond	APCO_Barry_AshPond	APCO Barry AshPond	APCO Barry AshPond	X X X AshPond X			DATE TIME		5/26/2022 11:32			SNATURE	of SAMPLEN:	of SAMPLER:	
3049407	tion:	uo	Coox To: Renee Jernigan & Blaine Denton		APC:10755638	arry Ash Pond	VANAVARARAP 1367						 - - - -			\downarrow	+	+	APCO-BY-AP-MW-22H APCO	_			_	_	 	$\frac{1}{1}$	APCO-8Y-AP-MW-13							SAMPLER NAME AND SIGNATURE	PRINT Name of SAMPLEN:	SIGNATURE of SAMPLER	
	Section B	Required 1 (5)250	ī	Т	# Tobac Order	Pulcilase Older	Project Natile: FIGHT Day	Project Number:								Description Loc	MW-20H APCO-BY	MW-8V APCO-B			-	-	+	+	MW-10V APCO-8	MW-13 APCO-	MW-13 Dup APCO-			RELINQUISHED BY AFFICATION	Brooke Caton/ APC GTL						
·		mation:	ama Power Company	Highway 87 GSC Blog #0	era, AL 35040	@southernco.com	564-6101 Fax	28 days					MPLE ID	haracter per box.	lds must be unique		BC10007	BC10008	0000000	8000108	BC10010	BC10011	BC10012	BC10013	BC10014	BC10015	BC10016			NAL COMMENTS							

																6		_							E.	Ţ					/X/	
φ													915,016	70	25	12								SNC	<u>></u>					seidu	29i (A)	
ŏ												٠	12	Νħ	Ì		0	_	7	40	2,			SAMPLE CONDITIONS	7	 	_	_	_	(po		
0												6	15	40	3	200	18	E	270	073	720			PLEC	4	Y			นต	ejved o	Rec (VN	
,			dency		ation				}	(MVY) anino	esidual Chic	뇝	$\frac{1}{2}$					L				上		র	42		T			o ui qi	Λ∋T	
. 0000	986		Requisitory Agency		State / Location	Ą		F				-	╀	\vdash	\vdash	╀	╀	-	╀	├	\vdash				 	+-	╁	T	250 250 250 250 250			
L]		Regi	'n		3	Neces			шng	muibeA let		+	╁╾	┿	-	╬	┿	+	┿	╌	+-	L	TIME	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>						
			0.000	30000	Contract of the contract of th		SV FO	-			3169 A 0269 A		+-		┿	+	+-	+-	+-	╫	╫	-		- ₩	2.2.5	_						
			2007/2007/200		200000000000000000000000000000000000000		9111		N/A	1a⊕T a	esylanA		1	T	T	T	Т	T	T	T	Т	T	I	DATE	1	É						
			2.62.5	(A)			1	Requested Analysis Filtered (1777)	atives			1	1	1	1	1	,	,	, , ,		, ,	<u> </u>	F	-							ned:	
							0.04	duested	Preservatives		5O4	-	× ;	<u>\</u>	<u>`</u>	<u>`</u>			1	1	‡	1	1							· · · · · · · · · · · · · · · · · · ·	DATE Signed	
								2		en.	btesetked E-CONTAINE					-		+	+		-	-		- Zē					2000 2000 2000	- Goodin		
				_ω		731										—								A COEDTEN BY LAFFILLATION						Anthony Googins		
•			ø	744 Highway 87 GSC Bldg #8		Skyler Richmond	Ī					TIME	16:14	17:20	9:27	10:57	13:10	13:10	14:05	14:14	15:15	16:24		n BV.1	1	H						
			wer C	SSC	~	er Ric			COLLECTED	START		_	+	+	222	222	022	022	222	220	2022	2022	┪	100		火						
		aton	Alabama Power Co.	way 8	SS				g			DATE	5/23/2022	5/23/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022				$\langle $						
		Brooke Caton	Alaba	4 High			16788) (G=GRAB C=C		_	SW G		GW G		GW G	GW G	GW G	დ <u>გ</u>	ი რ	ပ <u>%</u>	+	1000 M		3						
		Brc		74				֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	(flato	see velid codes l	Filtered PIX CODE 1		٣	၅	٩				Ĭ	Ĭ	Ĭ	1	1			-	4	_		66 54 54		
	ation:		<u>a</u>			Aanager				Sbike Dublicate	e Duplicale SpikelMatrix		\dashv	×	\dashv	-	-	×	+	\dashv			\pm		1							
ပ္	nvoice Information:	Ę	Company Name	iş.	Quote:	Pace Project Manager.	Pace Profile #:								1									September 2		32						
Section C	Invoice	Attention:	Comp	Address	Pace Quote:	Pace	Pace						shPond	AshPond	shPond	AshPond	AshPond	AshPond	AshPond	AshPond	AshPond	AshPond				11:32	_	1		RE PLER:	PLER:	
												Site Name Facility_ID	APCO_Barry_AshPond	3amy_A	APCO_Bamy_AshPond	Barry_A	Barry_A	Barry_A	Barry_	Barry_/	Barry /	Barry /			DATE	5/26/2022			1.000000	SAMP	SAMP	
											ļ	SO EE	APCO_	APCO Barry /	APCO_	APCO Barry	APCO_Barry_	APCO_Barry	APCO Barry	APCO_Barry_	APCO Barry	APCO_Barry		ŀ		जे				ND SIG	SIGNATURE of SAM	
			Dent				MANARARAP 1367					1										Ц								SAMPLER NAME AND SIGNATURE PRINT NAME OF SAMPLE	SIGNA	
			Rlaine	3	000	Pont Pont	RARAI						-8 -	.11	19H	15V	1-7	1.7	-03	75	6-7	-14V			NOIL					E.E.		
	;		2 2 2	2	0110	10/ 33	AAAA	AAMA				Station Name Location ID	APCO-8Y-AP-MW-18H	APCO-BY-AP-MW-11	APCO-BY-AP-MW-19H	APCO-BY-AP-MW-15V	APCO-BY-AP-MW-7	APCO-BY-AP-MW-7	APCO-BY-AP-FB-03	APCO-BY-AP-MW-7V	APCO-BY-AP-MW-9	APCO-BY-AP-MW-14V			AFFILIA	PC GTL			ļ	N S		_}
	format	1	Cato	200	3	A F						Station	O-8Y-A	CO-BY-	4-78-0	20-BY-₽	CO-BX	78-00°	\A-000	CO-BY	PCO-B)	CO-BY-) Jac	aton/ A						
	roject fr	n hack	Brook	7. 0.10 10.10	177	rger #	ř E	je					A P	AP	AP	APC	₹	7	₹	4	<	4	_		RELINQUISHED BY / AFFILIATION	Brooke Caton/ APC GTL						
•	Section B	nired r	Report 10: Brooke Caton	, 10		Purchase Order #: APC10/33630	ect Nam	ect NC				ş			,			9				l ≥			RELIN	֓֞֟֟֟						
	Sect	Ked	Rep G	3	+	5 C	2					doitainaea	MW418H	MW-11	MAYA/-1914	MW-15V	MAY-7	MW-7 Dup	FB-3	MW-7V	MW-9	MW-14V										
			2	\$ B B								č	5 -					-														
			ompai	Highway 87 GSC Bldg #8	ا او	COM	ax	g		<u>.</u>	 2 2 2 3		\dagger	T	T	T	1			T	T											
			ower C	1y 87 (era, AL 35040	hemo	5	28 days		i E	MPLE IU naracter per box. NZ, 0-9 / , -)		ļ	۽ اِ		<u> </u>	3 3	1 2	į į	25.0	, J	900	200		AL COMMENTS							
		rmation:	ama Power Company	Highwa	lera, A	@southernco.com	664-61	١		į	MPLE haracter per A-Z, 0-97, -)	2	8	8C10017	0100100	BC10018	BCTUUZU	BC10021	00100	200000		BC10023	200		AL CO	2,60,600,000						

20194674

9			Π	37	(1) (2) (3)						1	Ī	7		_		32	7	T	T	7	129		7	,				/N/ act (N/	29 29	
₽																	၁					SNOITIUNOS = IGRESS		5	,				stody sled sled	იე :მვ	
											R	3	6	023	13	020	1,032	3,				200		5					(N	6의 (人)	
က		AUG.		u.								\Box	Ö	7	7		(3)	9		\dashv	-	-	-	7		╀╴	╂-	╁	bəviəa	┪	
2		Dogulation Agency		State / Location	귛			(N\Y) eninc	isi Ch	Nesidu	\dashv				_						士			\$		_	<u> </u>		MP in C	137	
Page		15	7	State		-			HIDIO	N (830 I	×	×	×	×	×	×	×	×		\dashv	╬	-	TIME	1881						1	
		١				<u>2</u>		uns		EPA 933 FPA 933	×	×	×	×	×	┼	×	×			1			_	_	-		-			
						Itered		189 [S		en⇔ E6 ∀d∃	×	×	×	×	×	×	×	×	<u> </u>	Ш			DATE	からから						1	
						Requested Analysis Filtered (Y/N)	N/A	laoT.s	J					L	I	Ţ	I	L			\Box	_		, J.	_	+	-	-			
· 1	-				Ц	d Anal	Preservatives			EONH	×	×	×	 ×	(×	 ×	×	- -	-			_								igned:	•
						gsanba	Preser			₽OSZH			L	ļ		1		Ţ	L	-		4						330		DATE Signed:	
						R		ВЗ		# OF. COM	<u> </u>		-	-	= -		/ 2						NOT Y					- 100 m	TJ Daugherty		
			ထူ			19.00 Sec.														T		_	AFFILL						TJ Dg		
		ġ	744 Highway 87 GSC Bldg #8	Skyler Richmond			S.			HWI.	18.15	47.05	8	50.00	9) S	1003	00.71 7.77 7.74	2 9	0.00 0.00				ACCEPTED BY / AFFILIATION	1							
		ower (7 GS(der Ri			Caroario	START		Ų	33,	1 6	1 8	770	022	3022	77 5	2707	7707				CEPTI	\setminus	A						
	aton	Alabama Power	way 87	3 8			5	3		u - -	E12312022	or contract	2/23/2	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022				¥	۱,				2012			
	Brooke Caton	Alaba	High.		16788			oo=o 8A9a=e)		T 3J9MA:	_								υ Wo	_	-	Ш		;				2000			
	Bro		747				(As) c	see valid codes to		eld Fillere ATRIX C		5 6	3	ě Ö	8	8	٥	G .	9	上	上			_	\perp	\bot	_				
jou					- Jager			Spike Duplicate	ńlsM\	atrix Spike	W	1	1	1		1]	\leq	1	+	╀	<u> </u>	(0) () (8) ()					393757			
format		Name:		į į	eci Ma				elicale	uubje Dnb	Sa	╁	+	+	×	\dashv	+	\dagger	╁	╁	╫	T	TIME					2000			
Section C	Attention:	Company Name:	Address:	Pace Quote:	Pace Project Manager.							pug Sug	bud	ond	ond	ond	puq	puo	puo						11:32		_				
S S	¥	(8	Ą	8		4				ime	민	y_AshPond	y_AshPond	APCO_Barry_AshPond	APCO_Barry_AshPond	APCO Barry, AshPond	APCO_Barry_AshPond	APCO Barry AshPond	APCO_Barry_AshPond				DATE		022				LAME AND SIGNATURE PRINT Name of SAMPLER:	SIGNATURE OF SAMPLER:	
						١				Site Name	Facility_ID	APCO_Barry	APCO_Barry	Barry	Barn	Barn	Barr	O Barr	Barr				Ö	8 8 8 8	5/26/2022			_	GNAT	of SA	
9		1				اَچَ					ļ	APC	APC	APCC	APC	APC	APC	APC	APO	ł			200						AND S	ATURE	
	Ì	90			ا ج	7			L			_		_		_	_	_	\bot	_	4	╀							NAME PRIN	SIGN	١
		100		9638	h Por	WMWBARAP 1367					١	-12	.12V	-20	-20V	-24H	٧-١	/ -1	N-2				Z C					ľ	SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLE		
	io io	ا ا	8	1075	rry As	X				Station Name	Location ID	AP-MW	P-MW	P-MW	WM-M	WM-9	-AP-M	AP-MV	AP-M				2 163 8		PC GT			ŀ	Y.		۷
	format	Sal	בו בו	APC	ant Ba					Station	Locat	APCO-BY-AP-MW-12	APCO-BY-AP-MW-12V	APCO-BY-AP-MW-20V	APCO-BY-AP-MW-20V	APCO-BY-AP-MW-24H	APCO-BY-AP-MW-1	APCO-BY-AP-MW-1V	APCO-BY-AP-MW-2		-	ł	300	0	aton/ A						
	oject lr	3700K	denee	der#	e:	ber:						APC	APC	APC	APC	APC	ΑF	AP	Ā	_	_	$oldsymbol{\downarrow}$	-	000	Brooke Caton/ APC GTL						
8 40	Required Project Information:	Report To: Brooke Caton	Copy 10: Kenee Jeiligai & Danio Consor	nase Or	Project Name: Plant Barry Ash Pond	Project Number:					_				뮥								NOTALISES LOG GENERAL	NI-IN	ă						
Section B	Requ	Repo	8	Purc	Proje	Proje					Description	MW-12	MW-12V	MW-20V	MW-20V Dup	MW-24H	MW-1	MW-1V	MW-2		١										
			#8 #								Des	Σ	M	Σ	MW	۶		_			١	Ì	200								
		ama Power Company	Highway 87 GSC Bldg #8	mo:					L	ā		_	-	_	-	 	_		-	H	-	十	1			T	1				
		er Cor	37 GS	200	664-6101 Fax	28 days		٩	5 §	4-Z, 0-9 / , -) Ids must be unique	ļ													SLN							
	ion:	Powe	way {	ALS	-6101	28		1. 7	MFLE ID	0-9 / , - must b		BC10027	BC10028	BC10029	BC10030	BC10031	BC10032	BC10033	BC10034					AL COMMENTS							
	mation:	ama	후.	e 6	8				IVIII harak	λ-Z, lds		B B	မ္က	E C	g 6		B	[E	m					द्		ļ					

•	9	Q		Section C													_				;	
motion.	Require	Required Project Information:		Invoice information:	tion:						١		r				2	Page:	4	l	5	9
Hauselt.	ſ	Report To: Brooke Caton		Attention:		8	ook.	Brooke Caton					Т									
ama Fower Company	Т	Copy To: Renee Jernigan & Blaine Denton	Denton	Company Name			Ais	Aiabama Power Co.	S)				_				10000			000/0000	2000	0000000
lera Al 35040	Т			Address:		7	4	744 Highway 87 GSC Bldg	C Bidg #8	_							Regulatory Agency	Š	Ć.			Γ
Securitherness com	Purcha	Purchase Order #: APC10755638		Pace Quote:		Ì		SS									Colored II continue				4000000	
-664-6101 Fax	Project	Project Name: Plant Barry Ash Pond	-	Pace Project Manager.	anager		١	Skyler Richmond	ichmond				្	4900000	200		Zigita					Ī
28 days	Project	Number: WMWBARAP 1367	P 1367	Pace Profile #:			16	16788					_					Ļ			2000	
560000											ž	duest	Ana	Requested Analysis Fittered (17/N)	tered	<u>.</u>	-					
						(8-1-		COLLECTED				Presen	Preservatives	N/A								
7 C					Spike Duplicate					នង						ши	1100	(N\Y) anin				
haracter per box. A-Z, 0-9 / , -) Ids must be unique		Station Name	Site Name	ample Duplicate	atrix Spike/Matrix	eld Filtered	ANPLE TYPE	Ш Н С	ų P	# OF CONTAINE	Unpreserved	H2SO4	ЕОМН	seeylenA	EPA 9315	EPA 9320 Total Radium 9	A MANAGEMENT LINES	Residual Chlo				
	Description	Location_ID	Facility_ID			_	1-	1 a	10.52		+	 	×		×	—	×			3	7	
BC10130	MW-13V	APCO-BY-AP-MW-13V	APCO_Barry_As	/ AsnPond	Ţ	1		4-	44.65	L		T			×	×	×	┝		5	9	
BC10131	MW-14	APCO-BY-AP-MW-14	APCO_Barry_As	ry AshPand		+		4	1.35	1_		1	,	I	· >	╄	×	┢		5	[
BC10132	MW-15	APCO-BY-AP-MW-15	APCO_Barry_AshPond	shPond	4	Ť	_1_		13:07	1	_	1	 	Τ	<u>{</u>	-	,	╁	<u> </u>	がんび	V.	
BC10133	MW-15 Dup	APCO-BY-AP-MW-15	APCO_Barry_AshPond	x X X		Ť		G 5/25/2022	13:07			1	<u>_</u>	I	< >	-	()	\dagger	+	107 712	90	
BC10134	MW-16V	APCO-BY-AP-MW-16V	APCO_Bamy_AshPond	shPond	_	Ť	3 30	G 5/25/2022	14:06	Ц.	_	1	$_{\scriptscriptstyle imes}$	Ţ	× :	┿		-		C oc	-0	
BC10135	MW-16	APCO-BY-AP-MW-16	APCO Barry AshPond	shPond	1	Ì			14:54		_	1	× ;	Ţ	< >		< ,	\dagger	1	֡֝֞֓֞֟֞֓֓֓֓֓֓֓֓֓֟֟֓֓֓֓֓֓֓֓֓֓֓֟֟֓֓֓֓֓֓֟֟֓֓֓֓֓֓)	
BC10136	MW-4	APCO-BY-AP-MW-4	APCO_Barry_AshPond	shPond	_	Ì	% % Ø	G 5/25/2022	15:35		+	1	<u>_</u>	I	<		_		-			
					_		+		T		+	丰	-	Ţ		士	+	士	┿			
					+	1	╫					1	+	Ţ	L		╀	士	+			
					+		+				╬	1	╀	Ţ	L	士	╀		╀			
					+		_				+	1	+	Ι			╀╌		Ļ		֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	
					-		-	ACCEPTE	ACCEPTED BY (AFFILIATION	Ę	18	1		à	PATE THE		TIME		SAMP	ĘĢ.	SAMPLE CONDITIONS	8
AL COMMENTS	YE!	RELINGUISHED BY APPLICATION						\	l					15	1,70	2	Ã	Š	L	\ \ \	>	۲
		Brooke Caton/ APC GTL	5/26/2022	11:32		**	2		$\left {} \right $]		3	6			t <u>}</u>			7	上
						\bot	1							\downarrow		\perp			+	T		
							1							_					-	┪		_
														_					- -	┪	١	
		SAMPLERN	SAMPLER NAME AND SIGNATURE) t				ş
			PRINT Name of SAMPLER:	ER:				,	Anth	ony G	Anthony Goggins	ļ	ŀ					ni 9M	eviec	(N	ojet sjed sjed	/N/ act Imple /N/
			SIGNATURE of SAMPLER:	ER:		İ					Ā	DATE Signed:	ijed:					.31.	_		se2 იე	રાધ)
						1	ļ	-														

Page 12 Page				•	,				91								L	1		١			_
Project To Block Callon Project Call		Section	3 Designat Information:	, =	ection C avoice Informa	tion:												Page		Ŋ	ŏ	ဖ	
Control Cont	nation:	neithau e	Descriptions		Hentlon:		ă	oke (aton		1						J						
Process of Control Process Pro	na Power Company	Т	Penee Jerninan & Blaine		company Name		أ	Alab	ama Power	9.	╁		Γ										
The property in the property is a property in the property i	Griday 51 CCC Lings	Τ			ddress:		7	4 Hig	way 87 GS	C Bldg #8			372		1000		Regu	latory /	Igency				
Propert Name Part Barry Ast Pond Part Barry Ast Pond Part Barry Ast Pond Pond Part Barry Ast Pond P	southernco.com	Purchase	Order #. APC10755638		ace Quote:				CCR				1					2000		600000000000000000000000000000000000000			
Process Name Proc	34-6101 Fax	Project N	ame: Plant Barry Ash Pond		ace Project M	anager				ichmond							Sta	일 말	ation				
Parent plan Parent plan	28 days	Project N	umber: WMWBARAI		ace Profile #:			167	38				_			١		₹					
Note	0 (22)											Requ	patsa	nalysis	Filtere	N.V.	1						sa sa
State Name							(fiel of		COLLECT	ED	- 1525 2780	å	servativ	es	N/A								
MW-22	PLEID					: Spike Duplicate	see valid codes	- Devición -	STARI		88)2 9 T		ឃា		(N/Y) əni				
WW-17			Station Name	Site Name	anple Duplicate				DATE	TIME	# ОЕ СОИТА!ИЕ				August 2007 of Linear John Committee Committee		2 muibsAllstoT		Residual Chlor				
MW423V		Description (VECTOR AND AND AND AND AND AND AND AND AND AND	Ach Ach	<u> </u>	╌	_	1	5/25/2022	10:39		┢	×		Ê		×			90	4		
MANA-23V APOC-BY-AP-AMV-23V APOC Barry_AshPond OW G 525/2022 12.50 H X X X X X X X X X	1013/	MAY-17 V	APCO-RY-AP-MW-17	APCO Barry AshF	puo		5		5/25/2022	11:23	_	┢	×		ثــــ	┝	×			B	E		
MMV-23+1	10139	WW-23V	APCO-8Y-AP-MW-23V	APCO Barry AshF	puo		<u>(</u>	Ц.,	5/25/2022	12:50	-		×		<u></u>		×			5	3		
MW-3	10140	M04-23H	APCO-BY-AP-MW-23H	APCO Barry AshF	ond		G	L.,,	5/25/2022	13:53			×				×	\exists	\dashv	渞	٨		- 1
FB4 APCO-BYAPI-BOA APCO-BYAPI-BOA OW 6 528/2022 15.20 1 X X X X Q 4/7	10141	MW-3	APCO-8Y-AP-MW-3	APCO Barry_AshF	puo		Ű		5/25/2022	15:05			×			_	×			Š	G		
RELINQUISHED BY AFFILLATION DATE TIME SAMPLE CONDITIONS	10142	FB-4	APCO-BY-AP-FB-04	APCO_Barry_AshF	puo,		Ó		5/25/2022	15:20	-		×				×	4	\dashv	Š		١	
RELINGUISHED BY AFFILIATION Brooke Catori APC GTL Brooke Catori AP							H							\dashv				4	_				
SAMPLER NAME AND SIGNATURE Date							_	\exists		1		1	1	-			士	1	+				
Part Part												1		_		_	士	7	+	١			_
RELINQUISHED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS							╅	1					1	╬		_							
RELINQUISHED BY / AFFILLATION DATE TIME SAMPLE CONDITIONS						1	╁	1				上		+		╀	士	-	\pm				Т-
Brooke Caton' APC GTL 5/26/2022 11:32	OMMENTS	REIN	QUISHED BY / AFFILIATION	DATE		10.00			ACCEPTE	D BY / AFFIL	- E	1.			BAE L		TIME		SAM	PLECO	NOLLION	S	1,550
PLER NAME AND SIGNATURE PRINT Name of SAMPLER: Dallas Gentry Signed: DATE Signed: FIER NAME AND SIGNATURE C C Dallas Gentry FIER NAME AND SIGNATURE of SAMPLER: Dallas Gentry FIER NAME AND SIGNATURE of SAMPLER: FIER NAME AND SIGNATURE OF SAMPLER: FIER NAME AND			rvota Caton(APC GT)	5/26/2022	11:32		6	5	\ V	ħ				-3	发		5	3	¢	\mathcal{Z}	>	2	
Cooler Signed:								1													-	_	
Samples Cooler (YM) Sealed Cooler FEMP in C Received on Received on Sealed Cooler PATE Signed;		-																\dashv	┪			_	-Т
Dalls Gentry Cooler (YM) Seased Cooler (YM) DATE Signed;												ľ						_	\dashv			_	1
Dallas Gentry Custody Cooler Child Dallas Gentry Cooler Cooler Cooler Cooler Cooler DATE Signed:			SAMPLERNA	ME AND SIGNATURE																			
DATE Signed:			ď.	NNT Name of SAMPLER:						Dalla	s Gent	~								(1	рә	cr Səldə	
			is	GNATURE of SAMPLER:								DATE	Signed					1,31		(A/V	Sea	TSC Inta	

Company Name: Address: Address: Pace Project Manager: Sample Duplicate Sample Duplicate Cond Co	Section B Section B Required Project Information: Record To Ronke Caton	Section B Required Project In Report To: Recoke	Project Ir Brooks	formation: Caton	9	Section C Invoice Information: Attention:	ation:	S	Brooke Caton	iton				. [Page	: e	ဖ	ŏ	ပ
10.00 1.00	×	Soov To: Renee Jernigan & Blaine Denton	Renee Jernigan & Blaine Denton	Denton		Company Nam	نة	á	Alaban	na Power Cc	6											
100 100	Т				Г	Address:		74	4 Highw	ray 87 GSC	Bldg #8			H			Para de la compansión d	Regulato	ıry Ager	λo		
1078 109	I@southernco.com Purchase Order #. APC10755638	Purchase Order #. APC10755638	Order #. APC10755638			Pace Quote:				COR Si		-		1						Control Control	1000	
112 12 12 12 12 12 13 14 15 14 15 15 15 15 15	Project Name: Plant Barry Ash Pond	Project Name: Plant Barry Ash Pond	me: Plant Barry Ash Pond	1 4067	-	Pace Project IV	anager		18788	- 1	mond							oran	P. Coans			
132 134 135 136					-								Redu	sted A	nafysis	Filtered	(N/A)					
T. Deadler Cover					1		91	(fiel of a	(dMO:	COLLECTED		merica esta	Pre	servativ		N/λ						
Sample Objects Sample Colorer Samp							x Sbike Duplical	(see valid codes) (G=GRA8 C=0	START		K9)\$9 <u>]</u> :	3011,	18101	(MVY) ani			
Ord GW G S282022 10.50 1	Station Name Site Name Description Location ID Facility ID	Station Name Location ID		Site Name Facility ID		afsoilouG atoms2	Matrix Spike/Matri			<u> </u>	ME	# OF CONTAINE						TOTAL MAGICILL	Residual Chlor			
Cooler C	APCO-8Y-AP-MW-25V APCC	APCO-8Y-AP-MW-25V	-	APCO_Barry_As	1 5	T	+	ğ	ပ	-	1:50		\vdash	×		×		×		Ot	8	
Cond Cond	APCO-BY-AP-MW-25H	APCO-BY-AP-MW-25H		APCO Barry As	Į Ę	Pond		6	Ú	 	.40 .40			×		×		×		ð	5	
GW G 5/25/2022 15:45	APCO-BY-AP-MW-5	APCO-BY-AP-MW-5		APCO_Barry_As	1 5	Pond		Ğ	ပ		:02	~~		×		×		×		Ö	E E	
GW G 5/25/2022 15:45	APCO-BY-AP-MW-5V	APCO-BY-AP-MW-5V		APCO_Barry_As	「荒り	Pond		8	ŋ		1:03	-	-	×		×		×	_	ď		
Time Accepted BV / AFFILIATION DATE TIME SAMPLE CONIDITIONS Time Accepted on Cooler (Viv) Cooler (Viv) Belief Cooler (Viv) Belief Cooler (Viv) Belief Britishes Statement Britishes State	APCO-BY-AP-MW-6	APCO-BY-AP-MW-6		APCO_Barry_As	- - - - - - - - - -	Pond		Ğ	ဖ		5:22	т		×		×		×		ő	0	
TIME ACCEPTED BY (AFFILIATION DATE TIME SAMPLE CONDITIONS Cooler (Y/N) TJ Daughery TJ Daughery TJ Daughery TJ Daughery TJ Daughery TJ Daughery	FB-2 APCO-8Y-AP-FB-02 APCO_Barry_AshPond	APCO-8Y-AP-FB-02		APCO_Barry_Ash		Pond		Ğ	ပ		5:45		_	×		<u> </u>		×	4	Ö	B	
Time Accepted By / ArFillantion Date Time Samples Cooler Cooler Cooler Cooler Cooler Cooler Table The Control on the Cooler Cooler Table The Cooler Cooler Table The Cooler Cooler Table T								\dashv	\dashv					\downarrow	1			********		ļ		
Time Accepted by (AFFILIATION DATE TIME Samples Cooler Cooler Cooler Tables) T. J. Daugherty					- 1		7	+	1		Τ]	\pm	#					Ŧ			
Time Accepted By / Affiliation Date Time Sample Conditions Accepted By / Affiliation Accepted By / Affiliation Accepted By / Affiliation Accepted By / Affiliation Accepted By / Affiliation Cooler (Yold) Cooler (Yold) TJ Daughery TJ Daughery TJ Daughery Date Signed:					1		#	+			T		\pm	#	1			‡				
TIME ACCEPTED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS 11:32 M. C. Cooler Cooler T. J. Daugherty T.	- Address of the Control of the Cont				1		F	╁						T								
TIME ACCEPTED BY (AFFILIATION DATE TIME SAMPLE CONDITIONS Samples Cooler								H								\dashv			\dashv			
TJ Daugherty TJ Daugherty TJ Daugherty TJ Daugherty TSigned:	RELINQUISHED BY / AFFILIATION DATE	đ	đ	DATE	10000	TIME				ACCEPTED B	W / AFFIL	AT O				MTE	F	W S	Ø	AMPLE	ONDITIC	SZ.
MATERIAL CONSIDER COOLET CONSIDER COOLET CONSIDER COOLET CONSIDER	Brooke Caton/ APC GTL 5/26/2022			5/26/2022		11:32		8	귌	7					le.	RA		Ŋ	\$		거	7
T. Daugherty T. Daugherty Received on Ice ('YM') DATE Signed:	and the state of t	- Andrews - Andr					\exists								_		\bot					\dashv
Tabaugherty Tabaugherty Received on Ice (YMM) Custody Sealed Cooler (YMM) Interesting the Cooler (YMM)															\dashv		_				_	+
T. Daugherty T. Daugherty TEMP In C Received on Ice ("Yill) Scaled Cooler ("Yill) Index Scaled Temples Intect																					_	+
T. Daugherty T. Daugherty T. Daugherty T. Daugherty T. Daugherty T. Daugherty Sealed Cooler Cytyl Sealed Cooler Cytyl Sealed Cooler Tool	SAMPLER NAME AND SIGNATURE	SAMPLER NAME AND SIGNATURE	SAMPLER NAME AND SIGNATURE	WE AND SIGNATURE															0	υo		
DATE Signed:	PRINT Name of SAMPLER:	PRINT Name of SAMP	PRINT Name of SAMP	INT Name of SAMP	띮	45					TJ Da	aughert	^						i ui qi		λpo:	səid)
	SIGNATURE of SAM	SIGNATURE of SAM	SIGNATURE of SAM	SNATURE of SAM	IPLER:	21							DATE (igned:					ИЭТ	90	suO Ise2	VVV

Pittsburgh Lab Sample Condit	tion l	Jpor	ı Re	ceipt
Pace Analytical Client Name:	Ala	ber	nl	2 Power Project # 30494074
Courier: Fed Ex UPS USPS Client Tracking #: 570 6585 4105	t 🗆 c	Comme	ercial	Pace OtherLIMS Login MJS
Custody Seal on Cooler/Box Present: yes	☐ n	10	Seals	intact: yes no
Thermometer Used	Туре	of Ice:	Wet	Blue None
Cooler Temperature Observed Temp	M_	°C	Corre	ection Factor: M °C Final Temp: M °C
Temp should be above freezing to 6°C				
				pH paper Lot# Date and Initials of person examining contents:
Comments:	Yes	No	N/A	10D46/1 contents. 21.11
Chain of Custody Present:	- Andrew		ļ	1.
Chain of Custody Filled Out:				2.
Chain of Custody Relinquished:				3.
Sampler Name & Signature on COC:		1		4.
Sample Labels match COC:				5.
-Includes date/time/ID Matrix:	<u> </u>		 -	
Samples Arrived within Hold Time:				6.
Short Hold Time Analysis (<72hr remaining):	ĺ	/		7.
Rush Turn Around Time Requested:		Service of the servic		8.
Sufficient Volume:	1			9.
Correct Containers Used:				10.
-Pace Containers Used:	/			
Containers Intact:				11.
Orthophosphate field filtered				12.
Hex Cr Aqueous sample field filtered				13.
Organic Samples checked for dechlorination:				14.
Filtered volume received for Dissolved tests				15.
All containers have been checked for preservation.				16. Added 2.5 ML HNG3 to sample
exceptions: VOA, coliform, TOC, O&G, Phenolics, Non-aqueous matrix	, Radon	,		012-MSD to got PHL2
All containers meet method preservation				Initial when SAM Date/time of 12/22 14:15
requirements.		L	L	Lot # of added 5 L 22 - 0625
Headspace in VOA Vials (>6mm):				17.
Trip Blank Present:				18.
Trip Blank Custody Seals Present				
Rad Samples Screened < 0.5 mrem/hr				Initial when SAM Date: 6/2/22 Survey Meter SN: 1563
Client Notification/ Resolution:				
Person Contacted:			Date/	Time: Contacted By:
Comments/ Resolution:				
			····	

☐ A check in this box indicates that additional information has been stored in ereports.

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Pace Analytical"

Ra-226 JC2 6/18/2022 67114 DW Test: Analyst: Date: Worklist: Matrix:

2474499 0.024 0.055 0.132 0.84 N/A Pass M/B Counting Uncertainty:
M/B MDC: MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC: MB Sample ID Method Blank Assessment

MS/MSD 2	
MS/MSD 1 5/23/2022 30494074002 30494074003 30494074004 19-033 24.027 0.20 0.20 0.309 15.556 0.198 0.449 0.198 15.705 11.120 11.120	0.614 98.21% 102.23% NA N/A N/A Pass Pass 125% 75%
Sample Matrix Spike Control Assessment Sample Collection Date: Sample NS LD. Sample MSD LD. Spike LD. Spike Nolume Used in MSD (mL): Spike Volume Used in MSD (mL): Spike Volume Used in MSD (mL): MS Aliquot (L. g. F): MSD Target Conc. (pCi/L. g. F): MSD Target Conc. (pCi/L. g. F): MSD Spike Uncertainty (calculated): Sample Result Sample Result Counting Uncertainty (pCi/L. g. F): Sample Result Counting Uncertainty (pCi/L. g. F): Sample Matrix Spike Result Sample Matrix Spike Result Matrix Spike Result Counting Uncertainty (pCi/L. g. F): Sample Matrix Spike Result Matrix Spike Result Counting Uncertainty (pCi/L. g. F): Sample Matrix Spike Result Matrix Spike Result Counting Uncertainty (pCi/L. g. F): Sample Matrix Spike Result Matrix Spike Duplicate Result Matrix Spike Duplicate Result Counting Uncertainty (pCi/L. g. F):	MSD Numerical Performance Indicator: MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSDMSD Upper % Recovery Limits: MSMSD Lower % Recovery Limits:
4	

7/88 7/88 115 22 24 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	57114 LCSD67114 2022 7/8/2022 033 19-033 026 24.026 10 0.10
1	
-	
-	
—	
<u> </u>	
	305 4.803
-	0.058
	177 0.428
	30 -2.60
	64% 88.10%
Status vs Numencal Indicator: N/A	N/A N/A
Status vs Recovery:	
Upper % Recovery Limits: 125%	
Lower % Recovery Limits: 75%	2% 75%

uplicate Sample Assessment		Matrix Spike/Matrix Spike Duplicate Sample Assessment		
Sample I.D.:	LCS67114	Sample I.D.	·г	
Duplicate Sample 1.D.	LCSD67114	Sample MS I.D.	(,,	
Samule Result (nCid., a. F):	5.124	Sample MSD I.D.	304	
Some Description of the Property (PC) of	0.477	Sample Matrix Spike Result:	15.705	
Sample Nesdit Codming Officers (PCI) 1 (PCI) 0 E)	4 232	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	1.120	
Salliple Duplicate Newsyll (POINT)	0.428	Sample Matrix Spike Duplicate Result:	Ψ-	
Sample Duplicate Result Coulining Officer (amily (POLL) 9, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17		Matrix Shike Dunificate Result Counting Uncertainty (pC//L, g, F):	1.142	
Are sample and/or duplicate results below Are:	2.7.2R	Duplicate Numerical Performance Indicator:	-1	
Duplicate Nulliellear religionalise indicator of the control of th	10.04%	(Rased on the Percent Recoveries) MS/ MSD Duplicate RPD:	4.01%	
(Based on the LCS/LCSD Percent Recoveries) Duplicate Andrea	0.50 V/V	MS/ MSD Duplicate Status vs Numerical Indicator:		
Duplicate Status vs (valiferical indicator)	200	MS/ MSD Dunlicate Status vs RPD:	Pass	,,,,,,,
Duplicate Status vs RPD.	25%	% RPD Limit	. 25%	
% RPD LIMIT	%c7			1

Duplicate Sample Assessment

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

T # Ev. Page 86 of 93

Face Analytical"

Quality Control Sample Performance Assessment

≥
St
Ĭ
S
3
ā
Anal
_

₹
ello
2
jQ
thte
hlic
Hig
sp
Fiel
Αï
ter
En
ally
nu
Ma
Isn
STI
a X
An

	Sample Ma			
Ra-228	VAL	6/17/2022	67113	M
Test:	Analyst:	Date:	Worklist:	Matrix:

: 6/17/2022 : 67113 WT		2474498	0.049	1: 0.230	: 0.530	: 0.42	: Pass	: Pass
Date: Worklist: Matrix:	hod Blank Assessment	MB Sample ID	MB concentration:	M/B 2 Sigma CSU:	MB MDC:	MB Numerical Performance Indicator:	MB Status vs Numerical Indicator:	MB Status vs. MDC:

Laboratory Control Sample Assessment

MS/MSD 2																													
MS/MSD 1	5/23/2022	30494074002	30494074004	22-016	35,647	0.20	0.20	0.806	8.845	0.806	8.842	0.433	0.433	0.684	0.391	10.182	2.021	8.817	1.765	0.608	-0.747	107.38%	91.99%	Pass	Pass	Pass	Pass	135%	%09
Sample Matrix Spike Control Assessment	Sample Collection Date:	Sample I.D.	Sample MSD I.D.	Spike I.D.:	MS/MSD Decay Corrected Spike Concentration (pCi/mL):	Spike Volume Used in MS (mL):	Spike Volume Used in MSD (mL):	MS Aliquot (L, g, F):	MS Target Conc.(pCi/L, g, F):	MSD Aliquot (L, g, F):	MSD Target Conc. (pCi/L, g, F):	MS Spike Uncertainty (calculated):	MSD Spike Uncertainty (calculated):	Sample Result:	Sample Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery:	MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:
													Γ	_															

MDC.	recults are helow th	amnie or dunlicate	Evaluation of dunlicate prevision is not applicable if either the sample or dunlicate results are below the MDC
			Duplicate Status vs RPD: % RPD Limit
/SW			Duplicate Status vs Numerical Indicator:
(Based on the P			Duplicate RPD:
			Duplicate Numerical Performance Indicator:
Matrix Spik		See Below ##	Are sample and/or duplicate results below RL?
	the space below.		Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result 2 Sigma CSLI (pCi/L or F):
	LCS/LCSD in		Sample Result 2 Sigma CSU (pCi/L, g, F):
	other than		Sample Result (pCi/L, g, F):
	sample IDs if		Sample I.D.: Duplicate Sample I.D.
	1		
Matrix Spike/Matrix			cate Sample Assessment
		%09	Lower % Recovery Limits:
		135%	Upper % Recovery Limits:
		Pass	Status vs Recovery:
		A/A	Status vs Numerical Indicator:
		90.82%	Percent Recovery:
		-0.83	Numerical Performance Indicator:
		0.912	LCS/LCSD 2 Sigma CSU (pCi/L, g, F):
		3.939	Result (pCi/L, g, F):
		0.212	Uncertainty (Calculated):
		4.337	Target Conc. (pCi/L, g, F):
Matrix Spik		0.810	Aliquot Volume (L, g, F):
		0.10	Volume Used (mL):
		35.124	Decay Corrected Spike Concentration (pCi/mL):
		22-016	Spike I.D.:
		7/7/2022	Count Date:
	LCSD67113	LCS67113	

Duplicate Sample Assessment

Matrix Spike/Matrix Spike Duplicate Sample Assessment Sample I.D. Sample MSI I.D.	30.04	
Sample Maurix Spike Result 2 Sigma CSU (pci/L, g. F): Sample Matrix Spike Duplicate Result Marrix Spike Dunlicate Result 2 Sigma CSI (pci/L, g. F):	10.182 2.021 8.817 1.765	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	-	
MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: % RPD Limit.	Pass Pass 36%	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

(MM71/2)

Quality Control Sample Performance Assessment

VAL 6/17/2022 67115 WT Ra-228 Test: Worklist: Matrix: Date: Analyst:

Pace Analytical

MS/MSD 2

MS/MSD 5/23/2022

Analyst Must Manually Enter All Fields Highlighted in Yellow.

30494074014 30494074015 30494074016

Sample I.D. Sample MS I.D.

Sample MSD I.D.

Sample Collection Date:

Sample Matrix Spike Control Assessmen

22-016 35.647 0.20

Spike I.D.

Spike Volume Used in MS (mL):

Spike Volume Used in MSD (mL): MS Aliquot (L, g, F) MS Target Conc.(pCi/L, g, F) MSD Aliquot (L, g, F):

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Method Blank Assessment

0.714 2.02 Warning Pass 0.365 MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC: MB Sample ID M/B 2 Sigma CSU: MB MDC: MB concentration:

(ک م <u>ک)</u>

0.20 0.809 8.816 0.432 0.434 0.355 0.433 9.451 11.674 2.337 2.337 1.27 91% 127 91% Pass MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits: Sample Result: Sample Result 2 Sigma CSU (pCi/L, g, F): Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): MSD Target Conc. (pCi/L, g, F). MS Spike Uncertainty (calculated) MSD Spike Uncertainty (calculated) Sample Matrix Spike Result Sample Matrix Spike Duplicate Result Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): MSD Numerical Performance Indicator MS Percent Recovery MSD Percent Recovery MSD Status vs Recovery MS Numerical Performance Indicator MS Status vs Numerical Indicator MSD Status vs Numerical Indicator MS Status vs Recovery LCSD67115

CS67115 7/5/2022 22-016 35.146 0.10 0.816 4.308 0.211 3.657 0.851

Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F):

Volume Used (mL):

Decay Corrected Spike Concentration (pCi/mL):

Count Date:

Laboratory Control Sample Assessmen

Spike I.D.

Result (pCi/L, g, F):

Uncertainty (Calculated):

LCS/LCSD 2 Sigma CSU (pCi/L, g, F):

Numerical Performance Indicator

-1.46 84.88%

ĕ

Percent Recovery: Status vs Numerical Indicator: Status vs Recovery: Upper % Recovery Limits: Lower % Recovery Limits:

Duplicate Sample Assessmen

Matrix Spike/Matrix Spike Duplicate Sample Assessment Enter Duplicate sample IDs if LCS/LCSD in he space belov other than See Below ## Sample Result (DCML, g, F):
Sample Result 2 Sigma CSU (DCML, g, F):
Sample Duplicate Result (DCML, g, F):
Sample Duplicate Result 2 Sigma CSU (DCML, g, F):
Are sample and/or duplicate results below RL? Sample I.D.: Duplicate Sample I.D.

30494074014 30494074015 30494074016

Sample I.D. Sample MS i.D.

Sample MSD I.D. Sample Matrix Spike Result:

9.451 1.925 11.674 2.337

Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):

Duplicate Numerical Performance Indicator

(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:

-1.439 21.40% Pass Pass 36%

MS/ MSD Duplicate Status vs RPD: RPD Limit:

MS/ MSD Duplicate Status vs Numerical Indicator

Duplicate Numerical Performance Indicator: Duplicate RPD: Duplicate Status vs Numerical Indicator:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC. Duplicate Status vs RPD: % RPD Limit:

Comments:

(47/6/22

1 of 1

Face Analytical"

Quality Control Sample Performance Assessment

Ra-226	JC2 6/19/2022 67116	ΔM
Test:	Analyst: Date: Worklist:	Matrix:

2474504 -0.031

MB Sample ID MB concentration:

Method Blank Assessment

0.047 0.172 -1.29 N/A Pass

M/B Counting Uncertainty: MB MDC:

MB Status vs Numerical Indicator: MB Status vs. MDC:

Laboratory Control Sample Assessment

MB Numerical Performance Indicator:

اد
10
χe
į.
g
ĮĮ.
핅
ij
Sh
용
Fiel
₹
ē
Ē
À
na
an
3
Sn
Ţ
2
nai
V)

MS/MSD 2																														
MS/MSD 1	5/23/2022	30494074014	30494074015	30494074016	19-033	24.027	0.20	0.20	0,207	23.260	0.273	17.632	0.279	0.212	0.097	0.158	21.409	1.599	16.351	1.201	-2.341	-2.197	91.63%	92.18%	N/A	N/A	Pass	Pass	125%	75%
Sample Matrix Spike Control Assessment	Sample Collection Date:	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Spike I.D.:	MS/MSD Decay Corrected Spike Concentration (pCi/mL):	Spike Volume Used in MS (mL):	Spike Volume Used in MSD (mL):	MS Aliquot (L, g, F):	MS Target Conc.(pCi/L, g, F):	MSD Aliquot (L, g, F):	MSD Target Conc. (pCi/L, g, F):	MS Spike Uncertainty (calculated):	MSD Spike Uncertainty (calculated):	Sample Result.	Sample Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery:	MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:
														X	LCSD67116	7/10/2022	19-033	24.026	0.10	0.504	4.764	0.057	4.748	0.459	-0.07	%29.66	ΝΆ	Pass	125%	750%

7/10/2022 19-033 24.026 0.10 0.508 4.733 0.057 5.076

Count Date: Spike I.D.:

Decay Corrected Spike Concentration (pCi/mL):

Volume Used (mL): Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F): Uncertainty (Calculated):

Result (pC/I/L, g, F):
LCS/LCSD Counting Uncertainty (pC/I/L, g, F):
Numerical Performance Indicator:

Percent Recovery:

MS Status vs Recovery:	MSD Status vs Recovery:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:	Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% RPD Limit.
N/A	Pass	125%	75%													
N/A	Pass	125%	75%		LCS67116	LCSD67116	5.076	0.478	4.748	0.459	0	0.969	7.31%	N/A	Pass	25%
Status vs Numerical Indicator:	Status vs Recovery:	Upper % Recovery Limits:	Lower % Recovery Limits:	Duplicate Sample Assessment	Sample I.D.:	Duplicate Sample I.D.	Sample Result (pCi/L, g, F):	Sample Result Counting Uncertainty (pCi/L, g, F):	Sample Duplicate Result (pCi/L, g, F):	Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	Are sample and/or duplicate results below RL?	Duplicate Numerical Performance Indicator:	(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	Duplicate Status vs Numerical Indicator:	Duplicate Status vs RPD:	% RPD Limit:

30494074014 30494074016 30494074016 21 409 1.599 16.351 16.351 4.267 0.61% NNA Pass 25%

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

TAR DW QC Printed: 7/11/2022 9:15 AM

Page 89 of 93

TAR_67116_W.xis Total Alpha Radium (ENV-FRM-GBUR-0142 R0).xls

Quality Control Sample Performance Assessment

Face Analytical"

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Ra-228 VAL 6/17/2022 67117 WT Test: Analyst: Date:

Worklist: Matrix:

2474506 0.706 0.431 0.805 3.21 Fail* Pass MB concentration: M/B 2 Sigma CSU: MB MDC: MB Sample ID MB Numerical Performance Indicator:

Method Blank Assessmen

MB Status vs Numerical Indicator: MB Status vs. MDC:

	Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
	Sample Collection Date:	5/24/2022	
	Sample I.D.	30494074031	
	Sample MS I.D.	30494074032	
	Sample MSD I.D.	30494074033	
	Spike I.D.:	22-016	
	MS/MSD Decay Corrected Spike Concentration (pCi/mL):	35.636	
	Spike Volume Used in MS (mL):	0.20	
	Spike Volume Used in MSD (mL):	0.20	
	MS Aliquot (L, g, F):	0.803	
	MS Target Conc.(pCi/L, g, F):	8.876	
	MSD Aliquot (L, g, F):	0.807	
	MSD Target Conc. (pCi/L, g, F):	8.827	
	MS Spike Uncertainty (calculated):	0.435	
_	MSD Spike Uncertainty (calculated):	0.433	
	Sample Result:	1.574	
	Sample Result 2 Sigma CSU (pCi/L, g, F):	0.549	
	Sample Matrix Spike Result:	10.048	
	Matrix Spike Result 2 Sigma CSU (pCi/l., g, F):	2.008	
	Sample Matrix Spike Duplicate Result:	8.897	
	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	1.800	
	MS Numerical Performance Indicator:	-0.371	
	MSD Numerical Performance Indicator:	-1.526	
_	MS Percent Recovery:	95.46%	
	MSD Percent Recovery:	85.96%	
	MS Status vs Numerical Indicator.	Pass	
	MSD Status vs Numerical Indicator:	Pass	
	MS Status vs Recovery:	Pass	
	MSD Status vs Recovery:	Pass	
	MS/MSD Upper % Recovery Limits:	135%	
	MSMSD Lower % Recovery Limits:	%09	

i i i i i i i i i i i i i i i i i i i		
Ĺ	LCS67117	LCSD67117
_	7/5/2022	
Spike I.D.:	22-016	
Decay Corrected Spike Concentration (pCi/mL):	35.144	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):	0.804	
Target Conc. (pCi/L, g, F):	4.374	
Uncertainty (Calculated):	0.214	
Result (pCi/L, g, F):	4.368	
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	1.016	
Numerical Performance Indicator:	-0.01	
Percent Recovery:	%88.66	
Status vs Numerical Indicator:	Ϋ́	
Status vs Recovery:	Pass	
Upper % Recovery Limits:	135%	
Lower % Recovery Limits:	%09	

	30494074031	30494074032	30494074033	10.048	2.008	8.897	1.800	0.836	14.01%	Pass	Pass	36%
Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% RPD Limit:
	Enter Duplicate	sample IDs if	other than	LCS/LCSD in	the space below.	•						

Sample I.D.:

Sample Result (pCilf., g, F):
Sample Result 2 Sigma CSU (pCilf., g, F):
Sample Duplicate Result (pCilf., g, F):
Sample Duplicate Result (pCilf., g, F):
Are sample and/or duplicate results below RL?
Duplicate Numerical Performance Indicator:

Duplicate Sample Assessment

See Below ##

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: RPD Limit:

Comments: $\frac{1}{\sqrt{4}}$ the lowest activity sample in this tractor is greater than ten times the blank is acceptable; otherwise this batch must be re-proposed. Note activity < WLDC., Pound the blank is acceptable; otherwise this batch must be re-proposed. Note activity < WLDC., Pound $\frac{1}{2}$

Ra-228 (R086-8 04Sep2019).xls

Pace Analytical"

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

JC2 6/19/2022 Analyst: Date: Worklist: Matrix: Test:

Method Blank Assessmen

0.058 0.149 0.56 N/A Pass 0.017 MB Sample ID M/B Counting Uncertainty: MB MDC MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC:

Laboratory Control Sa

MS/MSD 2 30494074031 30494074033 19-033 24.027 0.20 0.20 0.316 115.201 0.289 17.812 1.066 1.066 1.066 1.066 1.261 1.2 5/24/2022 MS/MSD Sample I.D. Sample MS I.D. Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): MS Numerical Performance Indicator: MSD Target Conc. (pCi/L, g, F): Sample MSD I.D. MS/MSD Decay Corrected Spike Concentration (pCi/mL): Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MS Spike Uncertainty (calculated): MSD Spike Uncertainty (calculated): Sample Result: Sample Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F): MSD Numerical Performance Indicator: MS Percent Recovery MSD Percent Recovery MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MSD Status vs Recovery: MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits: Sample Collection Date: Spike I.D.: Sample Matrix Spike Control Assessment

Count Date: 7/10/2022 7/10/2022 Spike LD: 19-033 19-033 19-033	ol Sample Assessment	LCSD (Y or N)?	γ
7/10/2022 19-033 24.026 0.10 0.510 0.510 4.712 0.057 4.030 0.450 2.295 85.53% N/A Pass 125% 75%	-	LCS67118	LCSD67118
19-033 24.026 0.10 0.510 4.712 0.057 4.030 0.450 -2.95 85.53% N/A Pass 125% 75%	Count Date:	7/10/2022	7/10/2022
24.026 0.10 0.510 4.712 0.057 4.030 0.450 -2.95 85.53% N/A Pass 125% 75%	Spike I.D.:	19-033	19-033
0.10 0.510 4.712 0.057 4.030 0.450 -2.95 85.53% N/A Pass 125% 75%	Decay Corrected Spike Concentration (pCi/mL):		24.026
0.510 4.712 0.057 4.030 0.450 -2.95 85.53% N/A Pass 125% 75%	Volume Used (mL):		0.10
4.712 0.057 4.030 0.450 -2.95 85.53% N/A Pass 125% 75%	Alignot Volume (L, g, F):		0.501
0.057 4.030 0.450 -2.95 85.53% N/A Pass 125% 75%	Target Conc. (pCi/L, g, F):		4.791
4.030 0.450 -2.95 85.53% N/A Pass 125% 75%	Uncertainty (Calculated):		0.057
0.450 -2.95 85.53% N/A Pass 125% 75%	Result (pCi/L, g, F):		4.504
-2.95 85.53% N/A Pass 125% 75%	LCS/LCSD Counting Uncertainty (pCi/L, g, F):	_	0.449
85.53% N/A Pass 125% 75%	Numerical Performance Indicator:		-1.24
N/A Pass 125% 75%	Percent Recovery:		94.01%
Pass 125% 75%	Status vs Numerical Indicator:		N/A
125% 75%	Status vs Recovery:		Pass
75%	Upper % Recovery Limits:		125%
	Lower % Recovery Limits:		75%

Matrix Spike/Matrix Spike Duplicate Sample Assessment Sample I.D. 30494074031 Sample MS I.D. 30494074033 Sample MS I.D. 30494074033 Sample Matrix Spike Result Matrix Spike Duplicate Result Counting Uncertainty (pCil., g, F): Sample Matrix Spike Duplicate Result Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: Sample MS/ MSD Duplicate RPD: 1.261 1.261 1.304													
Matrix Spike/Matrix Spike Duplicate Sample Assessment Sample I.D. Sample MSI.D. Sample MSD I.D. Sample Matrix Spike Result Counting Uncertainty (pCiU., g, F). Sample Matrix Spike Duplicate Result Matrix Spike Duplicate Result Counting Uncertainty (pCiU., g, F). Duplicate Natural Performance Indicator: Duplicate Nature Percent Recoveries) MS/ MSD Duplicate RPD. MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: MS/ MSD Duplicate Status vs RPD: % RPD Limit.		30494074031	30494074032	30494074033	16.196	1.066	17.812	1.261	-1.919	6.31%	A/A	Pass	25%
	Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% RPD Limit

LCS67118 LCSD67118

4.030 0.450 0.449 0.449 NO -1.460 9.44% N/A Pass 25%

Are sample and/or duplicate results below RL?

Duplicate Numerical Performance Indicator:
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:

Duplicate Status vs Numerical Indicator:

Duplicate Status vs RPD:

Sample I.D...
Duplicate Sample I.D...
Sample Result (pcl/L, g, F):
Sample Result (pcl/L, g, F):
Sample Duplicate Result (pcl/L, g, F):
Sample Duplicate Result (pcl/L, g, F):

Duplicate Sample Assessment

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

6 of 13

Quality Control Sample Performance Assessment

Pace Analytical

Ra-226	JC2	6/19/2022	67288	DW	
Test:	Analyst:	Date:	Worklist:	Matrix:	

0.111 0.148 3.80 N/A

MB concentration:
M/B Counting Uncertainty:
MB MDC:

MB Sample ID

Method Blank Assessment

MB Numerical Performance Indicator:

MB Status vs Numerical Indicator: MB Status vs. MDC:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment S	rol Assessment Sample Collection Date: Sample I.D.	e: 5/31/2022 30497264001	MS/MSD 2
	Sample I.D. Sample MS I.D. Sample MSD I.D.		
Spike I.D.: MS/MSD Decay Corrected Spike Concentration (pCi/mL):	Spike I.D.: Concentration (pCi/mL):	19-033): 24.027	
Spike V	Spike Volume Used in MS (mL):		
Spike Vo	Spike Volume Used in MSD (mL): MS Alignot (L. g. F):): 0.308	
LSW	MS Target Conc.(pCi/L, g, F):	-	
	MSD Aliquot (L, g, F):		
MSD Ta	MSD Target Conc. (pCi/L, g, F):		
MS Spike I	MS Spike Uncertainty (calculated):		
MSD Spike (MSD Spike Uncertainty (calculated):	0.210	
	Sample Result:		
Sample Result Counting Uncertainty (pCi/L, g, F):	ncertainty (pCi/L, g, F):		
Sami	Sample Matrix Spike Result:	lt: 16.140	
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Incertainty (pCi/L, g, F):		
Sample Matrix	Sample Matrix Spike Duplicate Result:	`	
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Incertainty (pCi/L, g, F):		
MS Numerica	MS Numerical Performance Indicator:	0.054	
MSD Numerica	MSD Numerical Performance Indicator:		
	MS Percent Recovery:		
	MSD Percent Recovery:	y: 107.43%	
MS Status	MS Status vs Numerical Indicator:	N/A	
MSD Status	MSD Status vs Numerical Indicator:	N/A	
	MS Status vs Recovery:	y: Pass	
2	MSD Status vs Recovery:		
IN DSW/SW	MS/MSD Upper % Recovery Limits:	s: 125%	
MS/MSD Lo	MS/MSD Lower % Recovery Limits:		

Laboratory Control Sample Assessment	LCSD (Y or N)?	Y	
	LCS67288	LCSD67288	
Count Date:	7/11/2022	7/11/2022	
Spike I.D.:	19-033	19-033	
Decay Corrected Spike Concentration (pCi/mL):	24.026	24.026	
Volume Used (mL):	0.10	0.10	
Aliquot Volume (L, g, F):	0.505	0.506	Matrix Sp
Target Conc. (pCi/L, g, F):	4.756	4.747	
Uncertainty (Calculated):	0.057	0.057	
Result (pCi/L, g, F):	4.603	4.462	
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.465	0.446	
Numerical Performance Indicator:	-0.64	-1.25	
Percent Recovery:	%2.2	93.98%	
Status vs Numerical Indicator:	ΝΆ	ΑX	
Status vs Recovery:	Pass	Pass	
Upper % Recovery Limits:	125%	125%	
Lower % Recovery Limits:	75%	75%	

	30497264001	30497264002	30497264003	16.140	1.094	19.283	1.262	-3.687	%96'9	A/N	Pass	72%
Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% RPD Limit:
Г	-	ψĥ	:									

LCS67288 LCSD67288

Sample I.D.:
Duplicate Sample I.D.:
Sample Result (pCi/L, g, F):
Sample Result Courting Uncertainty (pCi/L, g, F):
Sample Duplicate Result (pCi/L, g, F):
Sample Duplicate Result (pCi/L, g, F):
Are sample and/or duplicate results below RL?

Duplicate Sample Assessment

4.663 0.465 4.462 0.446 NO 0.429 2.93% N/A Pass 25%

(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: Duplicate Status vs Numerical Indicator:

Duplicate Numerical Performance Indicator

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Duplicate Status vs RPD: % RPD Limit:

Comments: **The method blank result is below the reporting limit for this analysis and is acceptable.

Dage 92 of 93

Face Analytical www.parealase.com

Quality Control Sample Performance Assessment

Ra-228 VAL 6/17/2022 67287 W1

Test: Analyst: Date:

Worklist: Matrix:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

MS/MSD 2	- 0																							-			
MS/MSD_1 5/31/2022	30497264001 30497264002	30497264003 22-016	35.554	0.20	0.20	0.806	8.818	0.810	8.784	0.432	0.430	0.849	0.368	9.709	1.924	9.282	1.838	0.041	-0.358	100.48%	%00.96	Pass	Pass	Pass	Pass	135%	%09
Sample Matrix Spike Control Assessment Sample Collection Date:	Sample I.D. Sample MS I.D.	Sample MSD I.D. Solike I.D.:	MS/MSD Decay Corrected Spike Concentration (pCi/mL):	Spike Volume Used in MS (mL):	Spike Volume Used in MSD (mL):	MS Aliquot (L, g, F):	MS Target Conc.(pCi/L, g, F):	MSD Aliquot (L, g, F):	MSD Target Conc. (pCi/L, g, F):	MS Spike Uncertainty (calculated):	MSD Spike Uncertainty (calculated):	Sample Result:	Sample Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery:	MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:
											z	LCSD67287															

2480254 0.729 0.340 0.552 4.21 Fail* See Comment*

MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC:

MB Sample ID
MB concentration:
M/B 2 Sigma CSU:
MB MBC:

Method Blank Assessment

LCSD (Y or N)?

Laboratory Control Sample Assessment

												_																	
0.849	0.368	9.709	1.924	9.282	1.838	0.041	-0.358	100.48%	%00'96	Pass	Pass	Pass	Pass	135%	%09		30497264001	30497264002	30497264003	20010212100	9.709	1.924	9.282	1.838	0.315	4.56%	Pass	Pass	36%
Sample Result:	Sample Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery:	MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:	Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS LD.	Campio MCD I	יייי פווויייייייייייייייייייייייייייייי	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% RPD Limit:
LCSD67287																	Enter Duplicate	cample IDe if	salipie ins	omer man	LCS/LCSD in	the space below.							
LCS67287	7/7/2022	22-016	35.124	0.10	0.809	4.344	0.213	3.828	0.860	-1.14	88.11%	N/A	Pass	135%	%09									See Below ##					
	Count Date:	Spike I.D.:	Decay Corrected Spike Concentration (pCi/mL):	Volume Used (mL):	Alignot Volume (L. a. F):	Taraet Conc. (pCi/L, q, F):	Uncertainty (Calculated):	Result (pCi/L. a. F):	LCS/LCSD 2 Sigma CSU (pCi/L, g, F);	Numerical Performance Indicator:	Percent Recovery:	Status vs Numerical Indicator:	Status vs Recovery:	I linner % Recovery imits:	Lower % Recovery Limits:	Duplicate Sample Assessment	. () I alumeS	C - clames of citation	Duplicate oathpre i.D.	Sample Result (pCi/L, g, F):	Sample Result 2 Sigma CSU (pCi/L, g, F):	Sample Duplicate Result (pCi/L, g, F):	Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F);	Are sample and/or duplicate results below RL?	Diplicate Numerical Performance Indicator:	Duplicate RPD:	Duplicate Status vs Numerical Indicator:	Duplicate Status vs RPD:	% RPD Limit:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Ra-228 NELAC DW2 Printed: 7/8/2022 3:34 PM

Page 93 of 93

Ra-228_67287_W Ra-228 (R086-8 04Sep2019).xls

Appendix D

Appendix E. Horizontal Groundwater Flow Velocity Calculations Plant Barry Ash Pond

		20	022 1st Semi-Ar	ınual Monitorii	ng Event			
Date of Measurement	MW-1	MW-10	Distance	Hydraulic Gradient	Hydraulic Conductivity	Effective Porosity	Calculated Groundwater Flow Velocity	Calculated Groundwater Flow Velocity
	h ₁ (ft)	h ₂ (ft)	Δl (ft)	Δh/Δl (ft/ft)	K (ft/day)	n	(ft/d)	(ft/yr)
5/23/2022	4.57	1.95	4564.34	0.00057	9.40	0.25	0.0216	7.88

Notes:

ft = feet

ft/d = feet/day

ft/ft = feet per foot

ft/yr = feet per year

Appendix E

GROUNDWATER STATS CONSULTING

(1 –alpha)

SWFPR=

July 21, 2022

Southern Company Services Attn: Mr. Greg Dyer 3535 Colonnade Parkway Birmingham, AL 35243

1st Semi-Annual Statistical Analysis – May 2022

Dear Mr. Dyer,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the statistical analysis of groundwater data for the May 2022 1st Semi-Annual sample event for Alabama Power Company's Plant Barry Ash Pond. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began at site for the CCR program in 2016. The monitoring well network, as provided by Southern Company Services, consists of the following:

- o **Upgradient wells:** BY-UP-MW-1, BY-UP-MW-2, BY-UP-MW-3, and BY-UP-MW-4
- Downgradient wells: BY-AP-MW-1, BY-AP-MW-2, BY-AP-MW-3, BY-AP-MW-4, BY-AP-MW-5, BY-AP-MW-6, BY-AP-MW-7, BY-AP-MW-8, BY-AP-MW-9, BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-12, BY-AP-MW-13, BY-AP-MW-14, BY-AP-MW-15, and BY-AP-MW-16
- Delineation wells: BY-AP-MW-1V, BY-AP-MW-5V, BY-AP-MW-7V, BY-AP-MW-8V, BY-AP-MW-10V, BY-AP-MW-12V, BY-AP-MW-13V, BY-AP-MW-14V. BY-AP-MW-15V, BY-AP-MW-16V, BY-AP-MW-17H, BY-AP-MW-17V, BY-AP-MW-18H, BY-AP-MW-19H, BY-AP-MW-20H, BY-AP-MW-20V, BY-AP-MW-22H, BY-AP-MW-23H, BY-AP-MW-23V, BY-AP-MW-24H, BY-AP-MW-25H, and BY-AP-MW-25VM
- o **Piezometer:** BY-AP-MW-15VM

Data from delineation wells are included on time series and box plots but did not require formal statistics. Piezometer BY-AP-MW-15VM only monitors water levels; therefore, it is not included in this analysis.

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was prepared according to the Statistical Analysis Plan approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to Groundwater Stats Consulting. The analysis was reviewed Andrew Collins, Project Manager of Groundwater Stats Consulting.

The CCR program consists of the following constituents:

Appendix III (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS

Appendix IV (Assessment Monitoring) - antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A summary of Appendix IV downgradient well/constituent pairs with 100% non-detects follows this letter. For all constituents, a substitution of the most recent reporting limit is used for non-detect data. In the time series plots and interwell tests, a single reporting limit substitution is used across all wells for a given parameter since the wells are plotted as a group. For calculating intrawell prediction limits, however, the substitution is performed for individual wells and may differ across wells. This generally gives the most conservative limit in each case.

Time series plots for Appendix III and IV parameters at all wells are provided for the purpose of screening data at these wells (Figure A). Additionally, a separate section of box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells.

In the April 2020 background screening, Appendix III data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on analysis of the spatial variability of groundwater quality data among wells upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. A summary of the background screening is presented in a later section of this letter. Power curves are provided in this report to

demonstrate that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance. The EPA suggests that the selected statistical method should provide at least 55% power at 3 standard deviations or at least 80% power at 4 standard deviations. Power curves are based on the following statistical methods and site/data characteristics:

- Semi-Annual Sampling
- Intrawell Prediction Limits with 1-of-2 resample plan
- Interwell Prediction Limits with 1-of-2 resample plan
- # Background Samples (Intrawell): 12
- # Background Samples (Interwell): 71
- # Constituents: 7
- # Downgradient wells: 16

Summary of Statistical Methods – Appendix III Parameters

Based on the Statistical Analysis Plan, the following statistical methods are used to evaluate the Appendix III parameters:

- Intrawell prediction limits, combined with a 1-of-2 resample plan for pH and sulfate
- Interwell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, and TDS

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the annual false positive rate associated with parametric limits is fixed at 10% as recommended by the EPA Unified Guidance (2009), the false positive rate associated with nonparametric limits is not fixed and depends upon the available background sample size, number of future comparisons, and verification resample plan. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits as appropriate. Non-detects are handled as follows:

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.

- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the intrawell case, data for all wells and constituents may be re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. In the interwell case, prediction limits are updated with upgradient well data following each sampling event after careful screening for any new outliers. While not required for this report, in some cases, deselecting the earlier portion of data may be necessary prior to construction of limits so that resulting statistical limits are conservative (lower) from a regulatory perspective and capable of rapidly detecting changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Appendix III Background Screening – April 2020

Outlier Analysis

Background data through May 2019 for Appendix III parameters were screened for outliers using Tukey's test for outliers and/or visual screening, and identified outliers were flagged with "o" in the database and shown in a lighter font on the time series graphs and data pages. A list of flagged outliers is included with this report (Appendix C). Flagged values are excluded from background in the calculation of statistical limits in order to better represent background conditions and to produce limits are that conservative from a regulatory perspective. No seasonal patterns were visually apparent on any of the time series plots, and no seasonal adjustments were made.

Trend Tests

The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends. In the absence of suspected contamination, significant trending data are typically not included in the background used for construction of prediction limits. This step serves to reduce variation

in background and better represent current background conditions. The results of the trend analyses showed several statistically significant increasing and decreasing trends. However, the background time period is short, and all trends noted were relatively low in magnitude when compared to average concentrations; therefore, no adjustments were made to any of the records. Detailed trend test results were included with the April 2020 screening report.

<u>Appendix III – Evaluation of Statistical Approach</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells are not representative of the current background data population; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

Based on the results of the screening and use of the ANOVA, intrawell limits were initially recommended for sulfate, and interwell methods were recommended for boron, calcium, chloride, fluoride, pH and TDS. However, as shown on the boxplots, the upgradient levels for pH are very low (acid) and are not representative of downgradient water quality. Therefore, intrawell limits were recommended for pH as well—unless or until a future study confirms that those low levels are representative of unimpacted downgradient conditions.

Appendix III Background Update – Fall 2021

Outlier Analysis

Proposed background data were reviewed to identify any newly suspected outliers, since the last background update described above, at all wells for pH and sulfate through May 2021 and at upgradient wells for boron, calcium, chloride, fluoride, and TDS through November 2021. Visual screening is used to identify potential outliers. When values are identified as outliers, these measurements are flagged with "o" and excluded to reduce variation, better represent background conditions, and provide limits that are conservative from a regulatory perspective. As mentioned above, flagged data are displayed in a lighter font and as a disconnected symbol on the time series reports, as

well as in a lighter font on the accompanying data pages. During the background update, the highest values for sulfate among existing background data in wells BY-MW-AP-13 and BY-MW-AP-14 were flagged to construct statistical limits that are conservative (i.e., lower) from a regulatory perspective. Additionally, the highest values among compliance data for sulfate in wells BY-MW-AP-MW-5 and MW-AP-16 were flagged in order to incorporate only compliance data that were of similar concentrations to existing background data.

Mann-Whitney

For constituents requiring intrawell prediction limits, the Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through May 2019 to compliance data through May 2021. When no statistically significant difference in medians between the two groups is found at a 99% confidence level, background data may be updated with newer compliance data. Statistically significant differences (either an increase or decrease in median concentrations) were found the following well/constituent pairs:

Increase:

• Sulfate: BY-AP-MW-1, BY-AP-MW-8, BY-AP-MW-11, BY-AP-MW-12,

BY-AP-MW-13, BY-AP-MW-14

Decrease:

pH: BY-UP-MW-3, BY-UP-MW-4, BY-AP-MW-6,

BY-AP-MW-13, BY-AP-MW-14

Note that the Mann-Whitney could not test sulfate in wells BY-AP-MW-5 and BY-MW-AP-16 because a minimum of 4 compliance samples were not available. However, because the available compliance samples were similar in concentration to background measurements, the respective records were updated with more recent samples.

Typically, when the test concludes that the medians of the two groups are significantly different, particularly in the downgradient wells, the background data are not updated to include the newer data but will be reconsidered in the future. In studies such as the current one, in which at least one of the segments being compared is of short duration, the comparison is complicated by the fact that normal short-term variation may be mistaken for long-term change in medians.

Due to more recent data for pH in all wells being fairly similar to background and better representing the groundwater quality in the absence of suspected impacts from practices at the facility, these background data sets were updated. While the Mann-Whitney test did not identify statistically significant differences for sulfate at several wells, these records

were not updated with more recent data due to the observed increase in concentrations in more recent samples compared to background samples. The following records were not updated during the 2021 background update, and a summary follows this report (Background Date Ranges):

• Sulfate: BY-MW-AP-1, BY-MW-AP-8, BY-MW-AP-9, BY-MW-AP-10,

BY-MW-AP-11, BY-MW-AP-12, BY-MW-AP-13, and BY-MW-AP-14

Trend Tests

The Sen's Slope/Mann Kendall trend test was used to evaluate the entire record of data through October 2021 from upgradient wells for parameters utilizing interwell prediction limits. When statistically significant increasing trends are identified in upgradient wells, the earlier portion of data may be deselected prior to construction of interwell statistical limits if the trending data would result in statistical limits that are not conservative from a regulatory perspective. Statistically significant trends were identified for the following well/constituent pairs:

Increasing

Calcium: BY-UP-MW-3 and BY-UP-MW-4

• Fluoride: BY-UP-MW-2

• TDS: BY-UP-MW-1, BY-UP-MW-2, and BY-UP-MW-4

Decreasing

• Chloride: BY-UP-MW-2

Although statistically significant trends were identified for the well/constituent pairs listed above, the magnitudes of the trends are marginal relative to the respective concentrations; therefore, no adjustments were required for these well/constituent pairs at this time. Additionally, concentrations among all upgradient wells remain similar to each other. Therefore, all data from upgradient wells were used to construct interwell prediction limits.

Evaluation of Appendix III Parameters – May 2022

Intrawell prediction limits were constructed for pH and sulfate using screened background data through May 2021 at each well. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. A summary of flagged outliers follows this report (Figure C).

Intrawell limits constructed from carefully screened background data from within each well serve to provide statistical limits that are representative of the background data population, and that will rapidly identify a change in more recent compliance data from within a given well. The May 2022 sample from the same well is compared to its respective background. This statistical method removes the element of variation from across wells and eliminates the chance of mistaking natural spatial variation for a release from the facility. Intrawell prediction limits combined with a 1-of-2 verification strategy were constructed for pH and sulfate (Figure D). Background data will be re-evaluated for updating background limits when a minimum of 4 compliance samples are available.

Interwell prediction limits combined with a 1-of-2 verification strategy were constructed for boron, calcium, chloride, fluoride, and TDS using upgradient well data through May 2022 (Figure E). Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. The May 2022 sample from each downgradient well is compared to the background limit to determine whether initial exceedances are present. Note that during this event, the reporting limit for fluoride increased from 0.1 mg/L to 0.125 mg/L, which resulted in a slight change to the interwell prediction limit. This change did not result in any additional exceedances.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified, and further research is required to identify the cause of the exceedance (i.e., impact from the site, natural variation, or an off-site source). If a resample falls within the statistical limit, the initial exceedance is considered to be a false positive result; therefore, no further action is necessary. Summary tables and complete graphical results for intrawell and interwell prediction limits may be found following this letter (Figures D and E, respectively). Exceedances for both intrawell and interwell prediction limits were identified for the following well/constituent pairs:

Intrawell:

pH: BY-UP-MW-1, BY-UP-MW-2, BY-UP-MW-3,

BY-UP-MW-4 (all upgradient), BY-AP-MW-1, BY-AP-MW-2,

BY-AP-MW-6, BY-AP-MW-8, BY-AP-MW-10, and BY-AP-MW-13

Sulfate: BY-AP-MW-1, BY-AP-MW-7, BY-AP-MW-8,

BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-12, BY-AP-MW-13,

and BY-AP-MW-14

Interwell:

• Boron: BY-AP-MW-1, BY-AP-MW-8, BY-AP-MW-9, BY-AP-MW-10, and

BY-AP-MW-16

Calcium: BY-AP-MW-1, BY-AP-MW-2, BY-AP-MW-5, BY-AP-MW-7,

BY-AP-MW-8, BY-AP-MW-9, BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-12, BY-AP-MW-13, BY-AP-MW-14, BY-AP-MW-15,

and BY-AP-MW-16

• Chloride: BY-AP-MW-1, BY-AP-MW-3, BY-AP-MW-4, BY-AP-MW-5,

BY-AP-MW-7, BY-AP-MW-8, BY-AP-MW-9, BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-12, BY-AP-MW-13, BY-AP-MW-14,

BY-AP-MW-15, and BY-AP-MW-16

• Fluoride: BY-AP-MW-15

• TDS: BY-AP-MW-1, BY-AP-MW-5, BY-AP-MW-7, BY-AP-MW-8,

BY-AP-MW-9, BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-12,

BY-AP-MW-13, BY-AP-MW-14, BY-AP-MW-15, and BY-AP-MW-16

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable (Figure F). Upgradient wells are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. Upgradient trends are an indication of natural variability in groundwater quality unrelated to practices at the site. A summary of the trend test results follows this letter. Statistically significant trends were identified for the following well/constituent pairs:

Increasing:

Boron: BY-AP-MW-10 and BY-AP-MW-16

• Calcium: BY-UP-MW-3 (upgradient), BY-UP-MW-4 (upgradient),

BY-AP-MW-7, BY-AP-MW-10, and BY-AP-MW-12

Chloride: BY-AP-MW-1, BY-AP-MW-3, BY-AP-MW-7, BY-AP-MW-10,

BY-AP-MW-12, BY-AP-MW-14, BY-AP-MW-15, and BY-AP-MW-16

• Fluoride: BY-UP-MW-1, BY-UP-MW-2, BY-UP-MW-3, and BY-UP-MW-4

(all upgradient)

Sulfate: BY-AP-MW-1, BY-AP-MW-8, BY-AP-MW-11, BY-AP-MW-12,

and BY-AP-MW-14

TDS: BY-UP-MW-1 (upgradient), BY-UP-MW-4 (upgradient),

BY-AP-MW-10, and BY-AP-MW-15

Decreasing:

Boron: BY-AP-MW-8Calcium: BY-AP-MW-8

• Chloride: BY-UP-MW-2, BY-UP-MW-3, and BY-UP-MW-4 (all upgradient)

• pH: BY-UP-MW-2 (upgradient), BY-UP-MW-3 (upgradient),

BY-UP-MW-4 (upgradient), BY-AP-MW-2, and BY-AP-MW-13

Evaluation of Appendix IV Parameters – May 2022

Data from upgradient wells for Appendix IV parameters were assessed for outliers during the previous analysis. A summary of previously flagged outliers follows this report (Figure C).

In accordance with Alabama Department of Environmental Management (ADEM), the Groundwater Protections Standards (GWPS) were updated during the 2021 2nd semi-annual statistical analysis. The GWPS will be updated again during the 2023 2nd semi-annual statistical analysis. The methodology used to create these GWPS is described below.

Interwell Upper Tolerance Limits

First, background limits were determined using tolerance limits constructed from pooled upgradient well data through October 2021 (Figure G). The tolerance limits contain a known fraction (coverage) of the background population with a known level of confidence. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. As requested by ADEM to eliminate variation among upgradient well data, nonparametric tolerance limits, which use the highest value in background as the statistical limit, were constructed.

Groundwater Protection Standards

These background limits were then compared to the Maximum Contaminant Levels (MCLs) for each parameter, and the higher of the two was used as the GWPS (Figure H) in the confidence interval comparisons described below.

Confidence Intervals

Confidence intervals were then constructed on downgradient wells using a maximum of the most recent 8 samples through May 2022 for each of the Appendix IV parameters (Figure I). These intervals were constructed as either parametric or nonparametric confidence intervals depending on the data distribution and percentage of non-detects. When data followed a normal or transformed-normal distribution, parametric confidence intervals were used for Appendix IV parameters. Nonparametric confidence intervals, which use the highest and lowest values in background as interval limits, were constructed when data did not follow a normal or transformed-normal distribution or when there were greater than 50% non-detects.

As mentioned above, well/constituent pairs with 100% non-detects did not require statistics and were, therefore, deselected prior to construction confidence intervals. A list of deselected well/constituent pairs also follows this report. Each confidence interval was compared with the corresponding GWPS. Only when the entire confidence interval is above the GWPS is the well/constituent pair considered to exceed its respective standard. Both a tabular summary and graphical presentation of the confidence interval results follow this letter. Exceedances were identified for the following well/constituent pairs:

Arsenic: BY-AP-MW-1, BY-AP-MW-5, BY-AP-MW-7, BY-AP-MW-8,

BY-AP-MW-9, BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-12,

BY-AP-MW-13, BY-AP-MW-14, BY-AP-MW-15, and BY-AP-MW-16

Cobalt: BY-AP-MW-7 and BY-AP-MW-15

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Barry Ash Pond. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Easton Rayner

Groundwater Analyst

Kristina Rayner Senior Statistician

Kristina Rayner

Andrew Collins Project Manager

Power Curve

Kappa = 2.112, based on 16 compliance wells and 7 constituents, evaluated semi-annually (this report reflects annual total).

Analysis Run 7/18/2022 10:41 AM View: Descriptive

Plant Barry Client: Southern Company Data: Barry Ash Pond

Power Curve

Kappa = 2.8, based on 16 compliance wells and 7 constituents, evaluated semi-annually (this report reflects annual total).

Analysis Run 7/18/2022 10:44 AM View: Descriptive

Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . L

Page 1

Date Ranges

Date: 7/12/2022 12:14 PM

Plant Barry Client: Southern Company Data: Barry Ash Pond

Sulfate as SO4 (mg/L)

BY-AP-MW-1 background:3/2/2016-5/29/2019 BY-AP-MW-10 background:3/1/2016-5/30/2019 BY-AP-MW-11 background:3/1/2016-5/29/2019 BY-AP-MW-12 background:3/2/2016-5/29/2019 BY-AP-MW-13 background:3/2/2016-5/29/2019 BY-AP-MW-13V background:3/2/2016-5/29/2019 BY-AP-MW-8 background:3/1/2016-5/29/2019 BY-AP-MW-9 background:3/1/2016-5/30/2019

100% Non-Detects

Analysis Run 7/20/2022 3:33 PM View: AIV
Plant Barry Client: Southern Company Data: Barry Ash Pond

Antimony (mg/L)

BY-AP-MW-1, BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-12, BY-AP-MW-13, BY-AP-MW-14, BY-AP-MW-15, BY-AP-MW-16, BY-AP-MW-2, BY-AP-MW-3, BY-AP-MW-4, BY-AP-MW-5, BY-AP-MW-7, BY-AP-MW-8, BY-AP-MW-9

Arsenic (mg/L)

BY-AP-MW-3

Beryllium (mg/L)

BY-AP-MW-1, BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-13, BY-AP-MW-14, BY-AP-MW-15, BY-AP-MW-16, BY-AP-MW-2, BY-AP-MW-5, BY-AP-MW-9,

Cadmium (mg/L)

BY-AP-MW-1, BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-13, BY-AP-MW-14, BY-AP-MW-15, BY-AP-MW-16, BY-AP-MW-2, BY-AP-MW-3, BY-AP-MW-4, BY-AP-MW-5, BY-AP-MW-8, BY-AP-MW-9

Fluoride, total (mg/L)

BY-AP-MW-2, BY-AP-MW-3, BY-AP-MW-4, BY-AP-MW-6

Lead (mg/L)

BY-AP-MW-1, BY-AP-MW-10, BY-AP-MW-15, BY-AP-MW-2, BY-AP-MW-3, BY-AP-MW-5, BY-AP-MW-7, BY-AP-MW-8

Lithium (ma/L)

BY-AP-MW-1, BY-AP-MW-10, BY-AP-MW-12, BY-AP-MW-13, BY-AP-MW-14, BY-AP-MW-16, BY-AP-MW-2, BY-AP-MW-3, BY-AP-MW-4, BY-AP-MW-5, BY-AP-MW-6, BY-AP-MW-9

Mercury (ma/L)

BY-AP-MW-1, BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-12, BY-AP-MW-13, BY-AP-MW-14, BY-AP-MW-15, BY-AP-MW-16, BY-AP-MW-2, BY-AP-MW-3, BY-AP-MW-4, BY-AP-MW-5, BY-AP-MW-6, BY-AP-MW-7, BY-AP-MW-8, BY-AP-MW-9

Molybdenum (mg/L)

BY-AP-MW-10, BY-AP-MW-2, BY-AP-MW-3, BY-AP-MW-4

Selenium (mg/L)

BY-AP-MW-1, BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-12, BY-AP-MW-14, BY-AP-MW-15, BY-AP-MW-16, BY-AP-MW-2, BY-AP-MW-3, BY-AP-MW-4, BY-AP-MW-5, BY-AP-MW-7, BY-AP-MW-8, BY-AP-MW-9

Thallium (mg/L)

BY-AP-MW-1, BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-12, BY-AP-MW-13, BY-AP-MW-14, BY-AP-MW-15, BY-AP-MW-16, BY-AP-MW-2, BY-AP-MW-3, BY-AP-MW-4, BY-AP-MW-5, BY-AP-MW-6, BY-AP-MW-7, BY-AP-MW-8, BY-AP-MW-9

Intrawell Prediction Limits - Significant Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:21 PM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig. Bg N	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	n Alpha	Method
pH, field (SU)	BY-AP-MW-1	5.91	5.47	5/24/2022	2 5.44	Yes 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-10	6.463	6.143	5/24/2022	2 5.81	Yes 19	6.303	0.06515	0	None	No	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-AP-MW-13	6.14	5.79	5/24/2022	2 5.5	Yes 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-2	6.2	5.161	5/24/2022	2 4.78	Yes 19	1094	156.3	0	None	x^4	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-AP-MW-6	5.694	4.846	5/25/2022	2 4.57	Yes 19	801.5	101.6	0	None	x^4	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-AP-MW-8	6.26	5.89	5/24/2022	2 5.6	Yes 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-UP-MW-1	4.882	4.49	5/31/2022	2 3.89	Yes 18	4.686	0.0786	0	None	No	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-UP-MW-2	5.032	4.318	5/31/2022	2 3.31	Yes 18	4.675	0.1431	0	None	No	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-UP-MW-3	4.98	4.4	5/31/2022	2 3.54	Yes 18	n/a	n/a	0	n/a	n/a	0.01075	NP Intra (normality) 1 of 2
pH, field (SU)	BY-UP-MW-4	5.082	4.517	5/31/2022	2 3.97	Yes 18	4.799	0.1134	0	None	No	0.0002351	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-1	6.348	n/a	5/24/2022	2 21	Yes 13	52.17	74.33	46.15	Kaplan-Mei	ек^3	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-10	5	n/a	5/24/2022	2 14.7	Yes 13	n/a	n/a	69.23	n/a	n/a	0.009692	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-11	19.37	n/a	5/23/2022	2 29.3	Yes 13	1.308	0.5028	46.15	Kaplan-Mei	ex^(1/3)	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-12	7.04	n/a	5/23/2022	2 13	Yes 12	n/a	n/a	75	n/a	n/a	0.01077	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-13	9.841	n/a	5/24/2022	2 38.3	Yes 12	3.818	2.151	41.67	Kaplan-Mei	eNo	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-14	61.6	n/a	5/25/2022	2 105	Yes 16	n/a	n/a	56.25	n/a	n/a	0.006456	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-7	5	n/a	5/24/2022	2 7.14	Yes 16	n/a	n/a	37.5	n/a	n/a	0.006456	NP Intra (normality) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-8	6.01	n/a	5/24/2022	2 81.3	Yes 13	n/a	n/a	76.92	n/a	n/a	0.009692	NP Intra (NDs) 1 of 2

Intrawell Prediction Limits - All Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:21 PM

Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig. Bo	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	n Alpha	Method
pH, field (SU)	BY-AP-MW-1	5.91	5.47	5/24/2022	5.44	Yes 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-10	6.463	6.143	5/24/2022	5.81	Yes 19	6.303	0.06515	0	None	No	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-AP-MW-11	6.34	5.85	5/23/2022	6.32	No 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-12	6.25	5.58	5/23/2022	6.12	No 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-13	6.14	5.79	5/24/2022	5.5	Yes 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-14	6.14	5.76	5/25/2022	6.14	No 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-15	6.76	6.2	5/25/2022	6.68	No 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-16	5.87	5.23	5/25/2022	5.74	No 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-2	6.2	5.161	5/24/2022	4.78	Yes 19	1094	156.3	0	None	x^4	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-AP-MW-3	5.22	4.24	5/25/2022	4.64	No 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-4	5.355	3.955	5/25/2022	4.6	No 19	4.655	0.2846	0	None	No	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-AP-MW-5	6.03	5.47	5/25/2022	5.99	No 18	n/a	n/a	0	n/a	n/a	0.01075	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-6	5.694	4.846	5/25/2022	4.57	Yes 19	801.5	101.6	0	None	x^4	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-AP-MW-7	6.432	6.166	5/24/2022	6.32	No 18	6.299	0.05346	0	None	No	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-AP-MW-8	6.26	5.89	5/24/2022	5.6	Yes 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-9	6.32	5.97	5/24/2022	6.03	No 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-UP-MW-1	4.882	4.49	5/31/2022	3.89	Yes 18	4.686	0.0786	0	None	No	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-UP-MW-2	5.032	4.318	5/31/2022	3.31	Yes 18	4.675	0.1431	0	None	No	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-UP-MW-3	4.98	4.4	5/31/2022	3.54	Yes 18	n/a	n/a	0	n/a	n/a	0.01075	NP Intra (normality) 1 of 2
pH, field (SU)	BY-UP-MW-4	5.082	4.517	5/31/2022	3.97	Yes 18	4.799	0.1134	0	None	No	0.0002351	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-1	6.348	n/a	5/24/2022	21	Yes 13	52.17	74.33	46.15	Kaplan-Me	iex^3	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-10	5	n/a	5/24/2022	14.7	Yes 13	n/a	n/a	69.23	n/a	n/a	0.009692	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-11	19.37	n/a	5/23/2022	29.3	Yes 13	1.308	0.5028	46.15	Kaplan-Me	ie x^ (1/3)	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-12	7.04	n/a	5/23/2022	13	Yes 12	n/a	n/a	75	n/a	n/a	0.01077	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-13	9.841	n/a	5/24/2022	38.3	Yes 12	3.818	2.151	41.67	Kaplan-Me	ieNo	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-14	61.6	n/a	5/25/2022	105	Yes 16	n/a	n/a	56.25	n/a	n/a	0.006456	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-15	7.61	n/a	5/25/2022	1.8J	No 17	n/a	n/a	58.82	n/a	n/a	0.005914	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-16	6.72	n/a	5/25/2022	6.29	No 15	n/a	n/a	60	n/a	n/a	0.007533	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-2	3.3	n/a	5/24/2022	0.615J	No 17	n/a	n/a	64.71	n/a	n/a	0.005914	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-3	5	n/a	5/25/2022	1.41J	No 17	n/a	n/a	41.18	n/a	n/a	0.005914	NP Intra (normality) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-4	5.778	n/a	5/25/2022	1.97J	No 17	2.878	1.149	5.882	None	No	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-5	11	n/a	5/25/2022	5.53	No 15	n/a	n/a	60	n/a	n/a	0.007533	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-6	3.037	n/a	5/25/2022	1.27J	No 17	0.01145	0.4356	23.53	Kaplan-Mei	erln(x)	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-7	5	n/a	5/24/2022	7.14	Yes 16	n/a	n/a	37.5	n/a	n/a	0.006456	NP Intra (normality) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-8	6.01	n/a	5/24/2022	81.3	Yes 13	n/a	n/a	76.92	n/a	n/a	0.009692	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-9	5.91	n/a	5/24/2022	5.76	No 13	n/a	n/a	69.23	n/a	n/a	0.009692	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-UP-MW-1	31.7	n/a	5/31/2022	12.8	No 16	3.458	0.85	0	None	sqrt(x)	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-UP-MW-2	9.774	n/a	5/31/2022	8.09	No 15		1.269	0	None	No	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-UP-MW-3	9.087	n/a	5/31/2022	7.02	No 16		0.6224	0	None	No	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-UP-MW-4	10.8	n/a	5/31/2022	7.94	No 16	n/a	n/a	0	n/a	n/a	0.006456	NP Intra (normality) 1 of 2

Interwell Prediction Limits - Significant Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:14 PM

Constituent	Well	Upper Lim.	<u>Date</u>	Observ.	Sig. Bg I	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transforr	n Alpha	Method
Boron, total (mg/L)	BY-AP-MW-1	0.188	5/24/2022		Yes 71	n/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-10	0.188	5/24/2022	2.34	Yes 71	n/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-16	0.188	5/25/2022	1.98	Yes 71	n/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-8	0.188	5/24/2022	1.12	Yes 71	n/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-9	0.188	5/24/2022		Yes 71	n/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Calcium, total (mg/L)	BY-AP-MW-1	2.141	5/24/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-10	2.141	5/24/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-11	2.141	5/23/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-12	2.141	5/23/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-13	2.141	5/24/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-14	2.141	5/25/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-15	2.141	5/25/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-16	2.141	5/25/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-2	2.141	5/24/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-5	2.141	5/25/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-7	2.141	5/24/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-8	2.141	5/24/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
	BY-AP-MW-9	2.141	5/24/2022		Yes 72	1.501	0.3034	0			0.0004702	
Calcium, total (mg/L)	BY-AP-MW-1	9.9	5/24/2022		Yes 72			0	None	No (-	0.0004702	Param Inter 1 of 2
Chloride, Total (mg/L)						n/a	n/a		n/a	n/a		NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-10	9.9	5/24/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-11	9.9	5/23/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-12	9.9	5/23/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-13	9.9	5/24/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-14	9.9	5/25/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-15	9.9	5/25/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-16	9.9	5/25/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-3	9.9	5/25/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-4	9.9	5/25/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-5	9.9	5/25/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-7	9.9	5/24/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-8	9.9	5/24/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-9	9.9	5/24/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-15	0.125	5/25/2022	0.214	Yes 76	n/a	n/a	55.26	n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
TDS (mg/L)	BY-AP-MW-1	58	5/24/2022		Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-10	58	5/24/2022		Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-11	58	5/23/2022	404	Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-12	58	5/23/2022	345	Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-13	58	5/24/2022	257	Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-14	58	5/25/2022	328	Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-15	58	5/25/2022	255	Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-16	58	5/25/2022	299	Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-5	58	5/25/2022	252	Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-7	58	5/24/2022	148	Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-8	58	5/24/2022	303	Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-9	58	5/24/2022	268	Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2

Interwell Prediction Limits - All Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:14 PM

Constituent	Well	Upper Lim.	<u>Date</u>	Observ.	Sig. B	<u>g N B</u>	g Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron, total (mg/L)	BY-AP-MW-1	0.188	5/24/2022	2.08	Yes 7	1 n/	/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-10	0.188	5/24/2022	2.34	Yes 7	1 n/	/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-11	0.188	5/23/2022	0.0558J	No 7	1 n/	/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-12	0.188	5/23/2022		No 7			n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-13	0.188	5/24/2022		No 7			n/a		n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-14	0.188	5/25/2022		No 7			n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-15	0.188	5/25/2022		No 7			n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-16 BY-AP-MW-2	0.188	5/25/2022	0.1015ND	Yes 7			n/a	80.28	n/a n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L) Boron, total (mg/L)	BY-AP-MW-3	0.188 0.188		0.1015ND 0.1015ND	No 7			n/a	80.28 80.28	n/a n/a	n/a	0.000372 0.000372	NP Inter (NDs) 1 of 2 NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-4	0.188		0.1015ND				n/a n/a		n/a	n/a n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-5	0.188	5/25/2022		No 7			n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-6	0.188		0.1015ND	No 7			n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-7	0.188	5/24/2022		No 7			n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-8	0.188	5/24/2022		Yes 7		/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-9	0.188	5/24/2022	2.01	Yes 7	1 n/	/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Calcium, total (mg/L)	BY-AP-MW-1	2.141	5/24/2022	43.9	Yes 7	2 1.	.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-10	2.141	5/24/2022	63.9	Yes 7	2 1.	.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-11	2.141	5/23/2022	26	Yes 7	2 1.	.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-12	2.141	5/23/2022	20.6	Yes 7	2 1.	.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-13	2.141	5/24/2022	19.2	Yes 7	2 1.	.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-14	2.141	5/25/2022	11.4	Yes 7	2 1.	.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-15	2.141	5/25/2022	6.41	Yes 7	2 1.	.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-16	2.141	5/25/2022	13.9	Yes 7	2 1.	.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-2	2.141	5/24/2022		Yes 7		.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-3	2.141	5/25/2022		No 72		.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-4	2.141	5/25/2022		No 72		.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-5	2.141	5/25/2022		Yes 7		.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-6	2.141	5/25/2022		No 72		.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-7	2.141	5/24/2022		Yes 7		.501 .501	0.3034	0	None	No	0.0004702 0.0004702	Param Inter 1 of 2
Calcium, total (mg/L) Calcium, total (mg/L)	BY-AP-MW-8 BY-AP-MW-9	2.141 2.141	5/24/2022 5/24/2022		Yes 7		.501	0.3034 0.3034	0	None None	No No	0.0004702	Param Inter 1 of 2 Param Inter 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-1	9.9	5/24/2022		Yes 7			n/a	0	n/a	n/a	0.0004702	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-10	9.9	5/24/2022		Yes 7			n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-11	9.9	5/23/2022		Yes 7			n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-12	9.9	5/23/2022		Yes 7			n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-13	9.9	5/24/2022		Yes 7		/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-14	9.9	5/25/2022	45.3	Yes 7	2 n/	/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-15	9.9	5/25/2022	80.7	Yes 7	2 n/	/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-16	9.9	5/25/2022	20	Yes 7	2 n/	/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-2	9.9	5/24/2022	9.21	No 72	2 n/	/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-3	9.9	5/25/2022	15.2	Yes 7	2 n/	/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-4	9.9	5/25/2022	16.1	Yes 7	2 n/	/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-5	9.9	5/25/2022	20	Yes 7	2 n/	/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-6	9.9	5/25/2022	6.63	No 72	2 n/	/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-7	9.9	5/24/2022		Yes 7			n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-8	9.9	5/24/2022		Yes 7			n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L) Fluoride, total (mg/L)	BY-AP-MW-9	9.9 0.125	5/24/2022		Yes 7			n/a	0 55.26	n/a	n/a	0.0003634	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L) Fluoride, total (mg/L)	BY-AP-MW-1 BY-AP-MW-10	0.125 0.125	5/24/2022 5/24/2022		No 76			n/a n/a	55.26 55.26	n/a n/a	n/a n/a	0.000329 0.000329	NP Inter (NDs) 1 of 2 NP Inter (NDs) 1 of 2
Fluoride, total (mg/L) Fluoride, total (mg/L)	BY-AP-MW-11	0.125	5/23/2022		No 76			n/a n/a	55.26	n/a n/a	n/a n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-12	0.125	5/23/2022		No 76			n/a		n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-13	0.125	5/24/2022		No 76			n/a	55.26	n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-14	0.125	5/25/2022		No 76			n/a		n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-15	0.125	5/25/2022		Yes 7		/a	n/a		n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-16	0.125	5/25/2022	0.125ND	No 76	6 n/	/a	n/a	55.26	n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-2	0.125	5/24/2022	0.125ND	No 76	6 n/	/a	n/a	55.26	n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-3	0.125	5/25/2022	0.125ND	No 76	6 n/	/a	n/a	55.26	n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-4	0.125	5/25/2022	0.125ND	No 76	6 n/	/a	n/a	55.26	n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-5	0.125	5/25/2022	0.125ND	No 76	6 n/	/a	n/a	55.26	n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-6	0.125		0.125ND	No 76	6 n/	/a	n/a		n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-7	0.125	5/24/2022		No 76			n/a		n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-8	0.125	5/24/2022		No 76			n/a		n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-9	0.125	5/24/2022		No 70			n/a	55.26	n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
TDS (mg/L)	BY-AP-MW-1	58	5/24/2022		Yes 7			n/a		n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-10	58	5/24/2022		Yes 7			n/a		n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-11	58 50	5/23/2022		Yes 7			n/a		n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-12	58	5/23/2022	345	Yes 7	2 n/	ia .	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2

Interwell Prediction Limits - All Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:14 PM

Constituent	Well	Upper Lim.	<u>Date</u>	Observ.	Sig. B	lg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
TDS (mg/L)	BY-AP-MW-13	58	5/24/2022	257	Yes 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-14	58	5/25/2022	328	Yes 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-15	58	5/25/2022	255	Yes 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-16	58	5/25/2022	299	Yes 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-2	58	5/24/2022	40.7	No 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-3	58	5/25/2022	50.7	No 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-4	58	5/25/2022	48.7	No 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-5	58	5/25/2022	252	Yes 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-6	58	5/25/2022	40.7	No 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-7	58	5/24/2022	148	Yes 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-8	58	5/24/2022	303	Yes 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-9	58	5/24/2022	268	Yes 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2

Trend Test - Significant Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:26 PM

Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron, total (mg/L)	BY-AP-MW-10	0.1311	110	68	Yes	18	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-AP-MW-16	0.0646	84	68	Yes	18	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-AP-MW-8	-0.1071	-112	-68	Yes	18	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-10	2.463	117	74	Yes	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-12	0.4261	87	74	Yes	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-7	0.4635	133	68	Yes	18	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-8	-0.4562	-88	-74	Yes	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-UP-MW-3 (bg)	0.07505	86	68	Yes	18	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-UP-MW-4 (bg)	0.1262	111	68	Yes	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-1	0.8122	65	63	Yes	17	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-10	1.596	139	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-12	0.6575	105	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-14	1.34	83	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-15	9.506	151	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-16	0.8393	115	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-3	0.359	107	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-7	0.4288	75	68	Yes	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-UP-MW-2 (bg)	-0.3942	-104	-68	Yes	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-UP-MW-3 (bg)	-0.04984	-69	-68	Yes	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-UP-MW-4 (bg)	-0.05925	-69	-68	Yes	18	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	BY-UP-MW-1 (bg)	0.01277	80	74	Yes	19	47.37	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	BY-UP-MW-2 (bg)	0.01673	85	74	Yes	19	47.37	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	BY-UP-MW-3 (bg)	0.01205	92	74	Yes	19	63.16	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	BY-UP-MW-4 (bg)	0.01076	92	74	Yes	19	63.16	n/a	n/a	0.01	NP
pH, field (SU)	BY-AP-MW-13	-0.0481	-128	-87	Yes	21	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-AP-MW-2	-0.09486	-137	-87	Yes	21	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-UP-MW-2 (bg)	-0.07015	-123	-81	Yes	20	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-UP-MW-3 (bg)	-0.07433	-113	-81	Yes	20	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-UP-MW-4 (bg)	-0.05992	-98	-81	Yes	20	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-1	2.168	106	74	Yes	19	31.58	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-11	5.258	114	74	Yes	19	31.58	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-12	2.096	77	68	Yes	18	50	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-14	7.276	79	68	Yes	18	50	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-8	2.306	104	74	Yes	19	52.63	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-10	6.544	88	74	Yes	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-15	15.07	125	74	Yes	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-UP-MW-1 (bg)	3.147	72	68	Yes	18	5.556	n/a	n/a	0.01	NP
TDS (mg/L)	BY-UP-MW-4 (bg)	3.695	95	68	Yes	18	22.22	n/a	n/a	0.01	NP

Trend Test - All Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:26 PM

Constituent	Well	Slope	Calc.	Critical	Sig.	N	%NDs	Normality	<u>Xform</u>	Alpha	Method
Boron, total (mg/L)	BY-AP-MW-1	0.05988	45	68	No	18	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-AP-MW-10	0.1311	110	68	Yes	18	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-AP-MW-16	0.0646	84	68	Yes	18	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-AP-MW-8	-0.1071	-112	-68	Yes	18	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-AP-MW-9	0.01049	10	68	No	18	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-UP-MW-1 (bg)	0	-19	-68	No	18	44.44	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-UP-MW-2 (bg)	0	27	63	No	17	88.24	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-UP-MW-3 (bg)	0	0	68	No	18	100	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-UP-MW-4 (bg)	0	25	68	No	18	88.89	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-1	0.3773	13	74	No	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-10	2.463	117	74 -74	Yes	19	0	n/a	n/a	0.01	NP NP
Calcium, total (mg/L) Calcium, total (mg/L)	BY-AP-MW-11 BY-AP-MW-12	-0.333 0.4261	-43 87	74	No Yes	19 19	0 0	n/a n/a	n/a	0.01 0.01	NP
Calcium, total (mg/L) Calcium, total (mg/L)	BY-AP-MW-13	0.1429	36	7 4 74	No	19	0	n/a	n/a n/a	0.01	NP NP
Calcium, total (mg/L)	BY-AP-MW-14	0.1423	-7	-74	No	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-15	0.1185	41	74	No	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-16	0.06036	18	74	No	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-2	-0.05034	-36	-74	No	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-5	0	4	68	No	18	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-7	0.4635	133	68	Yes	18	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-8	-0.4562	-88	-74	Yes	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-9	0.09472	21	74	No	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-UP-MW-1 (bg)	0.02597	19	68	No	18	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-UP-MW-2 (bg)	0.06598	57	68	No	18	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-UP-MW-3 (bg)	0.07505	86	68	Yes	18	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-UP-MW-4 (bg)	0.1262	111	68	Yes	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-1	0.8122	65	63	Yes	17	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-10	1.596	139	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-11	0.5172	43	74	No	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-12 BY-AP-MW-13	0.6575 -0.07749	105	74 -74	Yes	19	0	n/a	n/a	0.01	NP NP
Chloride, Total (mg/L) Chloride, Total (mg/L)	BY-AP-MW-14	-0.07749 1.34	-5 83	-74 74	No Yes	19 19	0 0	n/a n/a	n/a n/a	0.01 0.01	NP NP
Chloride, Total (mg/L)	BY-AP-MW-15	9.506	151	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-16	0.8393	115	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-3	0.359	107	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-4	-0.3427	-26	-74	No	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-5	0.02448	15	68	No	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-7	0.4288	75	68	Yes	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-8	0.08022	18	74	No	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-9	-1.025	-69	-74	No	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-UP-MW-1 (bg)	-0.1668	-34	-68	No	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-UP-MW-2 (bg)	-0.3942	-104	-68	Yes	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-UP-MW-3 (bg)	-0.04984	-69	-68	Yes	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-UP-MW-4 (bg)	-0.05925	-69	-68	Yes	18	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	BY-AP-MW-15	0	0	74	No	19	5.263	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	BY-UP-MW-1 (bg)	0.01277	80	74		19	47.37	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	BY-UP-MW-2 (bg)	0.01673	85	74	Yes Yes	19 19	47.37	n/a	n/a	0.01	NP NP
Fluoride, total (mg/L) Fluoride, total (mg/L)	BY-UP-MW-3 (bg) BY-UP-MW-4 (bg)	0.01205 0.01076	92 92	74 74	Yes	19	63.16 63.16	n/a n/a	n/a n/a	0.01 0.01	NP
pH, field (SU)	BY-AP-MW-1	0.01076	0	87	No	21	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-AP-MW-10	-0.01552	-32	-87	No	21	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-AP-MW-13	-0.0481	-128	-87	Yes	21	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-AP-MW-2	-0.09486	-137	-87	Yes	21	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-AP-MW-6	-0.04963	-83	-87	No	21	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-AP-MW-8	-0.01141	-56	-87	No	21	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-UP-MW-1 (bg)	-0.004287	-14	-81	No	20	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-UP-MW-2 (bg)	-0.07015	-123	-81	Yes	20	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-UP-MW-3 (bg)	-0.07433	-113	-81	Yes	20	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-UP-MW-4 (bg)	-0.05992	-98	-81	Yes	20	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-1	2.168	106	74	Yes	19	31.58	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-10	0.812	67	74	No	19	47.37	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-11	5.258	114	74	Yes	19	31.58	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-12	2.096	77 67	68	Yes	18	50 27 79	n/a	n/a	0.01	NP ND
Sulfate as SO4 (mg/L)	BY-AP-MW-13	3.002	67 70	68	No	18	27.78	n/a	n/a	0.01	NP ND
Sulfate as SO4 (mg/L) Sulfate as SO4 (mg/L)	BY-AP-MW-14 BY-AP-MW-7	7.276 0.7261	79 62	68 68	Yes No	18 18	50 33.33	n/a n/a	n/a n/a	0.01 0.01	NP NP
Sulfate as SO4 (mg/L)	BY-AP-MW-8	2.306	104	74	Yes	19	52.63	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-UP-MW-1 (bg)	1.548	45	68	No	18	0	n/a	n/a	0.01	NP
· · · · · · · · · · · · ·	(~3)						-				

Trend Test - All Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:26 PM

Constituent	Well	Slope	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Sulfate as SO4 (mg/L)	BY-UP-MW-2 (bg)	0.0231	3	63	No	17	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-UP-MW-3 (bg)	-0.07308	-27	-68	No	18	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-UP-MW-4 (bg)	-0.02454	-6	-68	No	18	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-1	0	1	74	No	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-10	6.544	88	74	Yes	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-11	5.887	54	74	No	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-12	-1.313	-20	-74	No	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-13	-5.166	-64	-74	No	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-14	2.028	33	74	No	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-15	15.07	125	74	Yes	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-16	3.704	49	74	No	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-5	-2.941	-31	-68	No	18	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-7	1.47	31	68	No	18	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-8	-0.7384	-8	-74	No	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-9	-5.014	-59	-74	No	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-UP-MW-1 (bg)	3.147	72	68	Yes	18	5.556	n/a	n/a	0.01	NP
TDS (mg/L)	BY-UP-MW-2 (bg)	1.703	57	68	No	18	11.11	n/a	n/a	0.01	NP
TDS (mg/L)	BY-UP-MW-3 (bg)	1.36	45	68	No	18	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-UP-MW-4 (bg)	3.695	95	68	Yes	18	22.22	n/a	n/a	0.01	NP

Upper Tolerance Limits - Summary Table

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 1/19/2022, 3:44 PM

Constituent	Well	Upper Lim.	<u>Date</u>	Observ	Sig. Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	n/a	0.00102	n/a	n/a	n/a 68	n/a	n/a	92.65	n/a	n/a	0.03056	NP Inter
Arsenic (mg/L)	n/a	0.0017	n/a	n/a	n/a 68	n/a	n/a	88.24	n/a	n/a	0.03056	NP Inter
Barium (mg/L)	n/a	0.183	n/a	n/a	n/a 68	n/a	n/a	0	n/a	n/a	0.03056	NP Inter
Beryllium (mg/L)	n/a	0.00102	n/a	n/a	n/a 66	n/a	n/a	93.94	n/a	n/a	0.03387	NP Inter
Cadmium (mg/L)	n/a	0.0002	n/a	n/a	n/a 68	n/a	n/a	98.53	n/a	n/a	0.03056	NP Inter
Chromium (mg/L)	n/a	0.01	n/a	n/a	n/a 68	n/a	n/a	83.82	n/a	n/a	0.03056	NP Inter
Cobalt (mg/L)	n/a	0.0157	n/a	n/a	n/a 67	n/a	n/a	58.21	n/a	n/a	0.03217	NP Inter
Combined Radium 226 + 228 (pCi/L)	n/a	3	n/a	n/a	n/a 60	n/a	n/a	0	n/a	n/a	0.04607	NP Inter
Fluoride, total (mg/L)	n/a	0.1	n/a	n/a	n/a 72	n/a	n/a	52.78	n/a	n/a	0.02489	NP Inter
Lead (mg/L)	n/a	0.00126	n/a	n/a	n/a 68	n/a	n/a	89.71	n/a	n/a	0.03056	NP Inter
Lithium (mg/L)	n/a	0.02	n/a	n/a	n/a 68	n/a	n/a	100	n/a	n/a	0.03056	NP Inter
Mercury (mg/L)	n/a	0.0005	n/a	n/a	n/a 68	n/a	n/a	100	n/a	n/a	0.03056	NP Inter
Molybdenum (mg/L)	n/a	0.0002	n/a	n/a	n/a 68	n/a	n/a	100	n/a	n/a	0.03056	NP Inter
Selenium (mg/L)	n/a	0.00102	n/a	n/a	n/a 68	n/a	n/a	98.53	n/a	n/a	0.03056	NP Inter
Thallium (mg/L)	n/a	0.0002	n/a	n/a	n/a 68	n/a	n/a	100	n/a	n/a	0.03056	NP Inter

BARRY ASH POND GWPS										
Analyte	Units	Background	GWPS							
Antimony	mg/L	0.00102	0.006							
Arsenic	mg/L	0.0017	0.01							
Barium	mg/L	0.183	2							
Beryllium	mg/L	0.00102	0.004							
Cadmium	mg/L	0.0002	0.005							
Chromium	mg/L	0.01	0.1							
Cobalt	mg/L	0.0157	0.0157							
Combined Radium-226/228	pCi/L	3	5							
Fluoride	mg/L	0.1	4							
Lead	mg/L	0.00126	0.015							
Lithium	mg/L	0.02	0.04							
Mercury	mg/L	0.0005	0.002							
Molybdenum	mg/L	0.0002	0.1							
Selenium	mg/L	0.00102	0.05							
Thallium	mg/L	0.0002	0.002							

Notes:

- 1. mg/L Milligrams per liter
- 2. pCi/L Picocuries per liter
- 3. The background limits were used as the groundwater protection standard (GWPS) when appropriate under 40 CFR §257.95(h), ADEM Rule 335-13-15-.06(h), and the ADEM Variance.
- 4. GWPS established during second semi-annual sampling event in 2021.

Confidence Interval Summary Table - Significant Results

	Plant	Barry Client:	Southern Compa	ny Data: Ba	rry Ash	Pond	Printed 7/2	20/2022, 3:37 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	N	%NDs	Transform	<u>Alpha</u>	Method
Arsenic (mg/L)	BY-AP-MW-1	0.07688	0.05769	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-10	0.07651	0.06677	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-11	0.01648	0.01374	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-12	0.0246	0.0215	0.01	Yes	8	0	No	0.004	NP (normality)
Arsenic (mg/L)	BY-AP-MW-13	0.01495	0.01312	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-14	0.0182	0.01473	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-15	0.01954	0.01573	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-16	0.01434	0.01096	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-5	0.03536	0.02914	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-7	0.02326	0.01926	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-8	0.06545	0.05105	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-9	0.04498	0.03737	0.01	Yes	8	0	No	0.01	Param.
Cobalt (mg/L)	BY-AP-MW-15	0.037	0.03248	0.0157	Yes	8	0	No	0.01	Param.
Cobalt (mg/L)	BY-AP-MW-7	0.02135	0.01752	0.0157	Yes	8	0	No	0.01	Param.

Confidence Interval Summary Table - All Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:37 PM Constituent <u>Well</u> %NDs Transform <u>Alpha</u> Method Lower Lim. Compliance Sig BY-AP-MW-1 8 0.01 Arsenic (ma/L) 0.07688 0.05769 0.01 Yes 0 No Param. Arsenic (mg/L) BY-AP-MW-10 0.07651 0.06677 0.01 Yes 8 No 0.01 Param. Arsenic (mg/L) BY-AP-MW-11 0.01648 0.01374 0.01 Yes 8 0 No 0.01 Param. 8 BY-AP-MW-12 0.0215 0 0.004 Arsenic (mg/L) 0.0246 0.01 Yes No NP (normality) BY-AP-MW-13 0.01495 0.01312 8 0 0.01 Arsenic (mg/L) 0.01 Yes No Param. BY-AP-MW-14 0.01473 0.01 Yes 8 0.01 Arsenic (mg/L) 0.0182 0 No Param. 8 Arsenic (ma/L) BY-AP-MW-15 0.01954 0.01573 0.01 Yes 0 No 0.01 Param. Arsenic (mg/L) BY-AP-MW-16 0.01434 0.01096 0.01 Yes 8 No 0.01 Param. BY-AP-MW-2 0.001765 0.00125 0.01 No 8 0 No 0.01 Param. Arsenic (mg/L) 8 75 0.004 Arsenic (mg/L) BY-AP-MW-4 0.0002 0.0001 0.01 Nο No NP (NDs) Arsenic (mg/L) BY-AP-MW-5 0.03536 0.02914 0.01 Yes 8 0 No 0.01 Param. NP (NDs) BY-AP-MW-6 0.000103 0.0001 0.01 No 8 75 No 0.004 Arsenic (mg/L) Arsenic (mg/L) BY-AP-MW-7 0.02326 0.01926 0.01 Yes 8 0 No 0.01 Param. BY-AP-MW-8 0.06545 0.05105 Arsenic (mg/L) 0.01 Yes 8 0.01 Param. No Arsenic (mg/L) BY-AP-MW-9 0.04498 0.03737 0.01 Yes 8 0 Nο 0.01 Param. 8 0 Barium (mg/L) BY-AP-MW-1 0.3384 0.2783 2 No No 0.01 Param. BY-AP-MW-10 0.07502 0.06196 2 8 0 0.01 No No Barium (mg/L) Param. BY-AP-MW-11 0.06777 2 8 0 0.01 Barium (mg/L) 0.09918 No No Barium (mg/L) BY-AP-MW-12 0.08641 0.07752 2 Nο 8 0 Nο 0.01 Param Barium (mg/L) BY-AP-MW-13 0.07647 0.06744 2 No 8 0 In(x) 0.01 Param. BY-AP-MW-14 0.07075 0.0594 2 8 0 0.01 Barium (mg/L) No No Param. 2 8 0 Barium (mg/L) BY-AP-MW-15 0.08085 0.05845 Nο No 0.01 Param. BY-AP-MW-16 0.08087 2 8 0 0.1005 No No 0.01 Param. Barium (mg/L) Barium (mg/L) BY-AP-MW-2 0.02663 0.02375 2 No 8 0 0.01 Barium (mg/L) BY-AP-MW-3 0.04373 0.03406 2 No 8 0 sart(x) 0.01 Param. BY-AP-MW-4 0.03257 0.01483 8 0.01 Param. Barium (mg/L) No No Barium (mg/L) BY-AP-MW-5 0.1575 0.1412 2 No 8 0 No 0.01 Param. Barium (mg/L) BY-AP-MW-6 0.02913 0.02379 2 No 8 0 No 0.01 Param. BY-AP-MW-7 0.07229 0.06041 2 8 0 0.01 No No Barium (mg/L) Param. BY-AP-MW-8 0.1367 2 8 0.01 Barium (mg/L) 0.1473 No 0 No Barium (mg/L) BY-AP-MW-9 0.1232 0.1143 Nο 8 0 Nο 0.01 Param Bervllium (ma/L) BY-AP-MW-4 0.00102 0.00065 0.004 No 8 75 No 0.004 NP (NDs) BY-AP-MW-6 0.00007 Cadmium (mg/L) 0.00031 0.005 No 8 75 0.004 NP (NDs) Chromium (mg/L) BY-AP-MW-1 0.00415 0.00223 0.1 Nο 8 0 No 0.004 NP (normality) 0.00052 8 62.5 BY-AP-MW-10 0.00102 0.1 No 0.004 NP (NDs) Chromium (mg/L) No 0.002066 Chromium (mg/L) BY-AP-MW-11 0.003956 0.1 No 8 0 No 0.01 Chromium (mg/L) BY-AP-MW-12 0.0056 0.00325 0.1 No 8 0 No 0.004 NP (normality) Chromium (mg/L) BY-AP-MW-13 0.006678 0.01 Param. 0.008713 0.1 8 0 In(x) No Chromium (mg/L) BY-AP-MW-14 0.005123 0.003732 No 8 No 0.01 Param. Chromium (mg/L) BY-AP-MW-15 0.00102 0.00049 0.1 Nο 8 62.5 Nο 0.004 NP (NDs) 0.00102 8 62.5 Chromium (mg/L) BY-AP-MW-16 0.0018 0.1 No No 0.004 NP (NDs) 0.00029 Chromium (mg/L) BY-AP-MW-2 0.00102 0.1 No 8 75 No 0.004 NP (NDs) Chromium (mg/L) BY-AP-MW-3 0.00104 0.000919 0.1 No 8 62.5 Nο 0.004 NP (NDs) 0.00026 Chromium (ma/L) BY-AP-MW-4 0.00102 0.1 No 8 62.5 No 0.004 NP (NDs) BY-AP-MW-5 0.00101 Chromium (mg/L) 0.00103 0.1 No 8 75 0.004 NP (NDs) Chromium (mg/L) NP (NDs) BY-AP-MW-6 0.00102 0.00023 0.1 No 8 62.5 No 0.004 BY-AP-MW-7 0.00058 0.1 8 62.5 0.004 NP (NDs) Chromium (mg/L) 0.00709 No No 0.00102 Chromium (mg/L) BY-AP-MW-8 No 8 62.5 0.004 Chromium (mg/L) BY-AP-MW-9 0.00102 0.0007 0.1 Nο 8 62.5 Nο 0.004 NP (NDs) 0.00091 NP (NDs) Cobalt (mg/L) BY-AP-MW-1 0.005 0.0157 8 62.5 0.004 No No Cobalt (mg/L) BY-AP-MW-10 0.005 0.00054 0.0157 No 8 62.5 No 0.004 NP (NDs) Cobalt (mg/L) BY-AP-MW-11 0.005 0.00118 0.0157 No 8 62.5 Nο 0.004 NP (NDs) 0.00292 8 Cobalt (mg/L) BY-AP-MW-12 0.003937 0.0157 Nο 0 No 0.01 Param. Cobalt (mg/L) BY-AP-MW-13 0.005 0.00113 0.0157 No 8 62.5 No 0.004 NP (NDs) Cobalt (mg/L) BY-AP-MW-14 0.005 0.00124 0.0157 Nο 8 62.5 No 0.004 NP (NDs) Cobalt (mg/L) BY-AP-MW-15 0.037 0.03248 0.0157 Yes 8 0 0.01 Param. No Cobalt (mg/L) BY-AP-MW-16 0.02062 0.01343 0.0157 No 8 0.01 Param. Cobalt (mg/L) BY-AP-MW-2 0.007575 0.006423 0.0157 No 8 0 x^2 0.01 Param. 8 Cobalt (mg/L) BY-AP-MW-3 0.005 0.00016 0.0157 No 62.5 No 0.004 NP (NDs) Cobalt (mg/L) BY-AP-MW-4 0.0205 0.00363 0.0157 No 8 12.5 No 0.004 NP (normality) Cobalt (mg/L) BY-AP-MW-5 0.005 0.00184 0.0157 Nο 8 75 No 0.004 NP (NDs) NP (NDs) Cobalt (mg/L) BY-AP-MW-6 0.005 0.0006 0.0157 No 8 62.5 No 0.004 BY-AP-MW-7 0.02135 0.01752 0.0157 8 Cobalt (mg/L) Yes No 0.01 Param. Cobalt (mg/L) BY-AP-MW-8 0.005 0.00067 0.0157 8 62.5 No 0.004 NP (NDs) No 0.00069 8 62.5 Cobalt (mg/L) BY-AP-MW-9 0.005 0.0157 No No 0.004 NP (NDs) Combined Radium 226 + 228 (pCi/L) BY-AP-MW-1 2.783 1.67 5 No 8 0 No 0.01 Param. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-10 0.3915 5 8 0 0.01 1.332 No No Combined Radium 226 + 228 (pCi/L) BY-AP-MW-11 0.8362 0.3081 8 0.01 No 0 sqrt(x) Param.

Confidence Interval Summary Table - All Results

Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:37 PM Plant Barry Constituent <u>Well</u> Lower Lim. Sig. %NDs Transform <u>Alpha</u> Method Upper Lim. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-12 0.8804 8 0.01 1.76 5 No 0 No Param. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-13 0.5961 1.375 5 No 8 0 No 0.01 Param. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-14 1.124 0.476 5 No 8 0 No 0.01 Param. Combined Radium 226 + 228 (pCi/L) 0.3816 5 8 BY-AP-MW-15 0 0.01 1.443 No No Param. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-16 1.569 0.285 5 No 8 0 sqrt(x) 0.01 Combined Radium 226 + 228 (pCi/L) BY-AP-MW-2 0.9189 0.3196 5 Nο 8 0 No 0.01 Param Combined Radium 226 + 228 (pCi/L) BY-AP-MW-3 0.3065 5 No 8 0 No 0.01 Param. 1.8 Combined Radium 226 + 228 (pCi/L) BY-AP-MW-4 0.9614 0.3385 No 8 0.01 Param. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-5 2.221 0.9224 5 No 8 0 No 0.01 Param. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-6 -0.03787 5 Nο 8 0 1.312 No 0.01 Param. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-7 1.116 0.294 5 No 8 0 No 0.01 Param. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-8 1.054 0.4141 5 No 8 0 In(x) 0.01 Param BY-AP-MW-9 x^(1/3) Combined Radium 226 + 228 (pCi/L) 1.478 0.636 5 No 8 0.01 Param. Fluoride, total (mg/L) BY-AP-MW-1 0.194 0.0625 No No 0.004 NP (normality) Fluoride, total (mg/L) BY-AP-MW-10 0.105 0.0573 4 No 8 62.5 No 0.004 NP (NDs) 0.06172 8 Fluoride, total (mg/L) BY-AP-MW-11 4 No 0 0.01 0.09643 No Param. Fluoride, total (mg/L) BY-AP-MW-12 0.09011 0.05424 4 No 8 0 0.01 No Fluoride, total (mg/L) BY-AP-MW-13 0.07751 0.05904 4 No 8 0 No 0.01 0.06606 8 Fluoride, total (mg/L) BY-AP-MW-14 0.09472 4 Nο Ω Nο 0.01 Param Fluoride, total (mg/L) BY-AP-MW-15 0.2059 0.1691 No 8 sqrt(x) 0.01 Param. Fluoride, total (mg/L) BY-AP-MW-16 0.08512 0.06444 No 8 37.5 0.01 Param. No 0.05716 4 8 25 Fluoride, total (mg/L) BY-AP-MW-5 0.09618 Nο No 0.01 Param. BY-AP-MW-7 0.07458 4 8 0 0.01 Fluoride, total (mg/L) 0.1062 No No Param. Fluoride, total (mg/L) BY-AP-MW-8 0.09399 0.06127 4 No 8 37.5 0.01 Param. Fluoride, total (mg/L) BY-AP-MW-9 0.08187 0.05408 No 8 12.5 No 0.01 Param. Lead (mg/L) BY-AP-MW-11 0.0002 0.00009 0.015 8 62.5 No 0.004 NP (NDs) No Lead (mg/L) BY-AP-MW-12 0.000326 0.00018 0.015 No 8 62.5 No 0.004 NP (NDs) Lead (mg/L) BY-AP-MW-13 0.0002 0.00015 0.015 No 8 87.5 No 0.004 NP (NDs) BY-AP-MW-14 0.0002 0.0000764 0.015 8 62.5 0.004 NP (NDs) Lead (mg/L) No No BY-AP-MW-16 0.000191 0.015 8 87.5 0.004 NP (NDs) Lead (mg/L) 0.0002 No Lead (mg/L) BY-AP-MW-4 0.0002 0.00007 0.015 Nο 8 62.5 Nο 0.004 NP (NDs) Lead (mg/L) BY-AP-MW-6 0.006786 0.0006176 0.015 No 8 12.5 sart(x) 0.01 Param. BY-AP-MW-9 0.0002 0.015 0.004 NP (NDs) Lead (mg/L) 0.00108 8 87.5 Lithium (mg/L) BY-AP-MW-11 0.02902 0.00914 0.04 No 8 25 No 0.01 Param. BY-AP-MW-15 0.01029 8 12.5 Lithium (mg/L) 0.02368 0.04 No No 0.01 Param. BY-AP-MW-7 0.0102 75 0.004 NP (NDs) Lithium (mg/L) 0.0882 0.04 No 8 No Molybdenum (mg/L) BY-AP-MW-1 0.0002 0.00008 0.1 No 8 75 No 0.004 NP (NDs) NP (NDs) BY-AP-MW-11 0.0002 8 62.5 0.004 Molybdenum (mg/L) 0.00652 0.1 No No Molybdenum (mg/L) BY-AP-MW-12 0.0002 No 62.5 0.004 NP (NDs) Molybdenum (mg/L) BY-AP-MW-13 0.00356 0.0002 0.1 Nο 8 62.5 Nο 0.004 NP (NDs) BY-AP-MW-14 0.0002 8 62.5 0.004 NP (NDs) Molvbdenum (ma/L) 0.000701 0.1 No No BY-AP-MW-15 0.0002 8 0.004 Molybdenum (mg/L) 0.00209 0.1 No 50 No NP (normality) Molybdenum (mg/L) BY-AP-MW-16 0.0002 0.000136 0.1 Nο 8 87.5 Nο 0.004 NP (NDs) BY-AP-MW-5 0.00011 NP (NDs) Molvbdenum (ma/L) 0.0002 0.1 No 8 75 No 0.004 BY-AP-MW-6 0.00011 Molybdenum (mg/L) 0.00033 8 62.5 0.004 NP (NDs) Molybdenum (mg/L) BY-AP-MW-7 0.000214 0.00018 0.1 No 8 62.5 No 0.004 NP (NDs) 0.00019 8 Molybdenum (mg/L) BY-AP-MW-8 0.000321 0.1 No 62.5 No 0.004 NP (NDs) BY-AP-MW-9 0.0002 8 Molybdenum (mg/L) 0.00024 No 62.5 No 0.004 NP (NDs) Selenium (mg/L) BY-AP-MW-13 0.00102 0.00056 0.05 No 8 87.5 Nο 0.004 NP (NDs)

FIGURE A.

Constituent: Antimony Analysis Run 7/21/2022 3:42 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Antimony Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Time Series

Constituent: Antimony Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Time Series

Sanitas™ v.9.6.35 . UG

Hollow symbols indicate censored values.

2/23/16

5/25/17

Constituent: Antimony Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

11/27/19

2/27/21

5/31/22

8/26/18

Constituent: Arsenic Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Arsenic Analysis Run 7/21/2022 3:43 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Time Series

Constituent: Arsenic Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Arsenic Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas^w v.9.6.35 . UG Sanitas Sanit

Constituent: Barium Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Time Series

Constituent: Barium Analysis Run 7/21/2022 3:43 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Time Series 0.7 BY-AP-MW-22H BY-AP-MW-23V 0.56 BY-AP-MW-24H BY-AP-MW-25H 0.42 BY-AP-MW-25VM BY-AP-MW-3 mg/L BY-AP-MW-4 0.28 BY-AP-MW-5 BY-AP-MW-5V BY-AP-MW-6 0.14 3/1/16 5/30/17 8/28/18 11/26/19 2/23/21 5/25/22

Constituent: Barium Analysis Run 7/21/2022 3:43 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Barium Analysis Run 7/21/2022 3:43 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Beryllium Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Beryllium Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Time Series

Constituent: Beryllium Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Constituent: Beryllium Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Boron, total Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Boron, total Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Time Series

Constituent: Boron, total Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values.

Time Series

Constituent: Boron, total Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Cadmium Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Cadmium Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Cadmium Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Constituent: Cadmium Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Sanitas™ v.9.6.35 . UG

Constituent: Calcium, total Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Time Series

Constituent: Calcium, total Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Time Series 70 BY-AP-MW-22H BY-AP-MW-23V 56 BY-AP-MW-24H BY-AP-MW-25H 42 BY-AP-MW-25VM BY-AP-MW-3 mg/L BY-AP-MW-4 28 BY-AP-MW-5 BY-AP-MW-5V BY-AP-MW-6 3/1/16 5/30/17 8/28/18 11/26/19 2/23/21 5/25/22

Constituent: Calcium, total Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Calcium, total Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Constituent: Chloride, Total Analysis Run 7/21/2022 3:43 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Time Series

Constituent: Chloride, Total Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chloride, Total Analysis Run 7/21/2022 3:43 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chloride, Total Analysis Run 7/21/2022 3:43 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chromium Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chromium Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Time Series

Constituent: Chromium Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chromium Analysis Run 7/21/2022 3:43 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

BY-AP-MW-13V

BY-AP-MW-14

BY-AP-MW-14V

BY-AP-MW-15

Time Series

Constituent: Cobalt Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

0.08 BY-AP-MW-15V BY-AP-MW-16 BY-AP-MW-16V 0.064 BY-AP-MW-17H BY-AP-MW-17V 0.048 BY-AP-MW-18H BY-AP-MW-19H mg/L 0.032 BY-AP-MW-2 BY-AP-MW-20H BY-AP-MW-20V 5/25/22 3/2/16 5/31/17 8/29/18 11/27/19 2/24/21

Time Series

Constituent: Cobalt Analysis Run 7/21/2022 3:43 PM View: Descriptive Client: Southern Company Data: Barry Ash Pond

Constituent: Cobalt Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Cobalt Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Combined Radium 226 + 228 Analysis Run 7/21/2022 3:43 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Combined Radium 226 + 228 Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Combined Radium 226 + 228 Analysis Run 7/21/2022 3:43 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Combined Radium 226 + 228 Analysis Run 7/21/2022 3:43 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Fluoride, total Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Fluoride, total Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values.

Constituent: Fluoride, total Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Fluoride, total Analysis Run 7/21/2022 3:43 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Lead Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Constituent: Lead Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Time Series

Constituent: Lead Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Lead Analysis Run 7/21/2022 3:43 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Lithium Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Lithium Analysis Run 7/21/2022 3:44 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Time Series

Constituent: Lithium Analysis Run 7/21/2022 3:44 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Lithium Analysis Run 7/21/2022 3:44 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Mercury Analysis Run 7/21/2022 3:44 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values.

Constituent: Mercury Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Time Series

Constituent: Mercury Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Constituent: Mercury Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Molybdenum Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Molybdenum Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Time Series

Constituent: Molybdenum Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Constituent: Molybdenum Analysis Run 7/21/2022 3:44 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas^{ta} v.9.6.35 . UG

Constituent: pH, field Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Time Series

Constituent: pH, field Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Constituent: pH, field Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Constituent: Selenium Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Selenium Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Time Series

Constituent: Selenium Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Selenium Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Sulfate as SO4 Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Sulfate as SO4 Analysis Run 7/21/2022 3:44 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Time Series

Constituent: Sulfate as SO4 Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Sulfate as SO4 Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Sanitas™ v.9.6.35 . UG

Constituent: TDS Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Time Series 2000 BY-AP-MW-22H BY-AP-MW-23V 1600 BY-AP-MW-24H BY-AP-MW-25H 1200 BY-AP-MW-25VM BY-AP-MW-3 mg/L BY-AP-MW-4 800 BY-AP-MW-5 BY-AP-MW-5V BY-AP-MW-6 400

Constituent: TDS Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

11/26/19

2/23/21

5/25/22

8/28/18

3/1/16

5/30/17

Constituent: TDS Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: TDS Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Thallium Analysis Run 7/21/2022 3:44 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Thallium Analysis Run 7/21/2022 3:44 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Thallium Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Thallium Analysis Run 7/21/2022 3:44 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

3/1	1/2016	BY-AP-MW-1	BY-AP-MW-10 <0.00102	BY-AP-MW-10V	BY-AP-MW-11 <0.00102	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
	2/2016	<0.00102				<0.00102		<0.00102		<0.00102
4/1	19/2016	<0.00102								
	20/2016		<0.00102		<0.00102	<0.00102		<0.00102		<0.00102
	8/2016	<0.00102	<0.00102		<0.00102	<0.00102		0.00111 (J)		<0.00102
	30/2016							(4)		<0.00102
	31/2016	<0.00102	<0.00102		<0.00102	<0.00102		<0.00102		
	/18/2016									<0.00102
10	/19/2016	<0.00102	<0.00102		<0.00102	<0.00102		<0.00102		
1/3	31/2017	0.000687 (J)						0.000834 (J)		0.00086 (J)
2/1	1/2017		0.000743 (J)		0.000812 (J)	0.000838 (J)				
5/2	2/2017	<0.00102								<0.00102
5/3	3/2017		<0.00102		<0.00102	<0.00102		<0.00102		
6/6	6/2017	<0.00102								<0.00102
6/7	7/2017		<0.00102		<0.00102	<0.00102		0.000857 (J)		
1/2	22/2018							<0.00102		
1/2	23/2018		<0.00102		<0.00102	<0.00102				<0.00102
1/2	24/2018	<0.00102								
5/1	1/2018	<0.00102								
5/2	2/2018		<0.00102		<0.00102	<0.00102		<0.00102		<0.00102
11.	/27/2018									<0.00102
11.	/28/2018	<0.00102	<0.00102		<0.00102	<0.00102		<0.00102		
1/8	8/2019			0.000965 (J)			0.00117 (J)			
5/2	29/2019	<0.00102			<0.00102	<0.00102		<0.00102		<0.00102
5/3	30/2019		<0.00102							
9/3	30/2019		<0.00102		<0.00102					
10	/1/2019	<0.00102		<0.00102		<0.00102		<0.00102		<0.00102
10	/2/2019						<0.00102			
3/3	30/2020	<0.00102								
3/3	31/2020		<0.00102	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102		<0.00102
4/1	1/2020									
9/1	1/2020	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102		
9/2	2/2020								<0.00102	<0.00102
5/1	11/2021		<0.00102							
5/1	18/2021	<0.00102		<0.00102		<0.00102	<0.00102			
5/1	19/2021				<0.00102			<0.00102	<0.00102	
5/2	25/2021									<0.00102
10	/26/2021							<0.00102	<0.00102	
10	/27/2021		<0.00102	<0.00102						<0.00102
11.	/1/2021	<0.00102				<0.00102	<0.00102			
	/2/2021				<0.00102					
	23/2022				<0.00102	<0.00102	<0.00102			
	24/2022	<0.00102	<0.00102	<0.00102				<0.00102		
5/2	25/2022								<0.00102	<0.00102

	BY-AP-MW-14V	BY-AP-MW-15
3/1/2016		
3/2/2016		<0.00102
4/19/2016		<0.00102
4/20/2016		
6/8/2016		<0.00102
8/30/2016		
8/31/2016		<0.00102
10/18/2016		
10/19/2016		<0.00102
1/31/2017		0.000746 (J)
2/1/2017		
5/2/2017		<0.00102
5/3/2017		
6/6/2017		<0.00102
6/7/2017		
1/22/2018		<0.00102
1/23/2018		
1/24/2018		
5/1/2018		<0.00102
5/2/2018		
11/27/2018		<0.00102
11/28/2018		
1/8/2019		
5/29/2019		<0.00102
5/30/2019		
9/30/2019		
10/1/2019		<0.00102
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020		<0.00102
9/1/2020		
9/2/2020	<0.00102	<0.00102
5/11/2021		<0.00102
5/18/2021		
5/19/2021		
5/25/2021	<0.00102	
10/26/2021	<0.00102	<0.00102
10/27/2021		
11/1/2021		
11/2/2021		
5/23/2022		
5/24/2022	<0.00102	
5/25/2022		<0.00102

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		<0.00102							<0.00102
4/19/2016		<0.00102							<0.00102
6/8/2016		<0.00102							<0.00102
8/31/2016		<0.00102							<0.00102
10/19/2016		<0.00102							<0.00102
1/31/2017		0.000769 (J)							0.000739 (J)
5/2/2017		<0.00102							<0.00102
6/6/2017		<0.00102							<0.00102
1/23/2018		<0.00102							
1/24/2018									<0.00102
5/1/2018		<0.00102							<0.00102
11/27/2018		<0.00102							<0.00102
1/8/2019								0.00125 (J)	
3/20/2019						0.00117 (J)			
5/29/2019		<0.00102							<0.00102
7/31/2019	0.00094 (J)			0.000878 (J)			0.00152 (J)		
10/1/2019	<0.00102	<0.00102				<0.00102	<0.00102		<0.00102
10/2/2019				<0.00102				<0.00102	
3/30/2020								<0.00102	
3/31/2020		<0.00102							<0.00102
4/1/2020				<0.00102		<0.00102			
8/31/2020									<0.00102
9/1/2020	<0.00102			<0.00102	<0.00102	<0.00102	<0.00102	<0.00102	
9/2/2020		<0.00102	<0.00102						
5/17/2021				<0.00102					
5/18/2021					<0.00102			<0.00102	<0.00102
5/19/2021		<0.00102	<0.00102			<0.00102			
5/25/2021	<0.00102						<0.00102		
10/25/2021				<0.00102	<0.00102	<0.00102	<0.00102		
10/26/2021	<0.00102		<0.00102						
11/1/2021		<0.00102						<0.00102	<0.00102
5/23/2022						<0.00102			
5/24/2022	<0.00102						<0.00102	<0.00102	<0.00102
5/25/2022		<0.00102	<0.00102	<0.00102	<0.00102				

	BY-AP-MW-20H	BY-AP-MW-20
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
5/2/2017		
6/6/2017		
1/23/2018		
1/24/2018		
5/1/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	0.00113 (J)	
10/1/2019	<0.00102	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	<0.00102	
8/31/2020		
9/1/2020	<0.00102	<0.00102
9/2/2020		
5/17/2021		
5/18/2021		
5/19/2021	<0.00102	<0.00102
5/25/2021		
10/25/2021		
10/26/2021	<0.00102	
11/1/2021		<0.00102
5/23/2022	<0.00102	
5/24/2022		<0.00102
5/25/2022		

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016								<0.00102	<0.00102
3/2/2016							<0.00102		
4/19/2016							<0.00102	<0.00102	
4/20/2016									<0.00102
6/7/2016							0.000606 (J)	0.000869 (J)	<0.00102
8/30/2016								<0.00102	<0.00102
8/31/2016							<0.00102		
10/18/2016									<0.00102
10/19/2016							<0.00102	<0.00102	
1/31/2017							0.000637 (J)	0.00086 (J)	0.000765 (J)
5/2/2017							<0.00102	<0.00102	
5/3/2017									<0.00102
6/6/2017							<0.00102	<0.00102	
6/7/2017									<0.00102
1/24/2018							<0.00102	<0.00102	<0.00102
5/1/2018							<0.00102	<0.00102	
5/2/2018									<0.00102
11/27/2018							<0.00102	<0.00102	<0.00102
11/28/2018									
1/8/2019				0.00116 (J)					
5/29/2019							<0.00102	<0.00102	<0.00102
7/31/2019	0.00117 (J)	0.000964 (J)							
10/1/2019	<0.00102	<0.00102					<0.00102	<0.00102	<0.00102
10/2/2019				<0.00102					
3/31/2020				<0.00102			<0.00102	<0.00102	<0.00102
4/1/2020		<0.00102							
9/1/2020	<0.00102	<0.00102	<0.00102				<0.00102	<0.00102	<0.00102
9/2/2020				<0.00102	<0.00102	<0.00102			
5/17/2021			<0.00102						
5/18/2021							<0.00102	<0.00102	
5/24/2021		<0.00102			<0.00102	<0.00102			
5/25/2021	<0.00102			<0.00102					
10/26/2021	<0.00102	<0.00102	<0.00102	<0.00102					
11/1/2021							<0.00102	<0.00102	
11/2/2021					<0.00102	<0.00102			<0.00102
5/24/2022	<0.00102			<0.00102					
5/25/2022		<0.00102	<0.00102		<0.00102	<0.00102	<0.00102	<0.00102	<0.00102

	BY-AP-MW-5V	BY-AP-MW-6
3/1/2016		<0.00102
3/2/2016		
4/19/2016		<0.00102
4/20/2016		
6/7/2016		<0.00102
8/30/2016		<0.00102
8/31/2016		
10/18/2016		
10/19/2016		<0.00102
1/31/2017		0.000852 (J)
5/2/2017		
5/3/2017		<0.00102
6/6/2017		
6/7/2017		<0.00102
1/24/2018		<0.00102
5/1/2018		
5/2/2018		<0.00102
11/27/2018		
11/28/2018		<0.00102
1/8/2019	0.00207 (J)	
5/29/2019		<0.00102
7/31/2019		
10/1/2019		<0.00102
10/2/2019	<0.00102	
3/31/2020	<0.00102	<0.00102
4/1/2020		
9/1/2020	<0.00102	
9/2/2020		<0.00102
5/17/2021		<0.00102
5/18/2021		
5/24/2021		
5/25/2021		
10/26/2021		
11/1/2021		
11/2/2021	<0.00102	<0.00102
5/24/2022		
5/25/2022	<0.00102	<0.00102

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						<0.00102	<0.00102	<0.00102	0.000606 (J)
3/1/2016	<0.00102		<0.00102		<0.00102				
4/19/2016						<0.00102	<0.00102	<0.00102	<0.00102
4/20/2016	<0.00102		<0.00102		<0.00102				
6/6/2016						<0.00102			<0.00102
6/7/2016	<0.00102		<0.00102				<0.00102	<0.00102	
6/8/2016					<0.00102				
8/30/2016			<0.00102			<0.00102	<0.00102	<0.00102	<0.00102
8/31/2016	<0.00102		-0.00102		<0.00102	-0.00102	-0.00102	-0.00102	-0.00102
	V0.00102		<0.00102		~0.00102	-0.00102	-0.00102	-0.00102	<0.00102
10/18/2016	0.00100		<0.00102			<0.00102	<0.00102	<0.00102	<0.00102
10/19/2016	<0.00102				<0.00102				
1/31/2017	0.00107 (J)		0.00074 (J)			0.000925 (J)	0.000898 (J)	0.000911 (J)	0.000928 (J)
2/1/2017					0.000738 (J)				
5/2/2017						<0.00102	<0.00102	<0.00102	<0.00102
5/3/2017	<0.00102		<0.00102		<0.00102				
6/6/2017						<0.00102	<0.00102	<0.00102	<0.00102
6/7/2017	<0.00102		<0.00102		<0.00102				
1/23/2018					<0.00102	<0.00102	<0.00102	<0.00102	<0.00102
1/24/2018	<0.00102		<0.00102						
5/1/2018							<0.00102	<0.00102	<0.00102
5/2/2018	<0.00102		<0.00102		<0.00102	<0.00102			
11/26/2018									<0.00102
11/27/2018			<0.00102			<0.00102	<0.00102	<0.00102	
11/28/2018	<0.00102				<0.00102				
1/9/2019		0.000861 (J)		<0.00102					
5/28/2019		0.000001 (0)		10.00102					<0.00102
5/29/2019	<0.00102		<0.00102			<0.00102	<0.00102	<0.00102	~0.00102
	<0.00102		<0.00102			<0.00102	<0.00102	<0.00102	
5/30/2019					<0.00102				
9/30/2019	<0.00102		<0.00102		<0.00102				
10/1/2019		<0.00102		<0.00102					
10/2/2019						<0.00102	<0.00102	<0.00102	<0.00102
3/30/2020	<0.00102	<0.00102	<0.00102	<0.00102					
3/31/2020					<0.00102	<0.00102	<0.00102	<0.00102	<0.00102
9/2/2020	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102				
9/8/2020									<0.00102
9/9/2020						<0.00102	<0.00102	<0.00102	
5/11/2021			<0.00102				<0.00102	<0.00102	<0.00102
5/12/2021						<0.00102			
5/18/2021	<0.00102	<0.00102		<0.00102	<0.00102				
10/18/2021								<0.00102	<0.00102
10/19/2021						<0.00102	<0.00102		
10/26/2021			<0.00102	<0.00102					
10/27/2021	<0.00102	<0.00102	00.02	00.02	<0.00102				
	-0.00102	-0.00102		<0.00102	-0.00102				
5/23/2022	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102				
5/24/2022	<0.00102	<0.00102	<0.00102		~U.UU IUZ	-0.00102	-0.00102	-0.00102	-0.00102
5/31/2022						<0.00102	<0.00102	<0.00102	<0.00102

2/1/2016	BY-AP-MW-1	BY-AP-MW-10	BY-AP-MW-10V	BY-AP-MW-11	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/1/2016	0.076	0.0264		0.01	0.0215		0.0115		0.0101
3/2/2016	0.076				0.0215		0.0115		0.0101
4/19/2016 4/20/2016	0.0973	0.0303		0.0127	0.0214		0.0123		0.0119
6/8/2016	0.0605	0.0306		0.0127	0.0214		0.0123		0.0119
8/30/2016	0.0003	0.0300		0.0130	0.0221		0.0121		0.0119
8/31/2016	0.0687	0.0304		0.0149	0.0223		0.0127		0.0127
10/18/2016	0.0007	0.0004		0.0140	0.0220		0.0127		0.0136
10/19/2016	0.0701	0.0314		0.0149	0.0227		0.0131		0.0100
1/31/2017	0.0669	0.001.		0.01.10	0.0227		0.0131		0.0124
2/1/2017		0.0274		0.0151	0.0215				
5/2/2017	0.0672								0.0131
5/3/2017		0.03		0.0155	0.0227		0.014		
6/6/2017	0.0527								0.0129
6/7/2017		0.0303		0.0145	0.0211		0.0141		
1/22/2018							0.0149		
1/23/2018		0.0362		0.0154	0.0227				0.0148
1/24/2018	0.07								
5/1/2018	0.0777								
5/2/2018		0.0433		0.0158	0.0239		0.0175		0.0156
11/27/2018									0.0145
11/28/2018	0.0677	0.0536		0.014	0.0216		0.0141		
1/8/2019			<0.0002			0.0112			
5/29/2019	0.0555			0.0132	0.0215		0.0138		0.014
5/30/2019		0.0671							
7/31/2019		0.0649							
9/30/2019		0.0704		0.0145					
10/1/2019	0.0635		<0.0002		0.0221		0.0144		0.0152
10/2/2019						0.022			
3/30/2020	0.0557								
3/31/2020		0.0702	<0.0002	0.0158	0.0246	0.025	0.0154		0.0177
4/1/2020									
9/1/2020	0.0811	0.0763	<0.0002	0.0165	0.0246	0.0257	0.0148		
9/2/2020								0.00708	0.0174
5/11/2021		0.0762							
5/18/2021	0.0687		0.000356		0.0237	0.0251			
5/19/2021				0.0166			0.014	0.00877	
5/25/2021									0.0172
10/26/2021							0.013	0.0103	
10/27/2021	0.0004	0.0705	0.00033		0.0045	0.0050			0.0174
11/1/2021	0.0694			0.0101	0.0245	0.0256			
11/2/2021				0.0161	0.0245	0.0057			
5/23/2022	0.0767	0.0775	0.00036	0.0142	0.0245	0.0257	0.0128		
5/24/2022 5/25/2022	0.0767	0.0775	0.00036				0.0128	0.0102	0.0183
JIZJIZUZZ								0.0102	0.0103

		•	•	•	•	
	BY-AP-MW-14V	BY-AP-MW-15				
3/1/2016						
3/2/2016		0.0128				
4/19/2016		0.0157				
4/20/2016						
6/8/2016		0.0168				
8/30/2016						
8/31/2016		0.0168				
10/18/2016						
10/19/2016		0.0178				
1/31/2017		0.0164				
2/1/2017						
5/2/2017		0.0172				
5/3/2017						
6/6/2017		0.0158				
6/7/2017						
1/22/2018		0.0173				
1/23/2018						
1/24/2018						
5/1/2018		0.0181				
5/2/2018						
11/27/2018		0.0158				
11/28/2018						
1/8/2019						
5/29/2019		0.0148				
5/30/2019						
7/31/2019						
9/30/2019						
10/1/2019		0.017				
10/2/2019						
3/30/2020						
3/31/2020						
4/1/2020		0.0183				
9/1/2020						
9/2/2020	0.00433 (J)	0.0206				
5/11/2021		0.0184				
5/18/2021						
5/19/2021						
5/25/2021	0.00324					
10/26/2021	0.0041	0.0186				
10/27/2021						
11/1/2021						
11/2/2021						
5/23/2022	0.00570					
5/24/2022	0.00572	0.0470				
5/25/2022		0.0176				

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		0.0102							0.00263 (J)
4/19/2016		0.0103							0.00247 (J)
6/8/2016		0.0105							0.0023 (J)
8/31/2016		0.0117							0.00237 (J)
10/19/2016		0.0108							0.00241 (J)
1/31/2017		0.0102							0.00185 (J)
5/2/2017		0.0102							0.00194 (J)
6/6/2017		0.00982							0.00175 (J)
1/23/2018		0.0151							
1/24/2018									0.00158 (J)
5/1/2018		0.0114							0.00166 (J)
11/27/2018		0.0108							0.00144 (J)
1/8/2019								0.00109 (J)	
3/20/2019						0.00831			
5/29/2019		0.0106							0.00132 (J)
7/31/2019	0.0174			0.0221			0.00118 (J)		
10/1/2019	0.0243	0.0138				0.0137	<0.0002		0.0014 (J)
10/2/2019				0.0251				0.00157 (J)	
3/30/2020								0.00152 (J)	
3/31/2020		0.012							0.00149 (J)
4/1/2020				0.0208		0.00937			
8/31/2020									0.00176 (J)
9/1/2020	0.0401			0.0371	0.00472 (J)	0.015	0.00101 (J)	0.00179 (J)	
9/2/2020		0.0137	0.0012 (J)						
5/17/2021				0.0329					
5/18/2021					0.00546			0.00144	0.00159
5/19/2021		0.0118	0.00123			0.0147			
5/25/2021	0.0233						0.0015		
10/25/2021				0.0373	0.00162	0.0156	0.00134		
10/26/2021	0.0248		0.00105						
11/1/2021		0.0151						0.00086	0.00191
5/23/2022						0.0143			
5/24/2022	0.0333						0.00099	0.00079	0.00115
5/25/2022		0.0134	0.00112	0.03	0.00192				

	BY-AP-MW-20H	BY-AP-MW-20V
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
5/2/2017		
6/6/2017		
1/23/2018		
1/24/2018		
5/1/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	0.0112	
10/1/2019	0.013	
10/2/2019		
3/30/2020		
3/31/2020	0.00500	
4/1/2020	0.00508	
8/31/2020	0.0170	0.00045
9/1/2020	0.0172	0.00845
9/2/2020 5/17/2021		
5/17/2021		
5/18/2021	0.0132	0.0148
5/25/2021	0.0132	0.0140
10/25/2021		
10/25/2021	0.0133	
11/1/2021	0.0133	0.0182
5/23/2022	0.0136	0.0102
5/24/2022	0.0.00	0.0188
5/25/2022		
3.20.2022		

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016								<0.0002	0.0277
3/2/2016							<0.0002		
4/19/2016							<0.0002	<0.0002	
4/20/2016									0.0307
6/7/2016							<0.0002	<0.0002	0.0308
8/30/2016								<0.0002	0.033
8/31/2016							<0.0002		
10/18/2016									0.0296
10/19/2016							<0.0002	<0.0002	
1/31/2017							<0.0002	<0.0002	0.0264
5/2/2017							<0.0002	<0.0002	
5/3/2017									0.0309
6/6/2017							<0.0002	<0.0002	
6/7/2017									0.0283
1/24/2018							<0.0002	<0.0002	0.0282
5/1/2018							<0.0002	<0.0002	
5/2/2018									0.0315
11/27/2018							<0.0002	<0.0002	0.0283
11/28/2018									
1/8/2019				0.0306					
5/29/2019							<0.0002	<0.0002	0.0301
7/31/2019	0.0225	0.0132							
10/1/2019	0.0225	0.013					<0.0002	<0.0002	0.0307
10/2/2019				0.0673					
3/31/2020				0.0729			<0.0002	<0.0002	0.0329
4/1/2020		0.00689							
9/1/2020	0.0217	0.0226	<0.0002				<0.0002	<0.0002	0.0372
9/2/2020				0.0783	<0.0002	<0.0002			
5/17/2021			0.00119						
5/18/2021							<0.0002	0.000125 (J)	
5/24/2021		0.0133			8.73E-05 (J)	<0.0002			
5/25/2021	0.0191			0.0693					
10/26/2021	0.0202	0.00807	0.00119	0.0752					
11/1/2021							<0.0002	0.0002	
11/2/2021					0.00016 (J)	<0.0002			0.0357
5/24/2022	0.0197			0.0718					
5/25/2022		0.00518	0.00149		0.0002 (J)	<0.0002	<0.0002	<0.0002	0.0316

	BY-AP-MW-5V	BY-AP-MW-6
3/1/2016		0.00142 (J)
3/2/2016		
4/19/2016		0.00138 (J)
4/20/2016		
6/7/2016		<0.0002
8/30/2016		<0.0002
8/31/2016		
10/18/2016		
10/19/2016		<0.0002
1/31/2017		<0.0002
5/2/2017		
5/3/2017		<0.0002
6/6/2017		
6/7/2017		<0.0002
1/24/2018		<0.0002
5/1/2018		
5/2/2018		<0.0002
11/27/2018		
11/28/2018		<0.0002
1/8/2019	<0.0002	
5/29/2019		<0.0002
7/31/2019		
10/1/2019		<0.0002
10/2/2019	<0.0002	
3/31/2020	<0.0002	<0.0002
4/1/2020		
9/1/2020	<0.0002	
9/2/2020		<0.0002
5/17/2021		0.000103 (J)
5/18/2021		
5/24/2021		
5/25/2021		
10/26/2021		
11/1/2021		
11/2/2021	0.00101	0.0001 (J)
5/24/2022		
5/25/2022	0.00017 (J)	<0.0002

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						<0.0002	<0.0002	<0.0002	<0.0002
3/1/2016	0.0166		0.036		0.0322				
4/19/2016						<0.0002	<0.0002	<0.0002	<0.0002
4/20/2016	0.02		0.0399		0.0354				
6/6/2016						<0.0002			<0.0002
6/7/2016	0.0223		0.0401				<0.0002	<0.0002	
6/8/2016					0.0385				
8/30/2016			0.0387			<0.0002	<0.0002	<0.0002	<0.0002
8/31/2016	0.0231				0.0404				
10/18/2016	0.0201		0.0394		0.0.0	<0.0002	<0.0002	<0.0002	<0.0002
10/19/2016	0.0244		0.0004		0.0412	-0.0002	-0.0002	-0.0002	-0.0002
1/31/2017	0.0197		0.0408		0.0412	<0.0002	<0.0002	<0.0002	<0.0002
	0.0197		0.0406		0.0274	<0.0002	<0.0002	<0.0002	\0.0002
2/1/2017					0.0374	-0.0000	-0.0000	-0.0000	-0.0000
5/2/2017						<0.0002	<0.0002	<0.0002	<0.0002
5/3/2017	0.0212		0.0416		0.0444				
6/6/2017						<0.0002	<0.0002	<0.0002	<0.0002
6/7/2017	0.0203		0.0395		0.0423				
1/23/2018					0.0435	<0.0002	<0.0002	<0.0002	<0.0002
1/24/2018	0.0214		0.0536						
5/1/2018							<0.0002	<0.0002	<0.0002
5/2/2018	0.0218		0.0572		0.0437	<0.0002			
11/26/2018									<0.0002
11/27/2018			0.0536			<0.0002	<0.0002	<0.0002	
11/28/2018	0.0209				0.0422				
1/9/2019		<0.0002		0.00121 (J)					
5/28/2019									<0.0002
5/29/2019	0.0178		0.0482			<0.0002	<0.0002	<0.0002	
5/30/2019					0.0349				
9/30/2019	0.0217		0.0514		0.0391				
10/1/2019		0.00278 (J)		0.00243 (J)					
10/2/2019		,		()		<0.0002	<0.0002	<0.0002	<0.0002
3/30/2020	0.0215	0.005	0.0589	0.00275 (J)					
3/31/2020					0.0393	<0.0002	<0.0002	<0.0002	0.0017 (J)
9/2/2020	0.0234	0.0024 (J)	0.0629	0.00346 (J)	0.0432	-0.0002	-0.0002	-0.0002	0.0017 (0)
9/8/2020	0.0204	0.0024 (0)	0.0020	0.00040 (0)	0.0402				<0.0002
9/9/2020						<0.0002	<0.0002	<0.0002	10.000Z
			0.0050			<0.0002			0.000017
5/11/2021			0.0659			0.000000	0.000136 (J)	<0.0002	0.000217
5/12/2021	0.0015	0.00040		0.0000	0.0405	0.000336			
5/18/2021	0.0215	0.00242		0.00398	0.0435				
10/18/2021								9E-05 (J)	0.00019 (J)
10/19/2021						0.00035	0.00012 (J)		
10/26/2021			0.0668	0.0048					
10/27/2021	0.0236	0.0027			0.0468				
5/23/2022				0.00386					
5/24/2022	0.0197	0.00218	0.0583		0.0404				
5/31/2022						0.00024	9E-05 (J)	<0.0002	0.0002

3/1/2016	BY-AP-MW-1	BY-AP-MW-10 0.0634	BY-AP-MW-10V	BY-AP-MW-11 0.122	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/2/2016	0.219				0.0815		0.0947		0.0491
4/19/2016	0.201								
4/20/2016		0.0622		0.11	0.0692		0.0758		0.049
6/8/2016	0.274	0.0642		0.105	0.0763		0.071		0.0627
8/30/2016									0.0635
8/31/2016	0.296	0.063		0.102	0.0741		0.0722		
10/18/2016									0.0603
10/19/2016	0.281	0.0577		0.0953	0.0727		0.0707		
1/31/2017	0.211						0.0686		0.0533
2/1/2017		0.0607		0.0917	0.0701				
5/2/2017	0.29								0.0616
5/3/2017		0.0665		0.0951	0.078		0.0756		
6/6/2017	0.25								0.0585
6/7/2017		0.0632		0.0864	0.0682		0.0695		
1/22/2018							0.0688		
1/23/2018		0.0673		0.0868	0.0744				0.0608
1/24/2018	0.289								
5/1/2018	0.28								
5/2/2018		0.0752		0.0816	0.0814		0.0806		0.0614
11/27/2018									0.0589
11/28/2018	0.271	0.066		0.0796	0.0788		0.0697		
1/8/2019			0.149			0.144			
5/29/2019	0.29			0.0653	0.0769		0.0704		0.0617
5/30/2019		0.063							
9/30/2019		0.0669		0.0759					
10/1/2019	0.293		0.167		0.0795		0.0696		0.0605
10/2/2019						0.101			
3/30/2020	0.279								
3/31/2020		0.0727	0.184	0.0842	0.0851	0.0939	0.0728		0.0619
4/1/2020									
9/1/2020	0.33	0.078	0.203	0.0923	0.0827	0.102	0.0722		
9/2/2020								0.109	0.0687
5/11/2021		0.0757							
5/18/2021	0.339		0.212		0.0902	0.111			
5/19/2021				0.112			0.0817	0.114	
5/25/2021									0.0745
10/26/2021							0.0667	0.0827	
10/27/2021		0.0638	0.182						0.0651
11/1/2021	0.322				0.0823	0.103			
11/2/2021				0.0894					
5/23/2022				0.0691	0.0802	0.103			
5/24/2022	0.343	0.0618	0.188				0.0723		
5/25/2022								0.0888	0.0693

	BY-AP-MW-14V	BY-AP-MW-15
3/1/2016		
3/2/2016		0.0468
4/19/2016		0.043
4/20/2016		
6/8/2016		0.0465
8/30/2016		
8/31/2016		0.0464
10/18/2016		
10/19/2016		0.0481
1/31/2017		0.0427
2/1/2017		
5/2/2017		0.0473
5/3/2017		
6/6/2017		0.0437
6/7/2017		
1/22/2018		0.0501
1/23/2018		
1/24/2018		
5/1/2018		0.0575
5/2/2018		
11/27/2018		0.0557
11/28/2018		
1/8/2019		
5/29/2019		0.0562
5/30/2019		
9/30/2019		
10/1/2019		0.0628
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020		0.0697
9/1/2020		
9/2/2020	0.0766	0.0736
5/11/2021		0.0762
5/18/2021		
5/19/2021		
5/25/2021	0.0729	
10/26/2021	0.0653	0.0784
10/27/2021		
11/1/2021		
11/2/2021		
5/23/2022		
5/24/2022	0.067	
5/25/2022		0.0846

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		0.0921							0.0285
4/19/2016		0.0775							0.0268
6/8/2016		0.0798							0.0248
8/31/2016		0.0801							0.026
10/19/2016		0.0766							0.0247
1/31/2017		0.075							0.0228
5/2/2017		0.0761							0.0257
6/6/2017		0.07							0.0219
1/23/2018		0.0779							
1/24/2018									0.0229
5/1/2018		0.0877							0.0279
11/27/2018		0.0792							0.0249
1/8/2019								0.0826	
3/20/2019						0.152			
5/29/2019		0.081							0.0232
7/31/2019	0.144			0.138			0.14		
10/1/2019	0.13	0.0803				0.126	0.113		0.0241
10/2/2019				0.117				0.0611	
3/30/2020								0.062	
3/31/2020		0.091							0.0264
4/1/2020				0.194		0.109			
8/31/2020									0.0275
9/1/2020	0.134			0.114	0.277	0.123	0.159	0.0795	
9/2/2020		0.0954	0.0733						
5/17/2021				0.125					
5/18/2021					0.255			0.0861	0.0259
5/19/2021		0.102	0.0743			0.147			
5/25/2021	0.184						0.104		
10/25/2021				0.0953	0.0928	0.12	0.0738		
10/26/2021	0.149		0.0589						
11/1/2021		0.0988						0.0731	0.0247
5/23/2022						0.127			
5/24/2022	0.156						0.0796	0.0863	0.0248
5/25/2022		0.0977	0.0569	0.126	0.698				

	BY-AP-MW-20H	BY-AP-MW-20V
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
5/2/2017		
6/6/2017		
1/23/2018		
1/24/2018		
5/1/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	0.0928	
10/1/2019	0.0913	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	0.119	
8/31/2020		
9/1/2020	0.11	0.115
9/2/2020		
5/17/2021		
5/18/2021		
5/19/2021	0.111	0.107
5/25/2021		
10/25/2021		
10/26/2021	0.0936	
11/1/2021		0.0883
5/23/2022	0.0963	
5/24/2022		0.0906
5/25/2022		

 $\label{lem:constituent: Barium (mg/L)} \begin{array}{ccc} \text{Analysis Run 7/21/2022 3:45 PM} & \text{View: Descriptive} \\ \\ \text{Plant Barry} & \text{Client: Southern Company} & \text{Data: Barry Ash Pond} \\ \end{array}$

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016								0.018	0.136
3/2/2016							0.0306		
4/19/2016							0.0292	0.0166	
4/20/2016									0.132
6/7/2016							0.0318	0.0271	0.141
8/30/2016								0.0312	0.136
8/31/2016							0.0324		
10/18/2016									0.125
10/19/2016							0.0313	0.0443	
1/31/2017							0.0306	0.0231	0.125
5/2/2017							0.0332	0.0241	
5/3/2017									0.146
6/6/2017							0.0275	0.0276	
6/7/2017									0.126
1/24/2018							0.0317	0.0293	0.127
5/1/2018							0.0356	0.0205	
5/2/2018									0.154
11/27/2018							0.0339	0.0321	0.139
11/28/2018									
1/8/2019				0.294					
5/29/2019							0.037	0.0203	0.146
7/31/2019	0.185	0.162							
10/1/2019	0.213	0.175					0.0356	0.0207	0.138
10/2/2019				0.229					
3/31/2020				0.243			0.0393	0.0193	0.15
4/1/2020		0.0629							
9/1/2020	0.234	0.182	0.00933 (J)				0.038	0.0131	0.154
9/2/2020				0.26	0.0204	0.0111			
5/17/2021			0.0094						
5/18/2021							0.0406	0.0225	
5/24/2021		0.208			0.0206	0.00981			
5/25/2021	0.261			0.26					
10/26/2021	0.202	0.188	0.00766	0.238					
11/1/2021							0.0371	0.0217	
11/2/2021					0.0203	0.00907			0.159
5/24/2022	0.215			0.245					
5/25/2022		0.174	0.00735		0.0197	0.00993	0.0494	0.0399	0.155

		BY-AP-MW-5V	BY-AP-MW-6
3/1/20	16		0.0278
3/2/20	16		
4/19/20	2016		0.0242
4/20/20	2016		
6/7/20	116		0.0223
8/30/20	016		0.0242
8/31/20	2016		
10/18/2	2016		
10/19/2	2016		0.024
1/31/20	2017		0.0248
5/2/20	117		
5/3/20			0.0268
6/6/20	117		
6/7/20	117		0.0256
1/24/20			0.0254
5/1/20	118		
5/2/20			0.0276
11/27/2	2018		
11/28/2			0.0231
1/8/20		0.0372	
5/29/20			0.0244
7/31/20			
10/1/20			0.0257
10/2/20		0.0338	
3/31/20		0.0313	0.0244
4/1/202			
9/1/202		0.0399	
9/2/202			0.0282
5/17/20			0.0305
5/18/20			
5/24/20			
5/25/20			
10/26/2			
11/1/20			
11/2/20		0.0368	0.0286
5/24/20			
5/25/20	2022	0.0574	0.0268

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						0.117	0.111	0.0862	0.0973
3/1/2016	0.0519		0.142		0.114				
4/19/2016						0.099	0.0875	0.0718	0.0802
4/20/2016	0.0517		0.143		0.114				
	0.0317		0.143		0.114	0.107			0.0862
6/6/2016	0.0577		0.145			0.107	0.0070	0.0754	0.0662
6/7/2016	0.0577		0.145				0.0979	0.0754	
6/8/2016					0.128				
8/30/2016			0.147			0.106	0.108	0.0768	0.0841
8/31/2016	0.0614				0.123				
10/18/2016			0.14			0.102	0.103	0.0727	0.0715
10/19/2016	0.0618				0.118				
1/31/2017	0.0576		0.134			0.0944	0.109	0.0698	0.0825
2/1/2017					0.104				
5/2/2017						0.0868	0.125	0.0723	0.0777
5/3/2017	0.0601		0.145		0.126				
6/6/2017						0.0799	0.108	0.07	0.078
6/7/2017	0.054		0.128		0.111	0.0700	0.100	0.07	0.070
1/23/2018	0.054		0.120		0.115	0.0884	0.153	0.0747	0.0825
	0.0500		0.100		0.115	0.0664	0.133	0.0747	0.0625
1/24/2018	0.0568		0.129						
5/1/2018							0.167	0.0877	0.102
5/2/2018	0.063		0.149		0.125	0.137			
11/26/2018									0.0994
11/27/2018			0.143			0.157	0.158	0.0804	
11/28/2018	0.0654				0.119				
1/9/2019		0.112		0.337					
5/28/2019									0.102
5/29/2019	0.059		0.138			0.166	0.172	0.0831	
5/30/2019					0.112				
9/30/2019	0.0648		0.138		0.117				
10/1/2019		0.0541		0.264					
10/2/2019						0.129	0.183	0.089	0.111
3/30/2020	0.059	0.0519	0.141	0.264		0.120	0.100	0.000	
	0.000	0.0313	0.141	0.204	0.110	0.176	0.171	0.0927	0.129
3/31/2020	0.0745	0.0040	0.454	0.000	0.119	0.176	0.171	0.0927	0.129
9/2/2020	0.0745	0.0648	0.151	0.289	0.124				
9/8/2020									0.125
9/9/2020						0.124	0.172	0.0919	
5/11/2021			0.147				0.165	0.0981	0.125
5/12/2021						0.123			
5/18/2021	0.07	0.0805		0.299	0.125				
10/18/2021								0.0935	0.124
10/19/2021						0.103	0.145		
10/26/2021			0.136	0.282					
10/27/2021	0.0664	0.0684			0.117				
5/23/2022				0.277					
5/24/2022	0.0717	0.0803	0.142		0.117				
5/31/2022	•					0.1	0.153	0.0992	0.129
5.5 II E O E E						· · ·	0.100	0.3002	520

0/1/0010	BY-AP-MW-1	BY-AP-MW-10	BY-AP-MW-10V	BY-AP-MW-11	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/1/2016		<0.00102		<0.00102					
3/2/2016					<0.00102		<0.00102		<0.00102
4/19/2016									
4/20/2016		<0.00102		<0.00102	<0.00102		<0.00102		<0.00102
6/8/2016		<0.00102		<0.00102	<0.00102		<0.00102		<0.00102
8/30/2016									<0.00102
8/31/2016		<0.00102		<0.00102	<0.00102		<0.00102		
10/18/201									<0.00102
10/19/201	16 <0.00102	<0.00102		<0.00102	<0.00102		<0.00102		
1/31/2017	7 <0.00102						<0.00102		<0.00102
2/1/2017		<0.00102		<0.00102	<0.00102				
5/2/2017	<0.00102								<0.00102
5/3/2017		<0.00102		<0.00102	<0.00102		<0.00102		
6/6/2017	<0.00102								<0.00102
6/7/2017		<0.00102		<0.00102	<0.00102		0.00103 (J)		
1/22/2018	8						<0.00102		
1/23/2018	8	<0.00102		<0.00102	<0.00102				<0.00102
1/24/2018	8 <0.00102								
5/1/2018	<0.00102								
5/2/2018		<0.00102		<0.00102	<0.00102		<0.00102		<0.00102
11/27/201	18								<0.00102
11/28/201	18 <0.00102	<0.00102		<0.00102	<0.00102		<0.00102		
1/8/2019			<0.00102			<0.00102			
5/29/2019	9 <0.00102			<0.00102	<0.00102		<0.00102		<0.00102
5/30/2019	9	<0.00102							
9/30/2019		<0.00102		<0.00102					
10/1/2019			<0.00102		<0.00102		<0.00102		<0.00102
10/2/2019	9					<0.00102			
3/30/2020	0 <0.00102								
3/31/2020	0	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102		<0.00102
4/1/2020									
9/1/2020	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102		
9/2/2020								<0.00102	<0.00102
5/11/2021		<0.00102							
5/18/2021	1 <0.00102		<0.00102		<0.00102	<0.00102			
5/19/2021	1			<0.00102			<0.00102	<0.00102	
5/25/2021									<0.00102
10/26/202							<0.00102	<0.00102	
10/27/202		<0.00102	<0.00102						<0.00102
11/1/2021					<0.00102	<0.00102			
11/2/2021				<0.00102					
5/23/2022				<0.00102	<0.00102	<0.00102			
5/24/2022		<0.00102	<0.00102				<0.00102		
5/25/2022	2							<0.00102	<0.00102

				•		
	BY-AP-MW-14V	BY-AP-MW-15				
3/1/2016						
3/2/2016		<0.00102				
4/19/2016		<0.00102				
4/20/2016						
6/8/2016		<0.00102				
8/30/2016						
8/31/2016		<0.00102				
10/18/2016						
10/19/2016		<0.00102				
1/31/2017		<0.00102				
2/1/2017						
5/2/2017		<0.00102				
5/3/2017						
6/6/2017		<0.00102				
6/7/2017						
1/22/2018		<0.00102				
1/23/2018						
1/24/2018						
5/1/2018		<0.00102				
5/2/2018						
11/27/2018		<0.00102				
11/28/2018						
1/8/2019						
5/29/2019		<0.00102				
5/30/2019						
9/30/2019						
10/1/2019		<0.00102				
10/2/2019						
3/30/2020						
3/31/2020						
4/1/2020		<0.00102				
9/1/2020						
9/2/2020	<0.00102	<0.00102				
5/11/2021		<0.00102				
5/18/2021						
5/19/2021						
5/25/2021	<0.00102					
10/26/2021	<0.00102	<0.00102				
10/27/2021						
11/1/2021						
11/2/2021						
5/23/2022	10.00400					
5/24/2022	<0.00102	<0.00102				
5/25/2022		<0.00102				

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		<0.00102							<0.00102
4/19/2016		<0.00102							<0.00102
6/8/2016		<0.00102							<0.00102
8/31/2016		<0.00102							<0.00102
10/19/2016		<0.00102							<0.00102
1/31/2017		<0.00102							<0.00102
5/2/2017		<0.00102							<0.00102
6/6/2017		<0.00102							<0.00102
1/23/2018		<0.00102							
1/24/2018									<0.00102
5/1/2018		<0.00102							<0.00102
11/27/2018		<0.00102							<0.00102
1/8/2019								<0.00102	
3/20/2019						<0.00102			
5/29/2019		<0.00102							<0.00102
7/31/2019	<0.00102			<0.00102			<0.00102		
10/1/2019	<0.00102	<0.00102				<0.00102	<0.00102		<0.00102
10/2/2019				<0.00102				<0.00102	
3/30/2020								<0.00102	
3/31/2020		<0.00102							<0.00102
4/1/2020				<0.00102		<0.00102			
8/31/2020									<0.00102
9/1/2020	<0.00102			<0.00102	<0.00102	<0.00102	<0.00102	<0.00102	
9/2/2020		<0.00102	<0.00102						
5/17/2021				<0.00102					
5/18/2021					<0.00102			<0.00102	<0.00102
5/19/2021		<0.00102	<0.00102			<0.00102			
5/25/2021	<0.00102						<0.00102		
10/25/2021				<0.00102	<0.00102	<0.00102	<0.00102		
10/26/2021	<0.00102		<0.00102						
11/1/2021		<0.00102						<0.00102	<0.00102
5/23/2022						<0.00102			
5/24/2022	<0.00102						<0.00102	<0.00102	<0.00102
5/25/2022		<0.00102	<0.00102	<0.00102	<0.00102				

	BY-AP-MW-20H	BY-AP-MW-20
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
5/2/2017		
6/6/2017		
1/23/2018		
1/24/2018		
5/1/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	<0.00102	
10/1/2019	<0.00102	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	<0.00102	
8/31/2020		
9/1/2020	<0.00102	<0.00102
9/2/2020		
5/17/2021		
5/18/2021		
5/19/2021	<0.00102	<0.00102
5/25/2021		
10/25/2021		
10/26/2021	<0.00102	
11/1/2021		<0.00102
5/23/2022	<0.00102	
5/24/2022		<0.00102
5/25/2022		

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016	5174 1111 2211	21711 1111 2011	51711 11111 201	2.7	21711 11111 2011	2.7 201	217	<0.00102	<0.00102
3/2/2016							<0.00102		
4/19/2016							<0.00102	<0.00102	
4/20/2016									<0.00102
6/7/2016							<0.00102	<0.00102	<0.00102
8/30/2016								<0.00102	<0.00102
8/31/2016							<0.00102		
10/18/2016									<0.00102
10/19/2016							<0.00102	<0.00102	
1/31/2017							<0.00102	<0.00102	<0.00102
5/2/2017							<0.00102	<0.00102	
5/3/2017									<0.00102
6/6/2017							<0.00102	<0.00102	
6/7/2017									<0.00102
1/24/2018							<0.00102	<0.00102	<0.00102
5/1/2018							<0.00102	<0.00102	
5/2/2018									<0.00102
11/27/2018							<0.00102	0.00071 (J)	<0.00102
11/28/2018									
1/8/2019				<0.00102					
5/29/2019							<0.00102	<0.00102	<0.00102
7/31/2019	<0.00102	<0.00102							
10/1/2019	<0.00102	<0.00102					<0.00102	<0.00102	<0.00102
10/2/2019				<0.00102					
3/31/2020				<0.00102			<0.00102	<0.00102	<0.00102
4/1/2020		<0.00102							
9/1/2020	<0.00102	<0.00102	<0.00102				<0.00102	<0.00102	<0.00102
9/2/2020				<0.00102	<0.00102	<0.00102			
5/17/2021			<0.00102						
5/18/2021							<0.00102	<0.00102	
5/24/2021		<0.00102			<0.00102	<0.00102			
5/25/2021	<0.00102			<0.00102					
10/26/2021	<0.00102	<0.00102	<0.00102	<0.00102					
11/1/2021							<0.00102	<0.00102	
11/2/2021					<0.00102	<0.00102			<0.00102
5/24/2022	<0.00102			<0.00102					
5/25/2022		<0.00102	<0.00102		<0.00102	<0.00102	<0.00102	0.00065 (J)	<0.00102

	BY-AP-MW-5V	BY-AP-MW-6	
3/1/2016		<0.00102	
3/2/2016			
4/19/2016		<0.00102	
4/20/2016			
6/7/2016		<0.00102	
8/30/2016		<0.00102	
8/31/2016			
10/18/2016			
10/19/2016		<0.00102	
1/31/2017		<0.00102	
5/2/2017			
5/3/2017		<0.00102	
6/6/2017			
6/7/2017		<0.00102	
1/24/2018		<0.00102	
5/1/2018			
5/2/2018		<0.00102	
11/27/2018			
11/28/2018		<0.00102	
1/8/2019	<0.00102		
5/29/2019		<0.00102	
7/31/2019			
10/1/2019		<0.00102	
10/2/2019	<0.00102		
3/31/2020	<0.00102	<0.00102	
4/1/2020			
9/1/2020	<0.00102		
9/2/2020		<0.00102	
5/17/2021		<0.00102	
5/18/2021			
5/24/2021			
5/25/2021			
10/26/2021			
11/1/2021			
11/2/2021	<0.00102	<0.00102	
5/24/2022			
5/25/2022	<0.00102	<0.00102	

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						<0.00102	<0.00102	<0.00102	<0.00102
3/1/2016	<0.00102		<0.00102		<0.00102				
4/19/2016						<0.00102	<0.00102	<0.00102	<0.00102
4/20/2016	<0.00102		<0.00102		<0.00102				
6/6/2016						0.000612 (J)			<0.00102
6/7/2016	<0.00102		<0.00102				0.00093 (J)	<0.00102	
6/8/2016					<0.00102				
8/30/2016			<0.00102			<0.00102	<0.00102	<0.00102	<0.00102
8/31/2016	<0.00102				<0.00102				
10/18/2016			<0.00102			<0.00102	<0.00102	<0.00102	<0.00102
10/19/2016	<0.00102				<0.00102				
1/31/2017	<0.00102		<0.00102			<0.00102	<0.00102	<0.00102	<0.00102
2/1/2017					<0.00102				
5/2/2017						0.00069 (J)	<0.00102	<0.00102	<0.00102
5/3/2017	<0.00102		<0.00102		<0.00102	(-)			
6/6/2017						<0.00102	<0.00102	<0.00102	<0.00102
6/7/2017	<0.00102		<0.00102		<0.00102	0.00.02	0.00102	0.00102	0.00102
1/23/2018	0.00102		0.00102		<0.00102	<0.00102	<0.00102	<0.00102	<0.00102
1/24/2018	<0.00102		<0.00102		10.00102	10.00102	-0.0010 <u>2</u>	10.00102	10.00102
5/1/2018	10.00102		-0.0010Z				<0.00102	<0.00102	<0.00102
5/2/2018	<0.00102		<0.00102		<0.00102	<0.00102	-0.0010 <u>2</u>	10.00102	10.00102
11/26/2018	V0.00102		~0.00102		10.00102	~0.00102			<0.00102
			<0.00102					<0.00102	\0.00102
11/27/2018	<0.00102		<0.00102		<0.00102			<0.00102	
11/28/2018	<0.00102	<0.00102		<0.00102	<0.00102				
1/9/2019		<0.00102		<0.00102					-0.00100
5/28/2019	-0.00100		-0.00100			-0.00100	-0.00100	-0.00100	<0.00102
5/29/2019	<0.00102		<0.00102		0.00400	<0.00102	<0.00102	<0.00102	
5/30/2019					<0.00102				
9/30/2019	<0.00102		<0.00102		<0.00102				
10/1/2019		<0.00102		<0.00102			0.00100	0.00100	0.00400
10/2/2019						<0.00102	<0.00102	<0.00102	<0.00102
3/30/2020	<0.00102	<0.00102	<0.00102	<0.00102					
3/31/2020					<0.00102	<0.00102	<0.00102	<0.00102	<0.00102
9/2/2020	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102				
9/8/2020									<0.00102
9/9/2020						<0.00102	<0.00102	<0.00102	
5/11/2021			<0.00102				<0.00102	<0.00102	<0.00102
5/12/2021						0.000694 (J)			
5/18/2021	<0.00102	<0.00102		<0.00102	<0.00102				
10/18/2021								<0.00102	<0.00102
10/19/2021						<0.00102	<0.00102		
10/26/2021			<0.00102	<0.00102					
10/27/2021	<0.00102	<0.00102			<0.00102				
5/23/2022				<0.00102					
5/24/2022	<0.00102	<0.00102	<0.00102		<0.00102				
5/31/2022						<0.00102	0.00041 (J)	<0.00102	<0.00102

2/1/2016	BY-AP-MW-1	BY-AP-MW-10	BY-AP-MW-10V	BY-AP-MW-11	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/1/2016	2.02	1.39		0.0482 (J)	0.0500 (1)		0.0000 (1)		0.0205 (1)
3/2/2016	2.03				0.0502 (J)		0.0328 (J)		0.0395 (J)
4/19/2016	2.2	1.51		0.050 (1)	0.0070 (1)		0.0424 (1)		0.0540 (1)
4/20/2016	1.01	1.51		0.059 (J)	0.0672 (J)		0.0434 (J)		0.0549 (J)
6/8/2016	1.61	1.62		0.0568 (J)	0.0659 (J)		0.0391 (J)		0.0593 (J)
8/30/2016	1.55	1.70		0.0054 (1)	0.005 (1)		0.0404 (1)		0.0534 (J)
8/31/2016	1.55	1.73		0.0651 (J)	0.065 (J)		0.0401 (J)		0.0507 (1)
10/18/2016	1.50	4 77		0.00 (1)	0.0704 (1)		0.0407 (1)		0.0597 (J)
10/19/2016	1.59	1.77		0.06 (J)	0.0721 (J)		0.0427 (J)		0.0470 (1)
1/31/2017	1.84	1.40		0.0020 (1)	0.00(1)		0.034 (J)		0.0479 (J)
2/1/2017	1.70	1.42		0.0638 (J)	0.06 (J)				0.0507 (1)
5/2/2017 5/3/2017	1.73	1.52		0.0655 (1)	0.0769 (1)		0.0416 (1)		0.0587 (J)
6/6/2017	1.56	1.52		0.0655 (J)	0.0768 (J)		0.0416 (J)		0.0429 (1)
6/7/2017	1.50	1.52		0.0468 (J)	0.0625 (J)		0.0277 (J)		0.0428 (J)
9/13/2017	1.87	1.52							0.0647 (1)
9/13/2017	1.07	1.96		0.0751 (J)	0.0926 (J)		0.044 (J)		0.0647 (J)
5/1/2018	1.81	1.90							
5/2/2018	1.01	2		0.0545 (J)	0.064 (J)		0.0393 (J)		0.0484 (J)
11/27/2018		2		0.0545 (3)	0.004 (3)		0.0393 (3)		0.0484 (3) 0.0493 (J)
11/28/2018	1.8	2		0.0545 (J)	0.064 (J)		0.0417 (J)		0.0493 (3)
1/8/2019	1.0	2	0.677	0.0043 (0)	0.004 (0)	0.0939 (J)	0.0417 (0)		
5/29/2019	1.75		0.077	0.082 (J)	0.0952 (J)	0.0000 (0)	0.0528 (J)		0.0682 (J)
5/30/2019	1.75	2.11		0.002 (0)	0.0332 (0)		0.0320 (0)		0.0002 (0)
9/30/2019		2.02		0.103					
10/1/2019	1.91	2.02	1.02	0.103	0.0967 (J)		0.0604 (J)		0.0701 (J)
10/2/2019	1.01		1.02		0.0007 (0)	0.134	0.0004 (0)		0.0701 (0)
3/30/2020	1.77					0.101			
3/31/2020		2.12	1.04	0.0815 (J)	0.0856 (J)	0.101	0.0505 (J)		0.0655 (J)
4/1/2020				0.0010 (0)	0.0000 (0)	001	0.0000 (0)		0.0000 (0)
9/1/2020	2.11	2.02	1.06	0.104	0.115	0.149	0.0642 (J)		
9/2/2020							(5)	0.112	0.0789 (J)
5/11/2021		1.99							(0)
5/18/2021	1.99		0.971		0.0927 (J)	0.118			
5/19/2021				0.0856 (J)	(-,		0.0604 (J)	0.0976 (J)	
5/25/2021				. ,			()	.,	0.074 (J)
10/26/2021							0.0511 (J)	0.0888 (J)	` ,
10/27/2021		2.39	0.933				()	.,	0.0677 (J)
11/1/2021	2.02				0.0769 (J)	0.0962 (J)			
11/2/2021				0.0691 (J)		• •			
5/23/2022				0.0558 (J)	0.0626 (J)	0.0765 (J)			
5/24/2022	2.08	2.34	0.938	• •	• ,	• •	0.0457 (J)		
5/25/2022							.,	0.0852 (J)	0.0618 (J)
								• •	• /

	BY-AP-MW-14V	BY-AP-MW-15
3/1/2016		
3/2/2016		0.0447 (J)
4/19/2016		0.0645 (J)
4/20/2016		
6/8/2016		0.0592 (J)
8/30/2016		
8/31/2016		0.0632 (J)
10/18/2016		
10/19/2016		0.0637 (J)
1/31/2017		0.0536 (J)
2/1/2017		
5/2/2017		0.0775 (J)
5/3/2017		
6/6/2017		0.0535 (J)
6/7/2017		
9/13/2017		0.0937 (J)
9/14/2017		
5/1/2018		0.0683 (J)
5/2/2018		
11/27/2018		0.0715 (J)
11/28/2018		
1/8/2019		
5/29/2019		0.116
5/30/2019		
9/30/2019		
10/1/2019		0.116
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020		0.1
9/1/2020		
9/2/2020	0.407	0.148
5/11/2021		0.109
5/18/2021		
5/19/2021		
5/25/2021	0.43	A A A A A A A A A A A A A A A A A A A
10/26/2021	0.393	0.0953 (J)
10/27/2021		
11/1/2021		
11/2/2021		
5/23/2022	0.070	
5/24/2022	0.376	0.0000 (1)
5/25/2022		0.0826 (J)

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		1.47							<0.1015
4/19/2016		1.53							<0.1015
6/8/2016		1.7							<0.1015
8/31/2016		1.68							<0.1015
10/19/2016		1.53							<0.1015
1/31/2017		1.51							<0.1015
5/2/2017		1.64							<0.1015
6/6/2017		1.57							<0.1015
9/12/2017									<0.1015
9/13/2017		2.18							
5/1/2018		1.57							<0.1015
11/27/2018		1.58							<0.1015
1/8/2019								0.0205 (J)	
3/20/2019						0.924			
5/29/2019		1.7							<0.1015
7/31/2019	0.0439 (J)			0.0782 (J)			0.835		
10/1/2019	0.0824 (J)	2.05				1.05	0.931		<0.1015
10/2/2019				0.129				<0.1015	
3/30/2020								0.0347 (J)	
3/31/2020		1.74							<0.1015
4/1/2020				0.073 (J)		0.435			
8/31/2020									<0.1015
9/1/2020	0.0907 (J)			0.146	0.124	0.855	0.895	0.0368 (J)	
9/2/2020		1.9	<0.1015						
5/17/2021				0.0911 (J)					
5/18/2021					0.124			0.0334 (J)	<0.1015
5/19/2021		1.74	<0.1015			0.866			
5/25/2021	0.0617 (J)						0.252		
10/25/2021				0.0887 (J)	0.113	0.934	0.142		
10/26/2021	0.0498 (J)		<0.1015						
11/1/2021		2.18						<0.1015	<0.1015
5/23/2022						0.91			
5/24/2022	0.0376 (J)						0.159	0.0333 (J)	<0.1015
5/25/2022	. ,	1.98	<0.1015	0.0597 (J)	0.177			• •	
				\-/					

	BY-AP-MW-20H	BY-AP-MW-20V
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
5/2/2017		
6/6/2017		
9/12/2017		
9/13/2017		
5/1/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	0.0707 (J)	
10/1/2019	0.101	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	0.046 (J)	
8/31/2020		
9/1/2020	0.106	0.134
9/2/2020		
5/17/2021		
5/18/2021		
5/19/2021	0.0909 (J)	0.119
5/25/2021		
10/25/2021		
10/26/2021	0.0784 (J)	
11/1/2021		0.11
5/23/2022	0.0653 (J)	
5/24/2022		0.0977 (J)
5/25/2022		

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016								<0.1015	0.0462 (J)
3/2/2016							<0.1015		
4/19/2016							<0.1015	<0.1015	
4/20/2016									0.0719 (J)
6/7/2016							<0.1015	<0.1015	0.0591 (J)
8/30/2016								<0.1015	0.0675 (J)
8/31/2016							<0.1015		
10/18/2016									0.0699 (J)
10/19/2016							<0.1015	<0.1015	
1/31/2017							<0.1015	<0.1015	0.0518 (J)
5/2/2017							<0.1015	<0.1015	
5/3/2017									0.0737 (J)
6/6/2017							<0.1015	<0.1015	
6/7/2017									0.0518 (J)
9/12/2017							<0.1015	<0.1015	
9/14/2017									0.0825 (J)
5/1/2018							<0.1015	<0.1015	
5/2/2018									0.0603 (J)
11/27/2018							<0.1015	<0.1015	0.0613 (J)
11/28/2018									
1/8/2019				0.213					
5/29/2019							<0.1015	<0.1015	0.0946 (J)
7/31/2019	0.0643 (J)	0.0531 (J)							
10/1/2019	0.105	0.0856 (J)					<0.1015	<0.1015	0.103
10/2/2019				0.344					
3/31/2020				0.325			<0.1015	<0.1015	0.0782 (J)
4/1/2020		<0.1015							
9/1/2020	0.115	0.0943 (J)	0.307				<0.1015	<0.1015	0.115
9/2/2020				0.382	<0.1015	<0.1015			
5/17/2021			0.32						
5/18/2021							<0.1015	<0.1015	
5/24/2021		0.0785 (J)			<0.1015	<0.1015			
5/25/2021	0.0889 (J)			0.37					
10/26/2021	0.0725 (J)	0.0709 (J)	0.306	0.354					
11/1/2021							<0.1015	<0.1015	
11/2/2021					<0.1015	<0.1015			0.0755 (J)
5/24/2022	0.0562 (J)			0.351					
5/25/2022		0.0526 (J)	0.307		<0.1015	<0.1015	<0.1015	<0.1015	0.063 (J)

S1/2016 SY-AP-MW-50 SY-AP-MW-60 3/1/2016 < < < < < < > < < < < < < < < < < < <	
3/2/2016 4/19/2016 4/20/2016 6/7/2016 6/7/2016 8/30/2016 8/30/2016 8/30/2016 8/30/2016 8/30/2016 8/30/2016 8/30/2017 8/30/2017 8/30/2017 8/30/2017 8/30/2017 8/30/2017 8/30/2017 8/30/2017 8/30/2017 8/30/2017 8/30/2017 8/30/2017 8/30/2017 8/30/2018 8/30/2018 8/30/2018 8/30/2018 8/30/2018 8/30/2018 8/30/2018 8/30/2018 8/30/2018 8/30/2019	
4/19/2016	
4/20/2016	
6/7/2016	
8/3/12016 8/3/12016 10/18/2016 10/18/2016 10/18/2017 5/2/2017 5/3/2017 6/7/2017 9/1/2017 9/1/2017 9/1/2017 9/1/2017 9/1/2018 5/2/2018 11/2/8/2018 11/2/8/2018 11/2/8/2018 11/2/8/2018 11/2/8/2018 11/2/8/2018 11/2/8/2018 11/2/8/2018 11/2/8/2018 11/2/8/2018 11/2/8/2018 0.029 (J) 5/2/9/2019 0.0336 (J) 3/3/1/2020 0.0339 (J) 4/1/2020 9/1/2020 0.0414 (J) 9/2/2020 0.0414 (J) 9/2/2020 10/26/2021 10/26/2021	
8/31/2016 10/18/2016 10/18/2016 10/19/2017 5/7/2017 6/7/2017 9/14/2017 9/14/2017 5/2018 5/2/2018 5/2/2018 11/2/7/2/7/2018 11/2/7/2018 1	
10/18/2016	
10/19/2016	
1/31/2017	
5/2/2017 < 0.1015	
5/3/2017	
66/2017 67/2017	
67/2017	
9/14/2017	
9/14/2017	
5/1/2018	
5/2/2018 <0.1015	
11/27/2018 < 0.1015	
11/28/2018 <0.1015	
1/8/2019 0.029 (J) 5/29/2019 < 0.1015	
5/29/2019 <0.1015	
7/31/2019 10/1/2019 0.0336 (J) 3/31/2020 0.0339 (J) 4/1/2020 9/1/2020 0.0414 (J) 9/2/2020 5/17/2021 5/24/2021 10/26/2021	
10/1/2019	
10/2/2019	
3/31/2020 0.0339 (J) <0.1015 4/1/2020 9/1/2020 0.0414 (J) 9/2/2020 <0.1015 5/17/2021 <0.1015 5/18/2021 5/24/2021 10/26/2021	
4/1/2020 9/1/2020 0.0414 (J) 9/2/2020 <0.1015 5/17/2021 5/18/2021 5/24/2021 10/26/2021	
9/1/2020 0.0414 (J) 9/2/2020 <0.1015 5/17/2021 <0.1015 5/18/2021 5/24/2021 10/26/2021	
9/2/2020 <0.1015 5/17/2021 <0.1015 5/18/2021 5/24/2021 5/25/2021	
5/17/2021 <0.1015 5/18/2021 5/24/2021 5/25/2021	
5/18/2021 5/24/2021 5/25/2021 10/26/2021	
5/24/2021 5/25/2021 10/26/2021	
5/25/2021 10/26/2021	
10/26/2021	
11/1/2021	
11/2/2021 <0.1015 <0.1015	
5/24/2022	
5/25/2022 <0.1015 <0.1015	

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						0.0212 (J)	0.0252 (J)	<0.1015	0.0257 (J)
3/1/2016	0.0546 (J)		1.72		1.79				
4/19/2016						<0.1015	<0.1015	<0.1015	<0.1015
4/20/2016	0.0472 (J)		1.7		2.01				
6/6/2016						<0.1015			<0.1015
6/7/2016	0.0417 (J)		1.57				0.0202 (J)	<0.1015	
6/8/2016					2.23				
8/30/2016			1.67			<0.1015	<0.1015	<0.1015	<0.1015
8/31/2016	0.036 (J)				2.14				
10/18/2016			1.4			<0.1015	<0.1015	<0.1015	0.022 (J)
10/19/2016	0.0386 (J)				2.13				
1/31/2017	0.0343 (J)		1.46			<0.1015	<0.1015	<0.1015	<0.1015
2/1/2017					2.17				
5/2/2017						<0.1015	<0.1015	<0.1015	<0.1015
5/3/2017	0.037 (J)		1.45		2.28				
6/6/2017						<0.1015	<0.1015	<0.1015	<0.1015
6/7/2017	0.0227 (J)		1.41		2.25				
9/12/2017									<0.1015
9/13/2017						<0.1015	<0.1015	<0.1015	
9/14/2017	0.0471 (J)		1.16		2.41				
5/1/2018							<0.1015	<0.1015	<0.1015
5/2/2018	0.0313 (J)		1.12		2.34	0.0362 (J)			
11/26/2018									<0.1015
11/27/2018			1.31			0.11		<0.1015	
11/28/2018	0.0311 (J)				2.23				
1/9/2019		0.0615 (J)		0.164					
5/28/2019									<0.1015
5/29/2019	0.042 (J)		1.44			0.188	<0.1015	<0.1015	
5/30/2019					2.45				
9/30/2019	0.0418 (J)		1.38		2.34				
10/1/2019		0.0546 (J)		0.241					
10/2/2019						0.097 (J)	<0.1015	<0.1015	<0.1015
3/30/2020	0.0369 (J)	0.0555 (J)	1.12	0.247					
3/31/2020					2.27	0.157	<0.1015	<0.1015	<0.1015
9/2/2020	0.042 (J)	0.0565 (J)	1.26	0.26	2.05				
9/8/2020									<0.1015
9/9/2020						0.0999 (J)	<0.1015	<0.1015	
5/11/2021			0.971				<0.1015	<0.1015	<0.1015
5/12/2021						0.0841 (J)			
5/18/2021	0.037 (J)	0.0599 (J)		0.247	2.08				
10/18/2021								<0.1015	<0.1015
10/19/2021						0.0708 (J)	<0.1015		
10/26/2021			0.933	0.216					
10/27/2021	0.0427 (J)	0.0546 (J)			2.04				
5/23/2022				0.259					
5/24/2022	0.0369 (J)	0.165	1.12		2.01				
5/31/2022						0.0567 (J)	<0.1015	<0.1015	<0.1015

3/1/2016	BY-AP-MW-1	BY-AP-MW-10 <0.0002	BY-AP-MW-10V	BY-AP-MW-11 <0.0002	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/2/2016	<0.0002	0.0002		0.0002	<0.0002		<0.0002		<0.0002
4/19/2016	<0.0002				0.0002		0.0002		0.0002
4/20/2016	-0.0002	<0.0002		<0.0002	<0.0002		<0.0002		<0.0002
6/8/2016	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002		<0.0002
8/30/2016	0.0002	0.0002		0.0002	0.0002		0.0002		<0.0002
8/31/2016	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002		
10/18/2016									<0.0002
10/19/2016	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002		
1/31/2017	<0.0002						<0.0002		<0.0002
2/1/2017		<0.0002		<0.0002	<0.0002				
5/2/2017	<0.0002								<0.0002
5/3/2017		<0.0002		<0.0002	<0.0002		<0.0002		
6/6/2017	<0.0002								<0.0002
6/7/2017		<0.0002		<0.0002	<0.0002		0.00077 (J)		
1/22/2018							<0.0002		
1/23/2018		<0.0002		<0.0002	<0.0002				<0.0002
1/24/2018	<0.0002								
5/1/2018	<0.0002								
5/2/2018		<0.0002		<0.0002	<0.0002		<0.0002		<0.0002
11/27/2018									<0.0002
11/28/2018	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002		
1/8/2019			<0.0002			<0.0002			
5/29/2019	<0.0002			<0.0002	<0.0002		<0.0002		<0.0002
5/30/2019		<0.0002							
9/30/2019		<0.0002		<0.0002					
10/1/2019	<0.0002		<0.0002		<0.0002		<0.0002		<0.0002
10/2/2019						<0.0002			
3/30/2020	<0.0002								
3/31/2020		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002
4/1/2020									
9/1/2020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
9/2/2020								<0.0002	<0.0002
5/11/2021		<0.0002							
5/18/2021	<0.0002		<0.0002		<0.0002	<0.0002			
5/19/2021				<0.0002			<0.0002	<0.0002	
5/25/2021									<0.0002
10/26/2021							<0.0002	<0.0002	
10/27/2021		<0.0002	<0.0002						<0.0002
11/1/2021	<0.0002				<0.0002	<0.0002			
11/2/2021				<0.0002					
5/23/2022				<0.0002	<0.0002	<0.0002			
5/24/2022	<0.0002	<0.0002	<0.0002				<0.0002		
5/25/2022								<0.0002	<0.0002

	BY-AP-MW-14V	BY-AP-MW-15
3/1/2016		
3/2/2016		<0.0002
4/19/2016		<0.0002
4/20/2016		
6/8/2016		<0.0002
8/30/2016		
8/31/2016		<0.0002
10/18/2016		
10/19/2016		<0.0002
1/31/2017		<0.0002
2/1/2017		
5/2/2017		<0.0002
5/3/2017		
6/6/2017		<0.0002
6/7/2017		
1/22/2018		<0.0002
1/23/2018		
1/24/2018		
5/1/2018		<0.0002
5/2/2018		
11/27/2018		<0.0002
11/28/2018		
1/8/2019		
5/29/2019		<0.0002
5/30/2019		
9/30/2019		
10/1/2019		<0.0002
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020		<0.0002
9/1/2020		
9/2/2020	<0.0002	<0.0002
5/11/2021		<0.0002
5/18/2021		
5/19/2021		
5/25/2021	<0.0002	
10/26/2021	<0.0002	<0.0002
10/27/2021		
11/1/2021		
11/2/2021		
5/23/2022		
5/24/2022	<0.0002	
5/25/2022		<0.0002

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		<0.0002							<0.0002
4/19/2016		<0.0002							<0.0002
6/8/2016		<0.0002							<0.0002
8/31/2016		<0.0002							<0.0002
10/19/2016		<0.0002							<0.0002
1/31/2017		<0.0002							<0.0002
5/2/2017		<0.0002							<0.0002
6/6/2017		<0.0002							<0.0002
1/23/2018		<0.0002							
1/24/2018									<0.0002
5/1/2018		<0.0002							<0.0002
11/27/2018		<0.0002							<0.0002
1/8/2019								<0.0002	
3/20/2019						<0.0002			
5/29/2019		<0.0002							<0.0002
7/31/2019	<0.0002			<0.0002			<0.0002		
10/1/2019	<0.0002	<0.0002				<0.0002	<0.0002		<0.0002
10/2/2019				<0.0002				<0.0002	
3/30/2020								<0.0002	
3/31/2020		<0.0002							<0.0002
4/1/2020				<0.0002		<0.0002			
8/31/2020									<0.0002
9/1/2020	<0.0002			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
9/2/2020		<0.0002	<0.0002						
5/17/2021				<0.0002					
5/18/2021					<0.0002			<0.0002	<0.0002
5/19/2021		<0.0002	<0.0002			<0.0002			
5/25/2021	<0.0002						<0.0002		
10/25/2021				<0.0002	<0.0002	<0.0002	<0.0002		
10/26/2021	<0.0002		<0.0002						
11/1/2021		<0.0002						<0.0002	<0.0002
5/23/2022						<0.0002			
5/24/2022	0.00018 (J)						<0.0002	<0.0002	<0.0002
5/25/2022		<0.0002	<0.0002	<0.0002	<0.0002				

	BY-AP-MW-20H	BY-AP-MW-20\
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
5/2/2017		
6/6/2017		
1/23/2018		
1/24/2018		
5/1/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	<0.0002	
10/1/2019	<0.0002	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	<0.0002	
8/31/2020		
9/1/2020	<0.0002	<0.0002
9/2/2020		
5/17/2021		
5/18/2021		
5/19/2021	<0.0002	<0.0002
5/25/2021		
10/25/2021		
10/26/2021	<0.0002	
11/1/2021		<0.0002
5/23/2022	<0.0002	
5/24/2022		<0.0002
5/25/2022		

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016								<0.0002	<0.0002
3/2/2016							<0.0002		
4/19/2016							<0.0002	<0.0002	
4/20/2016									<0.0002
6/7/2016							<0.0002	<0.0002	<0.0002
8/30/2016								<0.0002	<0.0002
8/31/2016							<0.0002		
10/18/2016									<0.0002
10/19/2016							<0.0002	<0.0002	
1/31/2017							<0.0002	<0.0002	<0.0002
5/2/2017							<0.0002	<0.0002	
5/3/2017									<0.0002
6/6/2017							<0.0002	<0.0002	
6/7/2017									<0.0002
1/24/2018							<0.0002	<0.0002	<0.0002
5/1/2018							<0.0002	<0.0002	
5/2/2018									<0.0002
11/27/2018							<0.0002	<0.0002	<0.0002
11/28/2018									
1/8/2019				<0.0002					
5/29/2019							<0.0002	<0.0002	<0.0002
7/31/2019	<0.0002	<0.0002							
10/1/2019	<0.0002	<0.0002					<0.0002	<0.0002	<0.0002
10/2/2019				<0.0002					
3/31/2020				<0.0002			<0.0002	<0.0002	<0.0002
4/1/2020		<0.0002							
9/1/2020	<0.0002	<0.0002	<0.0002				<0.0002	<0.0002	<0.0002
9/2/2020				<0.0002	<0.0002	<0.0002			
5/17/2021			<0.0002						
5/18/2021							<0.0002	<0.0002	
5/24/2021		<0.0002			<0.0002	<0.0002			
5/25/2021	<0.0002			<0.0002					
10/26/2021	<0.0002	<0.0002	<0.0002	<0.0002					
11/1/2021							<0.0002	<0.0002	
11/2/2021					<0.0002	<0.0002			<0.0002
5/24/2022	<0.0002			<0.0002					
5/25/2022		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002

	BY-AP-MW-5V	BY-AP-MW-6
3/1/2016		<0.0002
3/2/2016		
4/19/2016		<0.0002
4/20/2016		
6/7/2016		<0.0002
8/30/2016		<0.0002
8/31/2016		
10/18/2016		
10/19/2016		<0.0002
1/31/2017		<0.0002
5/2/2017		
5/3/2017		<0.0002
6/6/2017		
6/7/2017		<0.0002
1/24/2018		<0.0002
5/1/2018		
5/2/2018		<0.0002
11/27/2018		
11/28/2018		<0.0002
1/8/2019	<0.0002	
5/29/2019		<0.0002
7/31/2019		
10/1/2019		<0.0002
10/2/2019	<0.0002	
3/31/2020	<0.0002	<0.0002
4/1/2020		
9/1/2020	<0.0002	
9/2/2020		<0.0002
5/17/2021		<0.0002
5/18/2021		
5/24/2021		
5/25/2021		
10/26/2021		
11/1/2021		
11/2/2021	<0.0002	7E-05 (J)
5/24/2022		
5/25/2022	<0.0002	0.00031

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						<0.0002	<0.0002	<0.0002	<0.0002
3/1/2016	<0.0002		<0.0002		<0.0002				
4/19/2016						<0.0002	<0.0002	<0.0002	<0.0002
4/20/2016	<0.0002		<0.0002		<0.0002				
6/6/2016						<0.0002			<0.0002
6/7/2016	<0.0002		<0.0002				<0.0002	<0.0002	
6/8/2016					<0.0002				
8/30/2016			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002
8/31/2016	<0.0002				<0.0002				
10/18/2016			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002
10/19/2016	<0.0002				<0.0002				
1/31/2017	<0.0002		<0.0002			<0.0002	<0.0002	<0.0002	<0.0002
2/1/2017					<0.0002				
5/2/2017						<0.0002	<0.0002	<0.0002	<0.0002
5/3/2017	<0.0002		<0.0002		<0.0002				
6/6/2017						<0.0002	<0.0002	<0.0002	<0.0002
6/7/2017	<0.0002		<0.0002		<0.0002	0.0002	0.0002	0.0002	0.0002
1/23/2018					<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
1/24/2018	<0.0002		<0.0002		0.0002	0.0002	0.0002	0.0002	0.0002
5/1/2018	-0.0002		-0.0002				<0.0002	<0.0002	<0.0002
5/2/2018	<0.0002		<0.0002		<0.0002	<0.0002	-0.0002	-0.0002	10.0002
11/26/2018	-0.0002		-0.0002		-0.0002	-0.0002			<0.0002
11/27/2018			<0.0002			<0.0002	<0.0002	<0.0002	10.000 <u>2</u>
11/28/2018	<0.0002		~0.000 <u>2</u>		<0.0002	~0.0002	~0.0002	~0.0002	
1/9/2019	~0.0002	<0.0002		<0.0002	~0.0002				
		~0.0002		<0.0002					~ 0.0000
5/28/2019 5/29/2019	<0.0002		<0.0002			<0.0002	<0.0002	<0.0002	<0.0002
	<0.0002		<0.0002		-0.0000	~ 0.0002	<0.0002	<0.0002	
5/30/2019	-0.0000		-0.0000		<0.0002				
9/30/2019	<0.0002		<0.0002		<0.0002				
10/1/2019		<0.0002		<0.0002		0.0000		.0.000	
10/2/2019						<0.0002	<0.0002	<0.0002	<0.0002
3/30/2020	<0.0002	<0.0002	<0.0002	<0.0002					
3/31/2020					<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
9/2/2020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002				
9/8/2020									<0.0002
9/9/2020						<0.0002	<0.0002	<0.0002	
5/11/2021			<0.0002				<0.0002	<0.0002	<0.0002
5/12/2021						<0.0002			
5/18/2021	<0.0002	<0.0002		<0.0002	<0.0002				
10/18/2021								7E-05 (J)	<0.0002
10/19/2021						<0.0002	<0.0002		
10/26/2021			<0.0002	<0.0002					
10/27/2021	<0.0002	<0.0002			<0.0002				
5/23/2022				<0.0002					
5/24/2022	<0.0002	<0.0002	<0.0002		<0.0002				
5/31/2022						<0.0002	<0.0002	<0.0002	<0.0002

3/1/2016	BY-AP-MW-1	BY-AP-MW-10 50.6	BY-AP-MW-10V	BY-AP-MW-11 35.3	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/2/2016	46.5	00.0		00.0	21		16.7		9.53
4/19/2016	49						10.7		0.00
4/20/2016		49.1		28.9	20.1		13.1		9.55
6/8/2016	33.5	48.7		27.6	20.2		11.7		13.1
8/30/2016	00.0			27.0	20.2		,		12.1
8/31/2016	34.2	57.9		25.4	19.9		11.3		
10/18/2016									11.4
10/19/2016	35.1	52.2		25.7	20.4		11.8		
1/31/2017	38.5						12.5		10.8
2/1/2017		47.6		25.6	20.9				
5/2/2017	35.1								11.9
5/3/2017		51.3		24	20.9		12		
6/6/2017	32.4								12.2
6/7/2017		51.4		25.2	21.2		12.8		
9/13/2017	40.5			25.5	22.1		13.3		13.9
9/14/2017		54.9							
5/1/2018	39.7								
5/2/2018		53.3		25.2	22.2		13.8		10.6
8/28/2018	37.2	56.4							
8/29/2018				25.6	22.3		13.3		11.7
11/27/2018									10.8
11/28/2018	35.8	54.2		24.6	22.1		15.2		
1/8/2019			57.2			33.8			
5/29/2019	33.4			23.9	21.4		12.8		11.2
5/30/2019		60.5							
9/30/2019		63.1		24.6					
10/1/2019	36.7		61.2		23.1		13.4		11.4
10/2/2019						22.2			
3/30/2020	33.7								
3/31/2020		63.6	66.6	25.1	22.4	21.3	13.2		9.04
4/1/2020									
9/1/2020	40.5	57.2	57.3	23.9	22.2	21	12.3		
9/2/2020								12.3	10.8
5/11/2021		62.7							
5/18/2021	39.5		64		23.1	22.1			
5/19/2021				41.5			12.9	12.7	44.0
5/25/2021							10.0	44.0	11.2
10/26/2021		64.0	61.6				12.3	11.3	44.4
10/27/2021	20.4	64.2	61.6		21.0	21.4			11.4
11/1/2021 11/2/2021	38.4			25.8	21.8	21.4			
5/23/2022				25.8	20.6	20.6			
5/24/2022	43.9	63.9	65	20	20.0	20.0	19.2		
5/25/2022	70.0	00.3	00				13.4	12	11.4
SIZSIZUZZ								14	11.4

Constituent: Calcium, total (mg/L) Analysis Run 7/21/2022 3:45 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

	BY-AP-MW-14V	BY-AP-MW-15
3/1/2016		
3/2/2016		6.61
4/19/2016		5.97
4/20/2016		
6/8/2016		6.36
8/30/2016		
8/31/2016		6.28
10/18/2016		
10/19/2016		6.57
1/31/2017		6.77
2/1/2017		
5/2/2017		6.94
5/3/2017		
6/6/2017		6.88
6/7/2017		
9/13/2017		7.43
9/14/2017		
5/1/2018		7.42
5/2/2018		
8/28/2018		
8/29/2018		7.37
11/27/2018		7.58
11/28/2018		
1/8/2019		
5/29/2019		7.22
5/30/2019		
9/30/2019		
10/1/2019		6.9
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020		7.32
9/1/2020		
9/2/2020	4.7	7.04
5/11/2021		6.98
5/18/2021		
5/19/2021		
5/25/2021	4.66	
10/26/2021	5.28	6.46
10/27/2021		
11/1/2021		
11/2/2021		
5/23/2022		
5/24/2022	7.03	

6.41

5/25/2022

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		14.6							3.86
4/19/2016		13.3							3.22
6/8/2016		13.2							3.17
8/31/2016		11.8							3.07
10/19/2016		12.9							2.91
1/31/2017		13.5							2.94
5/2/2017		13.5							2.82
6/6/2017		13.6							2.79
9/12/2017									2.88
9/13/2017		11.8							
5/1/2018		14							2.82
8/28/2018									2.85
8/29/2018		12.1							
11/27/2018		13.3							2.8
1/8/2019								15.7	
3/20/2019						28.4			
5/29/2019		13.4							2.82
7/31/2019	9.32			19.1			31.4		
10/1/2019	8.41	11.7				27.2	31.1		2.94
10/2/2019				13.2				3.16	
3/30/2020								3.23	
3/31/2020		14.2							2.95
4/1/2020				27		23.1			
8/31/2020									3
9/1/2020	6.9			10.8	20.5	25.6	31.6	3.43	
9/2/2020		13.1	2.02						
5/17/2021				12.8					
5/18/2021					15			3.79	3.17
5/19/2021		14.2	2.26			27.1			
5/25/2021	8.47						23.9		
10/25/2021				10.5	6.58	26.9	18.3		
10/26/2021	8.16		1.96						
11/1/2021		13.4						3.68	3.13
5/23/2022						25.5			
5/24/2022	8.1						18.6	3.55	2.45
5/25/2022		13.9	1.8	11.6	49.6				

	BY-AP-MW-20H	BY-AP-MW-20V
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
5/2/2017		
6/6/2017		
9/12/2017		
9/13/2017		
5/1/2018		
8/28/2018		
8/29/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	30.3	
10/1/2019	29.4	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	26	
8/31/2020		
9/1/2020	28.8	14.7
9/2/2020		
5/17/2021		
5/18/2021		
5/19/2021	30.9	15.3
5/25/2021		
10/25/2021		
10/26/2021	30.2	
11/1/2021		15.1
5/23/2022	28.6	
5/24/2022		14.4
5/25/2022		

		BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
;	3/1/2016								1.07	15
;	3/2/2016							1.11		
	4/19/2016							1.01	0.969	
	4/20/2016									14.3
	6/7/2016							1.06	1.08	14.8
:	8/30/2016								0.952	13.7
:	8/31/2016							0.978		
	10/18/2016									13.3
	10/19/2016							0.906	1.17	
	1/31/2017							1.04	0.946	13.7
!	5/2/2017							0.969	0.826	
!	5/3/2017									14.3
	6/6/2017							0.902	0.834	
	6/7/2017									14.7
:	9/12/2017							0.988	0.884	
:	9/14/2017									15.1
	5/1/2018							1.07	0.921	
	5/2/2018									14.5
	8/28/2018							1.02	0.8	
:	8/29/2018									14.3
	11/27/2018							0.999	1.01	13.7
	11/28/2018									
	1/8/2019				38					
!	5/29/2019							1.09	0.627	14.5
	7/31/2019	15	25.8							
	10/1/2019	15.5	27.2					1.08	0.645	13.8
	10/2/2019				18.4					
;	3/31/2020				18.1			1.1	0.898	14.4
	4/1/2020		15.8							
!	9/1/2020	14.8	35.8	1.27				1.08	0.566	13.6
!	9/2/2020				17.6	0.875	0.547			
	5/17/2021			1.33						
	5/18/2021							1.12	0.974	
	5/24/2021		27.1			0.905	0.554			
!	5/25/2021	15.2			18.6					
	10/26/2021	15.1	29.4	0.837	18.4					
	11/1/2021							1.09	0.816	
	11/2/2021					1.05	0.567			16.2
	5/24/2022	14.4			17.9					
	5/25/2022		24.5	0.899		0.949	0.573	1.29	1.69	14.6

	BY-AP-MW-5V	BY-AP-MW-6
3/1/2016		1.87
3/2/2016		
4/19/2016		1.69
4/20/2016		
6/7/2016		1.75
8/30/2016		1.77
8/31/2016		
10/18/2016		
10/19/2016		1.8
1/31/2017		1.98
5/2/2017		
5/3/2017		1.97
6/6/2017		
6/7/2017		1.98
9/12/2017		
9/14/2017		2.14
5/1/2018		
5/2/2018		2.13
8/28/2018		
8/29/2018		1.92
11/27/2018		
11/28/2018		1.91
1/8/2019	3.7	
5/29/2019		1.72
7/31/2019		
10/1/2019		1.92
10/2/2019	2.43	
3/31/2020	1.88	1.68
4/1/2020		
9/1/2020	2.13	
9/2/2020		1.8
5/17/2021		1.93
5/18/2021		
5/24/2021		
5/25/2021		
10/26/2021		
11/1/2021		
11/2/2021	2.11	1.97
5/24/2022		
5/25/2022	2.62	1.62

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						1.28	1.11	1.77	1.42
3/1/2016	7.65		36.1		40.3				
4/19/2016						1.19	1.09	1.68	1.31
4/20/2016	7.54		34.5		38.2				
6/6/2016						1.19			1.35
6/7/2016	7.71		34.7				1.16	1.68	
6/8/2016					39.2				
8/30/2016			34.1			1.11	1.08	1.62	1.31
8/31/2016	8.1				38.2				
10/18/2016			33.2			1.04	1.03	1.53	1.22
10/19/2016	8.59				38.7				
1/31/2017	8.78		32.3			1.19	1.23	1.65	1.36
2/1/2017					39.2				
5/2/2017						1.05	1.28	1.58	1.24
5/3/2017	8.85		34.1		39.1				
6/6/2017						0.978	1.25	1.55	1.28
6/7/2017	8.99		34.7		40.3				
9/12/2017									1.47
9/13/2017						1.14	1.6	1.71	
9/14/2017	9.64		34.4		40.7				
5/1/2018	0.01						1.58	1.76	1.47
5/2/2018	9.14		32.3		40	1.64			
8/28/2018			02.0		40				
8/29/2018			32.6						
11/26/2018			52.5						1.52
11/27/2018			32.5			2.01	1.49	1.69	
11/28/2018	9.66		02.0		39.7	2.0.			
1/9/2019		37		27.2	00.7				
5/28/2019									1.6
5/29/2019	8.88		31.9			1.85	1.59	1.74	
5/30/2019	0.00		01.0		38.5				
9/30/2019	9.8		33		39.9				
10/1/2019	0.0	18.7		24.2	00.0				
10/2/2019						1.55	1.7	1.86	1.7
3/30/2020	10.1	20	32.2	24.5					
3/31/2020		20	02.2	20	40.1	1.96	1.43	1.92	1.78
9/2/2020	10.4	13.9	31.5	23.3	38				
9/8/2020									1.94
9/9/2020						1.43	1.5	1.97	
5/11/2021			33				1.39	2.06	1.93
5/12/2021						1.34			
5/18/2021	10.2	14.1		26.4	40.5				
10/18/2021								2.1	2.01
10/19/2021						1.17	1.32		
10/26/2021			33.5	25.7		• •	,-		
10/27/2021	10	17.2			40.3				
5/23/2022				24.4	-				
5/24/2022	10.5	8.84	31.5		38.3				
5/31/2022			- 			1.14	1.24	1.95	2.02
- -									

3/1/2016	BY-AP-MW-1	BY-AP-MW-10 19.6	BY-AP-MW-10V	BY-AP-MW-11 21.7	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/2/2016	2.19 (0)	13.0		21.7	22.2		47.3		36.6
	2.18 (O)				22.2		47.3		30.0
4/19/2016 4/20/2016	9.01 (O)	18.8		20.7	21.7		40.5		35.5
6/8/2016	21	18.6		20.4	22		37.2		43.8
8/30/2016	21	10.0		20.4	22		57.2		41.6
8/31/2016	21	18.5		20.3	22.3		38.2		41.0
10/18/2016	21	10.5		20.5	22.5		30.2		39.5
10/19/2016	21.4	18.7		20.3	20.8		39.4		55.5
3/21/2017	25	10.7		20.5	20.0		55.4		
3/22/2017	23	21		27	23		49		46
5/2/2017	26	21		21	23		49		42
5/3/2017	20	22		27	25		48		42
6/6/2017	27	22		27	23		40		44
6/7/2017	21	22		24	23		49		44
	24	22		26	23		49		43
9/13/2017 9/14/2017	24	22		20	23		42		43
5/1/2018	25	22							
5/2/2018	25	23		22	21		47		39
8/28/2018	25	25		23	21		47		39
8/29/2018	25	25		25	23		43		44
				25	23		43		43
11/27/2018	26	25		25	22		43		43
11/28/2018 1/8/2019	26	25	21.3	25	23	23.1	43		
5/29/2019	27.6		21.3	27.8	24.1	23.1	44		50.1
5/30/2019	27.6	25.0		27.0	24.1		44		50.1
9/30/2019		25.9 25.7		25					
	24.6	25.7	20	25	26.1		39.6		44.8
10/1/2019	24.0		20		20.1	20	39.0		44.0
10/2/2019 3/30/2020	24.9					28			
3/31/2020	24.9	26.1	20.7	24.1	23.9	25	44.9		44.7
4/1/2020		20.1	20.7	24.1	23.9	25	44.5		44.7
9/1/2020	25.7	25	22.9	23.2	23.4	26.4	39.1		
9/2/2020	23.7	25	22.9	25.2	23.4	20.4	39.1	51.7	47.2
5/11/2021		27.3						31.7	47.2
5/18/2021	25.1	27.5	21		25.4	25.5			
5/19/2021	23.1		21	23.1	25.4	20.0	46.8	64.4	
5/25/2021				25.1			40.0	04.4	52.1
10/26/2021							38.4	47.7	32.1
10/27/2021		27.2	21				30.4	47.7	42.9
11/1/2021	26.2	27.2	21		27.4	26.1			42.5
11/2/2021	20.2			25.1	21.7	20.1			
5/23/2022				25.1	26.2	25.6			
5/24/2022	28.7	27.7	19.4	20.1	20.2	20.0	43.5		
5/25/2022	20.7	21.1	13.4				70.0	59.3	45.3
0/20/2022								00.0	70.0

			. idiii Bairiy	onomi ocamom company
	BY-AP-MW-14V	BY-AP-MW-15		
3/1/2016				
3/2/2016		20.9		
4/19/2016		19.8		
4/20/2016				
6/8/2016		24		
8/30/2016				
8/31/2016		28		
10/18/2016				
10/19/2016		21.3		
3/21/2017		34		
3/22/2017				
5/2/2017		33		
5/3/2017				
6/6/2017		35		
6/7/2017				
9/13/2017		36		
9/14/2017				
5/1/2018		42		
5/2/2018				
8/28/2018				
8/29/2018		38		
11/27/2018		43		
11/28/2018				
1/8/2019				
5/29/2019		47.2		
5/30/2019				
9/30/2019				
10/1/2019		56.3		
10/2/2019				
3/30/2020				
3/31/2020				
4/1/2020		54.7		
9/1/2020				
9/2/2020	178	47		
5/11/2021		80		
5/18/2021				
5/19/2021				
5/25/2021	210			
10/26/2021	191	85.4		
10/27/2021				
11/1/2021				
11/2/2021				
5/23/2022				
5/24/2022	184	20.7		
5/25/2022		80.7		

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		16.6							6.08
4/19/2016		15.7							6.2
6/8/2016		15.1							6.2
8/31/2016		15.9							6.51
10/19/2016		15.3							6.85
3/21/2017		19							7.2
5/2/2017		19							8.3
6/6/2017		19							8.5
9/12/2017									8.6
9/13/2017		21							
5/1/2018		18							7.6
8/28/2018									8.5
8/29/2018		20							
11/27/2018		20							8.8
1/8/2019								42	
3/20/2019						17.6			
5/29/2019		20							8.31
7/31/2019	157			18			16.4		
10/1/2019	195	20.3				20.1	16.8		8.19
10/2/2019				17.7				60.7	
3/30/2020								69.1	
3/31/2020		20.8							8.48
4/1/2020				17.2		12.2			
8/31/2020									8.3
9/1/2020	170			18.2	273	19.8	17.6	69	
9/2/2020		20.8	75.6						
5/17/2021				17.1					
5/18/2021					225			79.5	7.89
5/19/2021		21.4	81.2			19.3			
5/25/2021	180						10.7		
10/25/2021				18.4	111	20.5	10.1		
10/26/2021	196		68.3						
11/1/2021		22.3						79.4	8.16
5/23/2022						18.9			
5/24/2022	212						10.4	95.1	9.21
5/25/2022		20	56.6	16	649				

	BY-AP-MW-20H	BY-AP-MW-20V
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
3/21/2017		
5/2/2017		
6/6/2017		
9/12/2017		
9/13/2017		
5/1/2018		
8/28/2018		
8/29/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	33.4	
10/1/2019	44.7	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	23.1	
8/31/2020	-	
9/1/2020	34.6	27.1
9/2/2020		
5/17/2021		
5/18/2021		
5/19/2021	36.2	32.4
5/25/2021	- 5.2	
10/25/2021		
10/26/2021	34	
11/1/2021	. .	29.6
5/23/2022	44.1	20.0
5/24/2022	77.1	35.4
5/25/2022		00.4
312312022		

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016								7.74	19.7
3/2/2016							8.04		
4/19/2016							7.6	7.66	
4/20/2016									18.9
6/7/2016							7.7	11.3	18.5
8/30/2016								10.8	17.9
8/31/2016							7.7		
10/18/2016									18.2
10/19/2016							7.73	11.1	
3/21/2017							7.2	11	
3/22/2017									22
5/2/2017							8.6	12	
5/3/2017									22
6/6/2017							8.3	12	
6/7/2017									21
9/12/2017							8.5	11	
9/14/2017									21
5/1/2018							7.6	9.2	
5/2/2018									20
8/28/2018							8.2	10	
8/29/2018									21
11/27/2018							8.4	10	21
11/28/2018									
1/8/2019				44.6					
5/29/2019							9.01	8.53	19.7
7/31/2019	60.3	8.03							
10/1/2019	70	6.7					8.05	7.35	19.8
10/2/2019				53					
3/31/2020				47.5			9.07	9.54	19.8
4/1/2020		4.46							
9/1/2020	59.9	6.96	117				8.97	7.82	19.1
9/2/2020				43.7	4.62	3.85			
5/17/2021			134						
5/18/2021							9.52	9.53	
5/24/2021		6.33			4.72	3.48			
5/25/2021	65.4			46					
10/26/2021	54.5	5.64	124	41.6					
11/1/2021							9.76	7.99	
11/2/2021					5.07	3.42			21
5/24/2022	57.1			45.7					
5/25/2022		6.63	106		5.32	3.22	15.2	16.1	20

			-		
	BY-AP-MW-5V	BY-AP-MW-6			
3/1/2016		5.77			
3/2/2016					
4/19/2016		5.57			
4/20/2016					
6/7/2016		5.52			
8/30/2016		5.5			
8/31/2016					
10/18/2016					
10/19/2016		5.55			
3/21/2017					
3/22/2017		6			
5/2/2017					
5/3/2017		6.4			
6/6/2017					
6/7/2017		5.9			
9/12/2017					
9/14/2017		6.5			
5/1/2018					
5/2/2018		5.5			
8/28/2018					
8/29/2018		5.4			
11/27/2018					
11/28/2018		6.2			
1/8/2019	20.9				
5/29/2019		6.15			
7/31/2019					
10/1/2019		5.99			
10/2/2019	25.8				
3/31/2020	25.8	5.94			
4/1/2020					
9/1/2020	30.6				
9/2/2020		5.94			
5/17/2021		6.26			
5/18/2021					
5/24/2021					
5/25/2021					
10/26/2021					
11/1/2021					
11/2/2021	30.5	6.4			
5/24/2022					
5/25/2022	22.6	6.63			

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						3.59	3.99	3.68	3.5
3/1/2016	11.2		24.5		20.4				
4/19/2016						2.89	4.08	3.72	3.63
4/20/2016	10.8		22.5		22.7				
6/6/2016						3.12			3.6
6/7/2016	10.8		21.6				4.28	3.66	
6/8/2016					25.3				
8/30/2016			21.6			3.91	4.26	3.7	3.54
8/31/2016	10.8				24.4				
10/18/2016			20.2			3.9	4.26	3.77	3.68
10/19/2016	10.8				23				
3/20/2017						3.5	4.1	3.7	4.6
3/22/2017	13		24		26				
5/2/2017						3.5 (D)	5 (D)	4.6 (D)	3.9 (D)
5/3/2017	14		25		26				
6/6/2017						3.1 (D)	3.9 (D)	3.4 (D)	3.4 (D)
6/7/2017	14		24		27				
9/12/2017									4.3
9/13/2017						4	4.3	3.9	
9/14/2017	13		24		24				
5/1/2018							3.7	4.1	3.8
5/2/2018	13		23		22	9.9			
8/28/2018					21				
8/29/2018			25						
11/26/2018									3.6
11/27/2018			27			4.7	3.2	3.5	
11/28/2018	13				23				
1/9/2019		16.9		21.9					
5/28/2019									3.6
5/29/2019	13.3		27.4			5.48	2.93	3.58	
5/30/2019					27.7				
9/30/2019	13.1		25.5		21.7				
10/1/2019		13.2		22.6					
10/2/2019						3.65	2.75	3.64	3.5
3/30/2020	13.3	15.5	22.6	22.7					
3/31/2020					20.6	3.17	2.72	3.47	3.34
9/2/2020	12.9	14.2	22.2	22.6	18.5				
9/8/2020									3.29
9/9/2020						2.92	2.32	3.47	
5/11/2021			21.9				2.16	3.42	3.33
5/12/2021						2.18			
5/18/2021	14.2	19		22.7	18.3				
10/18/2021								3.45	3.32
10/19/2021						2.37	2.08		
10/26/2021			21.7	23.9					
10/27/2021	15.3	18.9			19.1				
5/23/2022				22.1					
5/24/2022	13.2	40.4	25		17.3				
5/31/2022						1.93	2.17	3.39	3.31

3/1/2016	BY-AP-MW-1	BY-AP-MW-10 <0.00102	BY-AP-MW-10V	BY-AP-MW-11 0.00213 (J)	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/2/2016	0.00591 (J)				0.0042 (J)		0.00656 (J)		0.00552 (J)
4/19/2016	0.0077 (J)								
4/20/2016	,	<0.00102		0.00214 (J)	0.0034 (J)		0.00661 (J)		0.00572 (J)
6/8/2016	0.00264 (J)	<0.00102		0.00205 (J)	0.00308 (J)		0.0067 (J)		0.00492 (J)
8/30/2016	. ,			. ,	. ,		()		0.00534 (J)
8/31/2016	0.00246 (J)	<0.00102		0.00221 (J)	0.0032 (J)		0.00693 (J)		
10/18/2016									0.00556 (J)
10/19/2016	0.00248 (J)	<0.00102		0.00213 (J)	0.0035 (J)		0.00732 (J)		
1/31/2017	0.00556 (J)						0.00699 (J)		0.00514 (J)
2/1/2017		<0.00102		0.00228 (J)	0.00371 (J)				
5/2/2017	0.00269 (J)								0.00524 (J)
5/3/2017		<0.00102		0.00229 (J)	0.00369 (J)		0.00712 (J)		
6/6/2017	0.00295 (J)								0.00541 (J)
6/7/2017		<0.00102		0.00233 (J)	0.00372 (J)		0.00752 (J)		
1/22/2018							0.00729 (J)		
1/23/2018		<0.00102		0.00248 (J)	0.00605 (J)				0.00573 (J)
1/24/2018	0.00278 (J)								
5/1/2018	0.00435 (J)								
5/2/2018		<0.00102		0.00273 (J)	0.00351 (J)		0.00642 (J)		0.00534 (J)
11/27/2018									0.00523 (J)
11/28/2018	0.0036 (J)	<0.00102		0.0023 (J)	0.00353 (J)		0.0068 (J)		
1/8/2019			<0.00102			0.0021 (J)			
5/29/2019	0.00223 (J)			0.00211 (J)	0.00333 (J)		0.00727 (J)		0.00455 (J)
5/30/2019		<0.00102							
9/30/2019		<0.00102		0.00228 (J)					
10/1/2019	0.00236 (J)		<0.00102		0.00325 (J)		0.00764 (J)		0.00508 (J)
10/2/2019						<0.00102			
3/30/2020	0.00415 (J)								
3/31/2020		<0.00102	<0.00102	0.00358 (J)	0.0056 (J)	<0.00102	0.00955 (J)		0.00463 (J)
4/1/2020									
9/1/2020	0.00242 (J)	<0.00102	<0.00102	0.00259 (J)	0.00332 (J)	<0.00102	0.00888 (J)		
9/2/2020								0.00525 (J)	0.00482 (J)
5/11/2021		0.000685 (J)							
5/18/2021	0.00294		0.000684 (J)		0.00377	0.00112			
5/19/2021				0.00301			0.00692	0.00416	
5/25/2021									0.00365
10/26/2021							0.00755	0.00606	
10/27/2021		0.00072 (J)	0.00068 (J)						0.00401
11/1/2021	0.00244				0.00423	0.00086 (J)			
11/2/2021				0.00348					
5/23/2022				0.00474	0.00374	0.00081 (J)			
5/24/2022	0.00238	0.00052 (J)	0.00049 (J)				0.00685		
5/25/2022								0.00488	0.00345

	BY-AP-MW-14V	BY-AP-MW-15
3/1/2016		
3/2/2016		<0.00102
4/19/2016		<0.00102
4/20/2016		
6/8/2016		<0.00102
8/30/2016		
8/31/2016		<0.00102
10/18/2016		
10/19/2016		<0.00102
1/31/2017		<0.00102
2/1/2017		
5/2/2017		<0.00102
5/3/2017		
6/6/2017		<0.00102
6/7/2017		
1/22/2018		<0.00102
1/23/2018		
1/24/2018		
5/1/2018		<0.00102
5/2/2018		
11/27/2018		<0.00102
11/28/2018		
1/8/2019		
5/29/2019		<0.00102
5/30/2019		
9/30/2019		
10/1/2019		<0.00102
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020		<0.00102
9/1/2020		
9/2/2020	<0.00102	<0.00102
5/11/2021		0.000581 (J)
5/18/2021		
5/19/2021		
5/25/2021	0.00113	
10/26/2021	0.00098 (J)	0.00052 (J)
10/27/2021		
11/1/2021		
11/2/2021		
5/23/2022		
5/24/2022	0.0006 (J)	
5/25/2022		0.00049 (J)

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		<0.00102							<0.00102
4/19/2016		<0.00102							<0.00102
6/8/2016		<0.00102							<0.00102
8/31/2016		0.00215 (J)							<0.00102
10/19/2016		<0.00102							<0.00102
1/31/2017		<0.00102							<0.00102
5/2/2017		<0.00102							<0.00102
6/6/2017		<0.00102							<0.00102
1/23/2018		0.00253 (J)							
1/24/2018									<0.00102
5/1/2018		<0.00102							<0.00102
11/27/2018		<0.00102							<0.00102
1/8/2019								<0.00102	
3/20/2019						0.00236 (J)			
5/29/2019		<0.00102							<0.00102
7/31/2019	<0.00102			<0.00102			<0.00102		
10/1/2019	<0.00102	<0.00102				<0.00102	<0.00102		<0.00102
10/2/2019				<0.00102				<0.00102	
3/30/2020								<0.00102	
3/31/2020		<0.00102							<0.00102
4/1/2020				<0.00102		<0.00102			
8/31/2020									<0.00102
9/1/2020	<0.00102			<0.00102	<0.00102	<0.00102	<0.00102	<0.00102	
9/2/2020		<0.00102	<0.00102						
5/17/2021				0.000627 (J)					
5/18/2021					0.000973 (J)			0.000447 (J)	0.000394 (J)
5/19/2021		0.00162	0.000385 (J)			0.00132			
5/25/2021	0.000258 (J)						0.000391 (J)		
10/25/2021				0.0006 (J)	0.00062 (J)	0.00134	0.00044 (J)		
10/26/2021	0.00026 (J)		0.0004 (J)						
11/1/2021		0.0018						0.00045 (J)	0.00029 (J)
5/23/2022						0.00133			
5/24/2022	0.00023 (J)						0.00042 (J)	0.00038 (J)	<0.00102
5/25/2022		0.00135	<0.00102	0.00033 (J)	0.00048 (J)				

	BY-AP-MW-20H	BY-AP-MW-20V
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
5/2/2017		
6/6/2017		
1/23/2018		
1/24/2018		
5/1/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	0.00209 (J)	
10/1/2019	0.0025 (J)	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	<0.00102	
8/31/2020		
9/1/2020	0.00283 (J)	<0.00102
9/2/2020		
5/17/2021		
5/18/2021		
5/19/2021	0.00284	0.000669 (J)
5/25/2021		
10/25/2021		
10/26/2021	0.00261	
11/1/2021		0.00061 (J)
5/23/2022	0.00233	
5/24/2022		0.00046 (J)
5/25/2022		

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016								<0.00102	<0.00102
3/2/2016							<0.00102		
4/19/2016							<0.00102	<0.00102	
4/20/2016									<0.00102
6/7/2016							<0.00102	<0.00102	<0.00102
8/30/2016								<0.00102	<0.00102
8/31/2016							<0.00102		
10/18/2016									<0.00102
10/19/2016							<0.00102	<0.00102	
1/31/2017							<0.00102	<0.00102	<0.00102
5/2/2017							<0.00102	<0.00102	
5/3/2017									<0.00102
6/6/2017							<0.00102	<0.00102	
6/7/2017									<0.00102
1/24/2018							<0.00102	<0.00102	<0.00102
5/1/2018							<0.00102	<0.00102	
5/2/2018									<0.00102
11/27/2018							<0.00102	<0.00102	<0.00102
11/28/2018									
1/8/2019				<0.00102					
5/29/2019							<0.00102	<0.00102	<0.00102
7/31/2019	<0.00102	<0.00102							
10/1/2019	<0.00102	<0.00102					<0.00102	<0.00102	<0.00102
10/2/2019				<0.00102					
3/31/2020				<0.00102			<0.00102	<0.00102	<0.00102
4/1/2020		<0.00102							
9/1/2020	<0.00102	<0.00102	0.00284 (J)				<0.00102	<0.00102	<0.00102
9/2/2020				<0.00102	<0.00102	<0.00102			
5/17/2021			0.00163						
5/18/2021							0.000919 (J)	0.000544 (J)	
5/24/2021		0.000814 (J)			0.00117	0.00119			
5/25/2021	0.000667 (J)			0.000878 (J)					
10/26/2021	0.00062 (J)	0.0007 (J)	0.00061 (J)	0.00104					
11/1/2021							0.00093 (J)	0.00067 (J)	
11/2/2021					0.00098 (J)	0.0013			0.00101 (J)
5/24/2022	0.00057 (J)			0.00081 (J)					
5/25/2022		0.00051 (J)	0.00046 (J)		0.00103	0.00126	0.00104	0.00026 (J)	0.00103

	BY-AP-MW-5V	BY-AP-MW-6
3/1/2016		<0.00102
3/2/2016		
4/19/2016		<0.00102
4/20/2016		
6/7/2016		<0.00102
8/30/2016		<0.00102
8/31/2016		
10/18/2016		
10/19/2016		<0.00102
1/31/2017		<0.00102
5/2/2017		
5/3/2017		<0.00102
6/6/2017		0.00102
6/7/2017		<0.00102
1/24/2018		<0.00102
5/1/2018		-0.00102
5/2/2018		<0.00102
11/27/2018		-0.00102
11/28/2018		<0.00102
1/8/2019	<0.00102	NO.00102
	~0.00 IUZ	<0.00102
5/29/2019		<0.00102
7/31/2019		<0.00102
10/1/2019	<0.00103	<0.00102
10/2/2019	<0.00102	<0.00102
3/31/2020	<0.00102	<0.00102
4/1/2020	<0.00102	
9/1/2020	<0.00102	<0.00400
9/2/2020		<0.00102
5/17/2021		0.000313 (J)
5/18/2021		
5/24/2021		
5/25/2021		
10/26/2021		
11/1/2021		
11/2/2021	0.00099 (J)	0.00023 (J)
5/24/2022		
5/25/2022	0.00048 (J)	0.00029 (J)

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						<0.00102	<0.00102	<0.00102	<0.00102
3/1/2016	<0.00102		<0.00102		<0.00102				
4/19/2016						<0.00102	<0.00102	<0.00102	<0.00102
4/20/2016	<0.00102		<0.00102		<0.00102				
6/6/2016						<0.00102			<0.00102
6/7/2016	<0.00102		<0.00102				<0.00102	<0.00102	
6/8/2016					<0.00102				
8/30/2016			<0.00102			<0.00102	<0.00102	<0.00102	<0.00102
8/31/2016	<0.00102				<0.00102				
10/18/2016			<0.00102			<0.00102	<0.00102	<0.00102	<0.00102
10/19/2016	<0.00102				<0.00102				
1/31/2017	<0.00102		<0.00102			<0.00102	<0.00102	<0.00102	<0.00102
2/1/2017					<0.00102				
5/2/2017						<0.00102	<0.00102	<0.00102	<0.00102
5/3/2017	<0.00102		<0.00102		<0.00102				
6/6/2017						<0.00102	<0.00102	<0.00102	<0.00102
6/7/2017	<0.00102		<0.00102		<0.00102	0.00102	0.00102	0.00102	0.00102
1/23/2018					<0.00102	<0.00102	0.00596 (J)	0.00229 (J)	<0.00102
1/24/2018	<0.00102		<0.00102		0.00102	0.00102	0.00000 (0)	0.00220 (0)	0.00102
5/1/2018	-0.00102		-0.00102				<0.00102	<0.00102	<0.00102
5/2/2018	0.00328 (J)		<0.00102		<0.00102	<0.00102	-0.00102	-0.00102	0.00102
11/26/2018	0.00020 (0)		-0.00102		-0.00102	-0.00102			<0.00102
11/27/2018			<0.00102			<0.00102	<0.00102	<0.00102	10.00102
11/28/2018	<0.00102		V0.00102		<0.00102	~0.00102	~0.00102	~0.00102	
1/9/2019	10.00102	<0.00102		<0.00102	10.00102				
5/28/2019		10.00102		10.00102					<0.00102
5/29/2019	<0.00102		<0.00102			<0.00102	<0.00102	<0.00102	10.00102
5/30/2019	V0.00102		10.00102		<0.00102	~0.00102	10.00102	10.00102	
	<0.00102		<0.00102		<0.00102				
9/30/2019	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102				
10/1/2019		<0.00102		<0.00102		<0.00102	<0.00102	<0.00102	<0.00102
10/2/2019	-0.00102	<0.00102	-0.00102	<0.00102		~0.00102	<0.00102	<0.00102	\0.00102
3/30/2020	<0.00102	<0.00102	<0.00102	<0.00102	-0.00100	-0.00100	-0.00100	-0.00100	0.00004 (1)
3/31/2020	0.00100		0.00400		<0.00102	<0.00102	<0.00102	<0.00102	0.00604 (J)
9/2/2020	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102				0.00400
9/8/2020						0.00100	0.00100	0.00100	<0.00102
9/9/2020						<0.00102	<0.00102	<0.00102	
5/11/2021			0.00156			0.000000 (1)	0.00136	0.00146	0.00159
5/12/2021						0.000296 (J)			
5/18/2021	0.00709	0.000463 (J)		0.00129	0.00078 (J)				
10/18/2021								0.0013	0.00146
10/19/2021						0.0003 (J)	0.00135		
10/26/2021			0.00165	0.00124					
10/27/2021	0.00309	0.00052 (J)			0.00087 (J)				
5/23/2022				0.00124					
5/24/2022	0.00058 (J)	0.00023 (J)	0.00128		0.0007 (J)				
5/31/2022						0.00033 (J)	0.0012	0.00139	0.00156

3/1/2016	BY-AP-MW-1	BY-AP-MW-10 <0.0002	BY-AP-MW-10V	BY-AP-MW-11 <0.0002	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/2/2016	<0.0002	<0.0002		<0.0002	0.00235 (J)		<0.0002		<0.0002
					0.00233 (3)		<0.0002		<0.0002
4/19/2016	<0.0002	<0.0000		<0.0000	0.00212 (1)		<0.0000		<0.0003
4/20/2016	-0.0000	<0.0002		<0.0002	0.00212 (J)		<0.0002		<0.0002
6/8/2016	<0.0002	<0.0002		<0.0002	0.00276 (J)		<0.0002		<0.0002
8/30/2016	.0.000	0.000		0.000	0.00004 (1)				<0.0002
8/31/2016	<0.0002	<0.0002		<0.0002	0.00261 (J)		<0.0002		
10/18/2016									<0.0002
10/19/2016	<0.0002	<0.0002		<0.0002	0.00256 (J)		<0.0002		
1/31/2017	<0.0002						<0.0002		<0.0002
2/1/2017		<0.0002		<0.0002	0.00231 (J)				
5/2/2017	<0.0002								<0.0002
5/3/2017		<0.0002		<0.0002	0.00279 (J)		<0.0002		
6/6/2017	<0.0002								<0.0002
6/7/2017		<0.0002		<0.0002	0.00262 (J)		<0.0002		
1/22/2018							<0.0002		
1/23/2018		<0.0002		<0.0002	0.00248 (J)				<0.0002
1/24/2018	<0.0002								
5/1/2018	<0.0002								
5/2/2018		<0.0002		<0.0002	0.00271 (J)		<0.0002		<0.0002
11/27/2018									<0.0002
11/28/2018	<0.0002	<0.0002		<0.0002	0.00274 (J)		<0.0002		
1/8/2019			<0.0002			<0.0002			
5/29/2019	<0.0002			<0.0002	0.00358 (J)		<0.0002		<0.0002
5/30/2019		<0.0002							
9/30/2019		<0.0002		<0.0002					
10/1/2019	<0.0002		<0.0002		0.00303 (J)		<0.0002		<0.0002
10/2/2019						<0.0002			
3/30/2020	<0.0002								
3/31/2020		<0.0002	<0.0002	<0.0002	0.00364 (J)	<0.0002	<0.0002		<0.0002
4/1/2020									
9/1/2020	<0.0002	<0.0002	<0.0002	<0.0002	0.0031 (J)	<0.0002	<0.0002		
9/2/2020								<0.0002	<0.0002
5/11/2021		0.000636							
5/18/2021	0.000996		0.000648		0.00336	0.00237			
5/19/2021				0.00257			0.00113	0.000827	
5/25/2021									0.00124
10/26/2021							0.00122	0.00114	
10/27/2021		0.00065	0.00061						0.00125
11/1/2021	0.00091				0.0037	0.00231			
11/2/2021				0.00118					
5/23/2022				0.00118	0.00428	0.00255			
5/24/2022	0.00091	0.00054	0.00062				0.00189		
5/25/2022								0.00119	0.00125

	BY-AP-MW-14V	BY-AP-MW-15
3/1/2016		
3/2/2016		0.0279
4/19/2016		0.0269
4/20/2016		
6/8/2016		0.0293
8/30/2016		
8/31/2016		0.0272
10/18/2016		
10/19/2016		0.0285
1/31/2017		0.025
2/1/2017		
5/2/2017		0.0274
5/3/2017		
6/6/2017		0.0285
6/7/2017		
1/22/2018		0.0273
1/23/2018		
1/24/2018		
5/1/2018		0.0298
5/2/2018		
11/27/2018		0.0311
11/28/2018		
1/8/2019		
5/29/2019		0.0343
5/30/2019		
9/30/2019		
10/1/2019		0.0336
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020		0.0344
9/1/2020		
9/2/2020	0.00444 (J)	0.0385
5/11/2021		0.0349
5/18/2021		
5/19/2021		
5/25/2021	0.00271	
10/26/2021	0.00419	0.0347
10/27/2021		
11/1/2021		
11/2/2021		
5/23/2022		
5/24/2022	0.00327	
5/25/2022		0.0364

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		0.0212							0.00842 (J)
4/19/2016		0.018							0.008 (J)
6/8/2016		0.0176							0.00796 (J)
8/31/2016		0.0134							0.00752 (J)
10/19/2016		0.0193							0.00778 (J)
1/31/2017		0.017							0.00647 (J)
5/2/2017		0.0166							0.00686 (J)
6/6/2017		0.0172							0.00694 (J)
1/23/2018		0.00621 (J)							
1/24/2018									0.00592 (J)
5/1/2018		0.0189							0.00693 (J)
11/27/2018		0.0182							0.0066
1/8/2019								0.00911	
3/20/2019						<0.0002			
5/29/2019		0.0206							0.00745
7/31/2019	0.0632			<0.0002			<0.0002		
10/1/2019	0.0629	0.0107				<0.0002	<0.0002		0.00696
10/2/2019				0.0033 (J)				0.00289 (J)	
3/30/2020								<0.0002	
3/31/2020		0.0199							0.00716
4/1/2020				<0.0002		0.013			
8/31/2020									0.00751
9/1/2020	0.0665			0.00258 (J)	0.022	<0.0002	<0.0002	0.00407 (J)	
9/2/2020		0.0192	0.0163						
5/17/2021				0.0013					
5/18/2021					0.0197			0.00483	0.00746
5/19/2021		0.0182	0.0153			0.00109			
5/25/2021	0.0694						0.00294		
10/25/2021				0.00371	0.00915	0.00101	0.00501		
10/26/2021	0.0757		0.0159						
11/1/2021		0.0139						0.00578	0.00706
5/23/2022						0.00108			
5/24/2022	0.0764						0.00513	0.00765	0.00582
5/25/2022		0.0155	0.0139	0.0013	0.0685				

	BY-AP-MW-20H	BY-AP-MW-20V
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
5/2/2017		
6/6/2017		
1/23/2018		
1/24/2018		
5/1/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	0.00433 (J)	
10/1/2019	0.00431 (J)	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	0.00541	
8/31/2020		
9/1/2020	0.0046 (J)	0.012
9/2/2020	.,	
5/17/2021		
5/18/2021		
5/19/2021	0.00426	0.0173
5/25/2021		
10/25/2021		
10/26/2021	0.00447	
11/1/2021		0.0236
5/23/2022	0.00423	
5/24/2022		0.0264
5/25/2022		-

2/1/2016	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016							<0.0000	<0.0002	<0.0002
3/2/2016							<0.0002	<0.0000	
4/19/2016							<0.0002	<0.0002	-0.0000
4/20/2016							0.000	0.0040471	<0.0002
6/7/2016							<0.0002	0.00424 (J)	<0.0002
8/30/2016							-0.0000	0.00262 (J)	<0.0002
8/31/2016							<0.0002		
10/18/2016							.0.000	0.00400 (1)	<0.0002
10/19/2016							<0.0002	0.00469 (J)	
1/31/2017							<0.0002	0.0127 (O)	<0.0002
5/2/2017							<0.0002	0.00891 (J)	
5/3/2017									<0.0002
6/6/2017							<0.0002	0.00217 (J)	
6/7/2017									<0.0002
1/24/2018							<0.0002	<0.0002	<0.0002
5/1/2018							<0.0002	0.0126 (O)	
5/2/2018									<0.0002
11/27/2018							<0.0002	0.00363 (J)	<0.0002
11/28/2018									
1/8/2019				0.00243 (J)					
5/29/2019							<0.0002	0.00549	<0.0002
7/31/2019	0.00233 (J)	0.0031 (J)							
10/1/2019	0.00268 (J)	0.00201 (J)					<0.0002	<0.0002	<0.0002
10/2/2019				0.00513					
3/31/2020				0.00528			<0.0002	0.0205	<0.0002
4/1/2020		0.0206							
9/1/2020	0.00294 (J)	0.0273	<0.0002				<0.0002	0.00657	<0.0002
9/2/2020				0.0061	0.00246 (J)	<0.0002			
5/17/2021			0.000217						
5/18/2021							0.000196 (J)	0.018	
5/24/2021		0.00682			0.00156	0.000422			
5/25/2021	0.00264			0.00542					
10/26/2021	0.00285	0.00495	<0.0002	0.00591					
11/1/2021							0.00016 (J)	0.00478	
11/2/2021					0.00146	0.00037			0.00197
5/24/2022	0.0027			0.00571					
5/25/2022		0.002	<0.0002		0.00132	0.00028	0.00028	0.00455	0.00184

	BY-AP-MW-5V	BY-AP-MW-6
3/1/2016		<0.0002
3/2/2016		
4/19/2016		<0.0002
4/20/2016		
6/7/2016		<0.0002
8/30/2016		<0.0002
8/31/2016		
10/18/2016		
10/19/2016		<0.0002
1/31/2017		<0.0002
5/2/2017		
5/3/2017		<0.0002
6/6/2017		
6/7/2017		<0.0002
1/24/2018		<0.0002
5/1/2018		
5/2/2018		<0.0002
11/27/2018		
11/28/2018		<0.0002
1/8/2019	<0.0002	
5/29/2019		<0.0002
7/31/2019		
10/1/2019		<0.0002
10/2/2019	<0.0002	
3/31/2020	<0.0002	<0.0002
4/1/2020		
9/1/2020	<0.0002	
9/2/2020		<0.0002
5/17/2021		0.000678
5/18/2021		
5/24/2021		
5/25/2021		
10/26/2021		
11/1/2021		
11/2/2021	0.00013 (J)	0.0006
5/24/2022		
5/25/2022	0.00106	0.00098

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						0.0035 (J)	<0.0002	<0.0002	<0.0002
3/1/2016	0.011		<0.0002		<0.0002				
4/19/2016						0.0038 (J)	<0.0002	<0.0002	<0.0002
4/20/2016	0.0148		<0.0002		<0.0002				
6/6/2016						0.00427 (J)			<0.0002
6/7/2016	0.0172		<0.0002				<0.0002	<0.0002	
6/8/2016					<0.0002				
8/30/2016			<0.0002			0.00348 (J)	<0.0002	<0.0002	<0.0002
8/31/2016	0.0175				<0.0002				
10/18/2016			<0.0002			0.00338 (J)	<0.0002	<0.0002	<0.0002
10/19/2016	0.0189				<0.0002				
1/31/2017	0.0165		<0.0002			0.00308 (J)	<0.0002	<0.0002	<0.0002
2/1/2017					<0.0002	()			
5/2/2017						0.00314 (J)	<0.0002	<0.0002	<0.0002
5/3/2017	0.0172		<0.0002		<0.0002	()			
6/6/2017						0.0036 (J)	<0.0002	<0.0002	<0.0002
6/7/2017	0.0173		<0.0002		<0.0002				
1/23/2018					<0.0002	0.00586 (J)	0.0021 (J)	<0.0002	<0.0002
1/24/2018	0.0158		<0.0002		0.0002	0.00000 (0)	0.0021 (0)	0.0002	0.0002
5/1/2018	0.0100		-0.0002				<0.0002	<0.0002	<0.0002
5/2/2018	0.0169		<0.0002		<0.0002	0.00702 (J)	-0.0002	-0.0002	-0.0002
11/26/2018	0.0103		-0.000 <u>2</u>		-0.000 <u>2</u>	0.00702 (3)			<0.0002
11/27/2018			<0.0002			0.0157		<0.0002	<0.000 <u>2</u>
11/28/2018	0.0178		~0.000 <u>2</u>		<0.0002	0.0137		~0.0002	
1/9/2019	0.0176	<0.0002		<0.0002	~0.0002				
		<0.0002		<0.0002					<0.0002
5/28/2019	0.0107		<0.0002			0.0109	0.00249 (1)	<0.0002	<0.0002
5/29/2019	0.0197		<0.0002		-0.0000	0.0109	0.00248 (J)	<0.0002	
5/30/2019	0.0400				<0.0002				
9/30/2019	0.0186		<0.0002		<0.0002				
10/1/2019		<0.0002		<0.0002		0.0100	0.00044 (1)	-0.0000	-0.0000
10/2/2019						0.0129	0.00244 (J)	<0.0002	<0.0002
3/30/2020	0.0172	<0.0002	<0.0002	<0.0002					
3/31/2020					<0.0002	0.0123	0.00224 (J)	<0.0002	<0.0002
9/2/2020	0.0197	<0.0002	<0.0002	<0.0002	<0.0002				
9/8/2020									<0.0002
9/9/2020						0.00697	0.00219 (J)	<0.0002	
5/11/2021			0.000778				0.00194	0.00142	0.00137
5/12/2021						0.00611			
5/18/2021	0.0189	0.000139 (J)		0.000882	0.000725				
10/18/2021								0.00146	0.00139
10/19/2021						0.00517	0.00192		
10/26/2021			0.00079	0.00088					
10/27/2021	0.0206	0.00013 (J)			0.0007				
5/23/2022				0.00092					
5/24/2022	0.023	0.00011 (J)	0.00067		0.00069				
5/31/2022						0.00487	0.00194	0.00149	0.0015

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 7/21/2022 3:45 PM View: Descriptive

Plant Barry Client: Southern Company Data: Barry Ash Pond

	BY-AP-MW-1	BY-AP-MW-10	BY-AP-MW-10V	BY-AP-MW-11	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/1/2016		<3		<3					
3/2/2016	<3				<3		<3		<3
4/19/2016	3.0268								
4/20/2016		<3		0.667	<3		0.398		<3
6/7/2016					1.08		0.812		
6/8/2016	1.59	1.06		0.704					0.631
8/30/2016									0.693
8/31/2016	2.19	0.871		0.726	0.528		0.46 (U)		
10/18/2016									0.626
10/19/2016		1.575 (D)		0.737	0.81		0.601		
1/31/2017	1.23						1.1		0.0723 (U)
2/1/2017		1		0.766	1.11				
5/2/2017	1.62								0.363 (U)
5/3/2017		1.07		0.515	0.639		0.832		
6/6/2017	1.24								0.198 (U)
6/7/2017		0.254 (U)		1.04	0.705		0.752		
1/22/2018							0.898 (U)		
1/23/2018		0.795 (U)		1.17 (U)	1.1 (U)				0.294 (U)
1/24/2018	1.96 (U)								
5/1/2018	1.6								
5/2/2018		0.405		0.505	1.11		0.752		0.522
11/27/2018									0.576
11/28/2018	1.48	0.609		0.232 (U)	0.846		0.523		
1/8/2019			1.35			1.04			
5/29/2019	2.25			0.726	2.06		1.01		0.437 (U)
5/30/2019		0.0949 (U)							
9/30/2019		0.965		0.489 (U)					
10/1/2019	2.84		1.99		0.984		1.07		1.11
10/2/2019						0.896			
3/30/2020	2.31								
3/31/2020		1.14	0.957	0.462 (U)	1.26	0.923	0.725		0.941
4/1/2020									
6/17/2020								1.22	
5/11/2021		1.12 (U)							
5/18/2021	2.99		1.66		1.11	1.31			
5/19/2021				1.15			1.15	0.783 (U)	
5/25/2021									0.978 (U)
10/26/2021							1.74	1.6	
10/27/2021		1.2 (U)	1.44 (U)						0.587 (U)
11/1/2021	2.22				1.79	0.814 (U)			
11/2/2021				0.504 (U)					
5/23/2022				0.452 (U)	1.4	0.962 (U)			
5/24/2022	2.12	1.36 (U)	1.2				0.915 (U)		
5/25/2022								0.951 (U)	1.25

	BY-AP-MW-14V	BY-AP-MW-15
3/1/2016		
3/2/2016		<3
4/19/2016		<3
4/20/2016		
6/7/2016		
6/8/2016		0.557
8/30/2016		
8/31/2016		0.765
10/18/2016		
10/19/2016		0.654
1/31/2017		0.402 (U)
2/1/2017		
5/2/2017		0.578
5/3/2017		
6/6/2017		0.128 (U)
6/7/2017		
1/22/2018		0.768 (U)
1/23/2018		
1/24/2018		
5/1/2018		0.651
5/2/2018		
11/27/2018		0.764
11/28/2018		
1/8/2019		
5/29/2019		0.433
5/30/2019		
9/30/2019		
10/1/2019		0.988
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020		0.527
6/17/2020	0.726	
5/11/2021		0.684 (U)
5/18/2021		
5/19/2021		
5/25/2021	0.859 (U)	
10/26/2021	1.34 (U)	1.95
10/27/2021		
11/1/2021		
11/2/2021		
5/23/2022		
5/24/2022	1.26	
5/25/2022		1.3

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		<3							<3
4/19/2016		<3							<3
6/8/2016		0.344 (U)							0.121 (U)
8/31/2016		0.582							0.348 (U)
10/19/2016		0.448							0.48
1/31/2017		0.653							0.00333 (U)
5/2/2017		0.698							0.4 (U)
6/6/2017		0.548							0.083 (U)
1/23/2018		0.98 (U)							
1/24/2018									0.404 (U)
5/1/2018		0.623							0.457
11/27/2018		0.744							0.359 (U)
1/8/2019								1.06	
5/29/2019		2.51							1.18
7/31/2019	1.09 (D)			0.621 (D)			0.272 (UD)		
10/1/2019	1.51	0.443 (U)				0.6	0.817		0.284 (U)
10/2/2019				1.14				1.03	
3/30/2020								0.579	
3/31/2020		0.341 (U)							0.699
4/1/2020				0.797		1.05			
5/12/2020	1.67						0.691		
6/16/2020			0.642		2.17				
6/17/2020									
5/17/2021				1.64					
5/18/2021					1.05 (U)			0.814 (U)	0.72 (U)
5/19/2021		0.321 (U)	0.496 (U)			0.971 (U)			
5/25/2021	1.72						1.04 (U)		
10/25/2021				1.57	1.04 (U)	1.2	1.03 (U)		
10/26/2021	2.53		0.773 (U)						
11/1/2021		1.28						1.3 (U)	0.523 (U)
5/23/2022						1.03 (U)			
5/24/2022	1.85						1.06 (U)	2	0.732 (U)
5/25/2022		0.927 (U)	1.03 (U)	1.71	5.37				

	BY-AP-MW-20H	BY-AP-MW-20
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
5/2/2017		
6/6/2017		
1/23/2018		
1/24/2018		
5/1/2018		
11/27/2018		
1/8/2019		
5/29/2019		
7/31/2019	0.268 (UD)	
10/1/2019	1.22	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	0.968	
5/12/2020		
6/16/2020		
6/17/2020		0.767
5/17/2021		
5/18/2021		
5/19/2021	1.03 (U)	1.43
5/25/2021		
10/25/2021		
10/26/2021	1.28 (U)	
11/1/2021		1.48
5/23/2022	0.657 (U)	
5/24/2022		
5/25/2022		0.97 (U)

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016								<3	<3
3/2/2016							<3		
4/19/2016							<3	<3	
4/20/2016									3.0801
6/7/2016							0.455	0.287 (U)	1.5
8/30/2016								0.585	1.17
8/31/2016							0.329 (U)		
10/18/2016									1.93
10/19/2016							0.536	1.85	
1/31/2017							0.496	0.25 (U)	1
5/2/2017							0.149 (U)	0.391 (U)	
5/3/2017									1.48
6/6/2017							0.191 (U)	0.183 (U)	
6/7/2017									0.915
1/24/2018							0.543 (U)	0.622 (U)	1.74 (U)
5/1/2018							0.372 (U)	0.0917 (U)	
5/2/2018									0.58
11/27/2018							0.591	0.695	1.43
11/28/2018									
1/8/2019				1.49					
5/29/2019							2.31	0.947	2.16
7/31/2019	0.448 (D)	0.331 (UD)							
10/1/2019	0.508	1.05					1.52	0.7	2.14
10/2/2019				1.24					
3/31/2020				0.577			0.478 (U)	0.323 (U)	0.754
4/1/2020		0.618							
5/12/2020	0.61								
6/16/2020			0.752 (U)						
6/17/2020					0.554	0.479			
5/17/2021			0.374 (U)						
5/18/2021							0.749 (U)	0.734 (U)	
5/24/2021		1.1 (U)			0.545 (U)	0.531 (U)			
5/25/2021	1.26			0.695 (U)					
10/26/2021	1.52	1.13 (U)	0.285 (U)	0.987 (U)					
11/1/2021							0.688 (U)	0.888 (U)	
11/2/2021					0.707 (U)	1.05 (U)			2.06
5/24/2022	0.656 (U)			1.08 (U)					
5/25/2022		0.674 (U)	0.285 (U)		0.682 (U)	0.527 (U)	1.72	0.821 (U)	1.71

	BY-AP-MW-5V	BY-AP-MW-6
3/1/2016		<3
3/2/2016		
4/19/2016		<3
4/20/2016		
6/7/2016		0.353 (U)
8/30/2016		0.428 (U)
8/31/2016		
10/18/2016		
10/19/2016		0.449 (U)
1/31/2017		-0.0173 (U)
5/2/2017		
5/3/2017		0.447
6/6/2017		
6/7/2017		0.572
1/24/2018		1.09 (U)
5/1/2018		
5/2/2018		0.187 (U)
11/27/2018		
11/28/2018		0.478 (U)
1/8/2019	0.298 (U)	
5/29/2019		-0.276 (U)
7/31/2019		
10/1/2019		0.742
10/2/2019	0.206 (U)	
3/31/2020	0.024 (U)	0.291 (U)
4/1/2020		
5/12/2020		
6/16/2020		
6/17/2020		
5/17/2021		1.84
5/18/2021		
5/24/2021		
5/25/2021		
10/26/2021		
11/1/2021		
11/2/2021	0.158 (U)	0.773 (U)
5/24/2022		
5/25/2022	1.03 (U)	1.06 (U)

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						2.8971 (U)	3 (U)	3 (U)	2.1138
3/1/2016	<3		<3		<3				
4/19/2016						3 (U)	3 (U)	3 (U)	3 (U)
4/20/2016	<3		<3		<3				
6/6/2016						0.841			0.757
6/7/2016	0.555 (U)		0.853				0.652	0.342 (U)	
6/8/2016					0.837				
8/30/2016			0.669			1.74	0.411 (U)	0.702	0.992
8/31/2016	0.284 (U)				0.917				
10/18/2016			1.32			1.47	1	0.791	0.905
10/19/2016	0.557 (U)				1.41				
1/31/2017	0.0949 (U)		0.801			0.952	0.398 (U)	0.0613 (U)	1.08
2/1/2017					0.785				
5/2/2017						0.768	0.66	0.974	1.18
5/3/2017	0.53		0.648		1.33				
6/6/2017						1.04	0.639	0.748	1.1
6/7/2017	-0.231 (U)		0.408 (U)		0.758				
1/23/2018	(-,		(-)		1.06 (U)	0.513 (U)	0.669 (U)	0.558 (U)	1.32 (U)
1/24/2018	0.691 (U)		0.706 (U)		(2)	(2)		(0)	(5)
5/1/2018	0.001 (0)		0.700 (0)				1.06	0.296 (U)	1.19
5/2/2018	0.535		0.572		0.983	0.916			
11/26/2018	0.000		0.072		0.000	0.0.0			0.863
11/27/2018			0.687			1.37	0.636	0.357 (U)	0.000
11/28/2018	0.62		0.007		0.747	1.07	0.000	0.007 (0)	
1/9/2019	0.02	0.527		1.69	0.747				
5/28/2019		0.027		1.03					0.474 (U)
5/29/2019	0.244 (U)		0.627 (U)			1.57	0.579 (U)	0.275 (U)	0.474 (0)
5/30/2019	0.244 (0)		0.027 (0)		1.08	1.57	0.575 (0)	0.273 (0)	
9/30/2019	0.388 (U)		0.321 (U)		0.58				
10/1/2019	0.366 (0)	1.01	0.321 (0)	1.66	0.38				
10/1/2019		1.01		1.00		0.905	1.33	0.459 (11)	0.624 (11)
	0.744	0.604	0.6	0.707		0.903	1.33	0.458 (U)	0.624 (U)
3/30/2020	0.744	0.604	0.6	0.787	0.00	4 77	0.014	0.044	1.00
3/31/2020			0.040.//.10		0.82	1.77	0.814	0.941	1.09
5/11/2021			0.648 (U)			0.000 (11)	0.945 (U)	0.521 (U)	0.969 (U)
5/12/2021	0.507.410	0.400 (11)		0.075 (1.1)	0.00 (1.1)	0.639 (U)			
5/18/2021	0.597 (U)	0.199 (U)		0.975 (U)	0.98 (U)				
10/18/2021						4.77	4.05	1.75	2.19
10/19/2021						1.77	1.85		
10/26/2021			1.61	1.61					
10/27/2021	1.46 (U)	0.914 (U)			1.07 (U)				
5/23/2022			4.0	1.13					
5/24/2022	1.05 (U)	0.619 (U)	0.733 (U)		2.11				
5/31/2022						1.34	1.38	1.67	1.47

	BY-AP-MW-1	BY-AP-MW-10	BY-AP-MW-10V	BY-AP-MW-11	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/1/2016		0.02 (J)		0.06 (J)					
3/2/2016	0.03 (J)				0.04 (J)		0.05 (J)		0.07 (J)
4/19/2016	0.052 (J)								
4/20/2016		0.034 (J)		0.073 (J)	0.059 (J)		0.064 (J)		0.076 (J)
6/8/2016	0.069 (J)	0.061 (J)		0.085 (J)	0.08 (J)		0.082 (J)		0.105 (J)
8/30/2016									0.083 (J)
8/31/2016	0.043 (J)	0.04 (J)		0.064 (J)	0.059 (J)		0.062 (J)		. ,
10/18/2016	()	. ,		,	()		()		0.067 (J)
10/19/2016	<0.125	0.03 (J)		0.05 (J)	0.045 (J)		0.049 (J)		(-)
3/21/2017	0.04 (J)	(-)		(-)	(-)		(-)		
3/22/2017	(0)	<0.125		0.05 (J)	0.04 (J)		0.05 (J)		0.06 (J)
5/2/2017	0.05 (J)			(0)	(5)		(0)		0.08 (J)
5/3/2017	0.00 (0)	0.04 (J)		0.06 (J)	0.06 (J)		0.06 (J)		0.00 (0)
6/6/2017	0.049 (J)	0.0 1 (0)		0.00 (0)	0.00 (0)		0.00 (0)		0.077 (J)
6/7/2017	0.040 (0)	0.04 (J)		0.06 (J)	0.06 (J)		0.07 (J)		0.077 (0)
9/13/2017	<0.125 (U*)	0.04 (0)		<0.125 (U*)	<0.125 (U*)		<0.125 (U*)		<0.125 (U*)
9/14/2017	10.125 (O)	0.04 (J)		10.123 (0)	10.123 (0)		·0.125 (0)		10.123 (0)
1/22/2018		0.04 (0)					0.06 (J)		
1/23/2018		<0.125		0.06 (J)	0.05 (1)		0.00 (3)		0.08 (1)
1/24/2018	0.05 (1)	<0.125		0.00 (3)	0.05 (J)				0.08 (J)
	0.05 (J)								
5/1/2018	0.05 (J)	-0.12E		0.06 (1)	0.06 (1)		0.07 (1)		0.08 (1)
5/2/2018		<0.125		0.06 (J)	0.06 (J)		0.07 (J)		0.08 (J)
11/27/2018	<0.10E	<0.10E		0.05 (1)	0.04 (1)		0.05 (1)		0.06 (J)
11/28/2018	<0.125	<0.125	0.100	0.05 (J)	0.04 (J)	0.0700 (1)	0.05 (J)		
1/8/2019	0.0050 (1)		0.123	0.0750 (1)	0.0077 (1)	0.0729 (J)	0.0070 (1)		0.0704 (1)
5/29/2019	0.0858 (J)	0.0570 (1)		0.0759 (J)	0.0677 (J)		0.0679 (J)		0.0781 (J)
5/30/2019		0.0573 (J)		0.0700 (1)					
9/30/2019		<0.125		0.0733 (J)					
10/1/2019	0.0744 (J)		0.0517 (J)		0.0682 (J)		0.0703 (J)		0.0885 (J)
10/2/2019						0.12			
3/30/2020	0.0726 (J)								
3/31/2020		<0.125	<0.125	0.078 (J)	0.0755 (J)	0.0828 (J)	0.0665 (J)		0.0867 (J)
4/1/2020									
9/1/2020	0.194	0.0794 (J)	0.0695 (J)	0.0841 (J)	0.0845 (J)	0.0947 (J)	0.0757 (J)		
9/2/2020								0.0864 (J)	0.0957 (J)
5/11/2021		0.105							
5/18/2021	0.0884 (J)		<0.125		0.0614 (J)	0.0783 (J)			
5/19/2021				0.0994 (J)			0.0748 (J)	0.0884 (J)	
5/25/2021									0.0957 (J)
10/26/2021							0.0641 (J)	0.096 (J)	
10/27/2021		<0.125	<0.125						0.0651 (J)
11/1/2021	0.181				0.0928 (J)	0.123			
11/2/2021				0.101					
5/23/2022				0.0709 (J)	0.0873 (J)	<0.125			
5/24/2022	0.0801 (J)	<0.125 (D)	<0.125				0.0769 (J)		
5/25/2022								<0.125	0.0733 (J)

Constituent: Fluoride, total (mg/L) Analysis Run 7/21/2022 3:45 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

	BY-AP-MW-14V	BY-AP-MW-15
3/1/2016		
3/2/2016		0.18 (J)
4/19/2016		0.21 (J)
4/20/2016		
6/8/2016		0.223 (J)
8/30/2016		
8/31/2016		0.196 (J)
10/18/2016		
10/19/2016		0.166 (J)
3/21/2017		0.18
3/22/2017		
5/2/2017		0.18
5/3/2017		
6/6/2017		0.18
6/7/2017		
9/13/2017		<0.125 (U*)
9/14/2017		
1/22/2018		0.19
1/23/2018		
1/24/2018		
5/1/2018		0.19
5/2/2018		
11/27/2018		0.18
11/28/2018		
1/8/2019		
5/29/2019		0.168
5/30/2019		
9/30/2019		
10/1/2019		0.185
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020		0.187
9/1/2020	0.050	0.40
9/2/2020	0.359	0.18
5/11/2021		0.214
5/18/2021		
5/19/2021	0.070	
5/25/2021	0.378	0.474
10/26/2021	0.384	0.171
10/27/2021		
11/1/2021		
11/2/2021		
5/23/2022	0.201	
5/24/2022 5/25/2022	0.291	0.214
312312022		0.214

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		0.04 (J)							0.04 (J)
4/19/2016		0.05 (J)							0.038 (J)
6/8/2016		0.073 (J)							0.067 (J)
8/31/2016		0.051 (J)							0.05 (J)
10/19/2016		<0.125							<0.125
3/21/2017		0.04 (J)							<0.125
5/2/2017		0.05 (J)							0.04 (J)
6/6/2017		0.053 (J)							0.04 (J)
9/12/2017									0.037 (J)
9/13/2017		<0.125 (U*)							
1/23/2018		0.05 (J)							
1/24/2018									<0.125
5/1/2018		0.05 (J)							<0.125
11/27/2018		<0.125							<0.125
1/8/2019								0.0548 (J)	
3/20/2019						0.215			
5/29/2019		0.0683 (J)							<0.125
7/31/2019	0.0515 (J)			0.178			0.153		
10/1/2019	0.0931 (J)	0.0774 (J)				0.071 (J)	0.0712 (J)		<0.125
10/2/2019				0.254				0.0595 (J)	
3/30/2020								<0.125	
3/31/2020		0.0602 (J)							<0.125
4/1/2020				0.151		0.0722 (J)			
8/31/2020									<0.125
9/1/2020	0.0624 (J)			0.196	0.144	0.0784 (J)	0.0752 (J)	<0.125	
9/2/2020		<0.125	<0.125						
5/17/2021				0.148					
5/18/2021					0.16			<0.125	<0.125
5/19/2021		0.0793 (J)	<0.125			0.0886 (J)			
5/25/2021	<0.125						0.0673 (J)		
10/25/2021				0.162	0.172	0.11	<0.125		
10/26/2021	0.0808 (J)		<0.125						
11/1/2021		0.0887 (J)						<0.125	<0.125
5/23/2022						0.0857 (J)			
5/24/2022	<0.125 (D)						<0.125	<0.125	<0.125
5/25/2022		<0.125	<0.125	0.138	0.0799 (J)				

	BY-AP-MW-20H	BY-AP-MW-20V
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
3/21/2017		
5/2/2017		
6/6/2017		
9/12/2017		
9/13/2017		
1/23/2018		
1/24/2018		
5/1/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	0.0934 (J)	
10/1/2019	0.0838 (J)	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	0.0793 (J)	
8/31/2020		
9/1/2020	0.0954 (J)	0.106
9/2/2020		
5/17/2021		
5/18/2021		
5/19/2021	0.0852 (J)	0.123
5/25/2021		
10/25/2021		
10/26/2021	0.114	
11/1/2021		0.14
5/23/2022	0.124 (J)	
5/24/2022	.,	0.0811 (J)
5/25/2022		

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016								0.02 (J)	0.04 (J)
3/2/2016							0.01 (J)		
4/19/2016							0.014 (J)	0.016 (J)	
4/20/2016									0.043 (J)
6/7/2016							0.049 (J)	0.047 (J)	0.075 (J)
8/30/2016								0.035 (J)	0.057 (J)
8/31/2016							0.034 (J)		
10/18/2016									0.049 (J)
10/19/2016							0.023 (J)	0.025 (J)	
3/21/2017							<0.125	<0.125	
3/22/2017									0.04 (J)
5/2/2017							<0.125	<0.125	
5/3/2017									0.05 (J)
6/6/2017							<0.125	<0.125	
6/7/2017									0.05 (J)
9/12/2017							<0.125	<0.125	
9/14/2017									0.06 (J)
1/24/2018							<0.125	<0.125	0.05 (J)
5/1/2018							<0.125	<0.125	
5/2/2018									0.05 (J)
11/27/2018							<0.125	<0.125	<0.125
11/28/2018									
1/8/2019				0.147					
5/29/2019							<0.125	<0.125	0.0923 (J)
7/31/2019	0.257	0.0766 (J)							
10/1/2019	0.268	0.0804 (J)					<0.125	<0.125	0.0557 (J)
10/2/2019				0.183					
3/31/2020				0.148			<0.125	<0.125	0.0735 (J)
4/1/2020		0.0607 (J)							
9/1/2020	0.301	0.0919 (J)	0.401				<0.125	<0.125	0.0921 (J)
9/2/2020				0.158	<0.125	<0.125			
5/17/2021			0.379						
5/18/2021							<0.125	<0.125	
5/24/2021		0.0734 (J)			<0.125	<0.125			
5/25/2021	0.282			0.156					
10/26/2021	0.323	0.0709 (J)	0.445	0.158					
11/1/2021							<0.125	<0.125	
11/2/2021					<0.125	<0.125			0.0964 (J)
5/24/2022	0.318			0.135					
5/25/2022		<0.125	0.385		<0.125	<0.125	<0.125	<0.125	<0.125

	BY-AP-MW-5V	BY-AP-MW-6
3/1/2016		<0.125
3/2/2016		
4/19/2016		0.016 (J)
4/20/2016		
6/7/2016		0.048 (J)
8/30/2016		0.034 (J)
8/31/2016		
10/18/2016		
10/19/2016		0.023 (J)
3/21/2017		
3/22/2017		<0.125
5/2/2017		
5/3/2017		<0.125
6/6/2017		
6/7/2017		<0.125
9/12/2017		
9/14/2017		<0.125
1/24/2018		<0.125
5/1/2018		
5/2/2018		<0.125
11/27/2018		
11/28/2018		<0.125
1/8/2019	<0.125	
5/29/2019		<0.125
7/31/2019		
10/1/2019		<0.125
10/2/2019	0.0777 (J)	
3/31/2020	<0.125	<0.125
4/1/2020		
9/1/2020	0.0807 (J)	
9/2/2020		<0.125
5/17/2021		<0.125
5/18/2021		
5/24/2021		
5/25/2021		
10/26/2021		
11/1/2021		
11/2/2021	0.0627 (J)	<0.125
5/24/2022		
5/25/2022	<0.125	<0.125

Part										
14182016 14182016	2/23/2016	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9				
14900118		0.06 (1)		0.03 (1)		0.04 (1)	0.00 (0)	0.02 (0)	0.02 (0)	0.02 (0)
		0.00 (0)		0.00 (0)		0.04 (0)	0.023 (1)	0.021 (1)	0.016 (1)	0.015 (1)
600016 1011 1		0.078 (1)		0.043 (1)		0.052 (1)	0.025 (5)	0.021 (3)	0.010 (3)	0.013 (0)
682016		0.070 (3)		0.043 (0)		0.032 (3)	0.062 (1)			0.05 (1)
March Marc		0.101 (1)		0.069 (1)			0.002 (3)	0.06 (1)	0.052 (1)	0.03 (0)
1000016		0.101 (3)		0.003 (3)		0.077 (1)		0.00 (0)	0.032 (3)	
10182016				0.052 (1)		0.077 (3)	0.053 (1)	0.05 (1)	0.038 (1)	0.036 (1)
10192016		0.086 (1)		0.032 (3)		0.056 (1)	0.033 (3)	0.03 (3)	0.038 (3)	0.030 (3)
10192016 0.075 (J)		0.080 (3)		0.042 (1)		0.056 (3)	0.042 (1)	0.04 (1)	0.03 (1)	0.035 (1)
		0.075 (1)		0.042 (3)		0.045 (1)	0.042 (3)	0.04 (3)	0.03 (3)	0.023 (3)
2022017 08 (0)		0.075 (3)				0.045 (3)	<0.10E	-0.10E	<0.10E	-0.10F
		0.06 (1)		-0.105		0.05 (1)	<0.125	<0.125	<0.125	<0.125
		0.06 (3)		<0.125		0.05 (3)	0.04 (ID)	0.04 (10)	0.075 (D)	0.075 (D)
68/2017		0.00 (1)		0.05 (1)		0.00(1)	0.04 (JD)	0.04 (JD)	0.075 (D)	0.075 (D)
677/2017 0.08 (J)		0.08 (3)		0.05 (J)		0.06 (J)	0.075 (D)	0.04 (ID)	0.075 (D)	0.075 (D)
91122017		0.00 (1)		0.05 (1)		0.00(1)	0.075 (D)	0.04 (JD)	0.075 (D)	0.075 (D)
9/13/2017		0.08 (3)		0.05 (J)		0.06 (J)				0.405
91/42017							0.0470	0.040 (1)	0.105	<0.125
1/23/2018		0.07 (1)		0.05 (1)		0.07 (1)	0.04 (J)	0.043 (J)	<0.125	
1/24/2018 0.09 ()		0.07 (J)		0.05 (J)			.0.105	0.04 (1)	0.105	0.405
		0.00 (1)		0.04 (1)		0.06 (J)	<0.125	0.04 (J)	<0.125	<0.125
5/2/2018		0.09 (J)		0.04 (J)						
11/26/2018		0.00 (1)		0.04 (1)		0.05 (1)	0.0470	0.04 (J)	<0.125	<0.125
11/27/2018		0.08 (J)		0.04 (J)		0.05 (J)	0.04 (J)			0.405
11/28/2018 0.07 (J)				0.405			0.405	0.405	0.405	<0.125
19/2019		0.07 (1)		<0.125		0.04 (1)	<0.125	<0.125	<0.125	
		0.07 (J)	0.400		0.0004 (1)	0.04 (J)				
5/29/2019			0.139		0.0831 (J)					0.405
\$\frac{5}{30}\text{2019}										<0.125
9/30/2019 0.0925 (J) 0.0559 (J) 0.0679 (J) 0.0679 (J) 10/1/2019 0.0871 (J) 0.0832 (J) 0.0832 (J) 0.0832 (J) 0.0833 (J) 0.127 0.0701 (J) 0.0935 (J) 0.0935 (J) 0.0955 (J) 0.0655 (J) 0.025 0.125		0.0937 (J)		0.0958 (J)		0.0700 (1)	0.0502 (J)	<0.125	<0.125	
10/1/2019		0.0005 (1)		0.0550 (1)						
10/2/2019		0.0925 (J)	0.0074 (1)	0.0559 (J)	0.0000 (1)	0.0679 (J)				
3/30/2020 0.0933 (J) 0.127 0.0701 (J) 0.0935 (J)			0.0871 (J)		0.0832 (J)					
3/31/2020		0.0000 (1)	0.107	0.0701 (1)	0.0005 (1)		<0.125	<0.125	<0.125	<0.125
9/2/2020 0.109 0.126 <0.125 0.098 (J) 0.0804 (J)		0.0933 (J)	0.127	0.0701 (3)	0.0935 (J)	0.0055 (1)	-0.105	10.105	10.105	-0.105
9/8/2020		0.100	0.400	0.405	0.000 (1)		<0.125	<0.125	<0.125	<0.125
9/9/2020 5/11/2021		0.109	0.126	<0.125	0.098 (J)	0.0804 (J)				-0.105
5/11/2021 0.094 (J) < 0.125							.0.105	0.105	0.105	<0.125
5/12/2021 < 0.11				0.00470			<0.125			0.405
5/18/2021 0.11 0.112 0.0958 (J) 0.0709 (J) 10/18/2021 <				0.094 (J)				<0.125	<0.125	<0.125
10/18/2021 <		0.11	0.440		0.0050 (1)	0.0700 (1)	<0.125			
10/19/2021 <0.125		0.11	0.112		0.0958 (J)	0.0709 (J)			0.105	0.405
10/26/2021 <0.125							0.405	0.405	<0.125	<0.125
10/27/2021 0.0823 (J) 0.0795 (J) 0.0803 (J) 5/23/2022 0.0724 (J) 0.0869 (J) 0.0713 (J) <0.125				-0.12F	0.107		<0.125	<0.125		
5/23/2022 0.0724 (J) 0.0869 (J) 0.0713 (J) <0.125		0.0000 / "	0.0705 ()	<u.125< td=""><td>0.107</td><td>0.0000 ())</td><td></td><td></td><td></td><td></td></u.125<>	0.107	0.0000 ())				
5/24/2022 0.0724 (J) 0.0869 (J) 0.0713 (J) <0.125		U.U823 (J)	0.0795 (J)		0.109 (1)	บ.บ8U3 (J)				
		0.070475	0.0000 ()	0.0740 ();	U. 108 (J)	10.105				
313 11202Z <0.125 <0.125 <0.125 <0.125		U.U/24 (J)	U.U809 (J)	U.U/13 (J)		<u.125< td=""><td><0.125</td><td>-0 12E</td><td>-0 12E</td><td><0.12E</td></u.125<>	<0.125	-0 12E	-0 12E	<0.12E
	3/3/1/2022						~U. IZO	~U. 120	~U. 120	~ 0.12∂

3/1/2016	BY-AP-MW-1	BY-AP-MW-10 <0.0002	BY-AP-MW-10V	BY-AP-MW-11 <0.0002	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/2/2016	<0.0002				<0.0002		<0.0002		<0.0002
4/19/2016	<0.0002								
4/20/2016		<0.0002		<0.0002	<0.0002		<0.0002		<0.0002
6/8/2016	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002		<0.0002
8/30/2016	0.0002	0.0002		0.0002	0.0002		0.0002		<0.0002
8/31/2016	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002		
10/18/2016									<0.0002
10/19/2016	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002		
1/31/2017	<0.0002						<0.0002		<0.0002
2/1/2017		<0.0002		<0.0002	<0.0002				
5/2/2017	<0.0002								<0.0002
5/3/2017		<0.0002		<0.0002	<0.0002		<0.0002		
6/6/2017	<0.0002								<0.0002
6/7/2017		<0.0002		<0.0002	<0.0002		<0.0002		
1/22/2018							<0.0002		
1/23/2018		<0.0002		<0.0002	<0.0002				<0.0002
1/24/2018	<0.0002								
5/1/2018	<0.0002								
5/2/2018		<0.0002		<0.0002	<0.0002		<0.0002		<0.0002
11/27/2018									<0.0002
11/28/2018	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002		
1/8/2019			<0.0002			<0.0002			
5/29/2019	<0.0002			<0.0002	<0.0002		<0.0002		<0.0002
5/30/2019		<0.0002							
9/30/2019		<0.0002		<0.0002					
10/1/2019	<0.0002		<0.0002		<0.0002		<0.0002		<0.0002
10/2/2019						<0.0002			
3/30/2020	<0.0002								
3/31/2020		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002
4/1/2020									
9/1/2020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
9/2/2020								<0.0002	<0.0002
5/11/2021		<0.0002							
5/18/2021	<0.0002		<0.0002		0.000326	8.16E-05 (J)			
5/19/2021				0.000102 (J)			<0.0002	<0.0002	
5/25/2021									7.64E-05 (J)
10/26/2021							<0.0002	<0.0002	
10/27/2021		<0.0002	<0.0002						9E-05 (J)
11/1/2021	<0.0002				0.00029	<0.0002			
11/2/2021				0.00013 (J)					
5/23/2022				9E-05 (J)	0.00018 (J)	<0.0002			
5/24/2022	<0.0002	<0.0002	<0.0002				0.00015 (J)		
5/25/2022								<0.0002	0.0001 (J)

	BY-AP-MW-14V	BY-AP-MW-15
3/1/2016		
3/2/2016		<0.0002
4/19/2016		<0.0002
4/20/2016		
6/8/2016		<0.0002
8/30/2016		
8/31/2016		<0.0002
10/18/2016		
10/19/2016		<0.0002
1/31/2017		<0.0002
2/1/2017		
5/2/2017		<0.0002
5/3/2017		
6/6/2017		<0.0002
6/7/2017		
1/22/2018		<0.0002
1/23/2018		
1/24/2018		
5/1/2018		<0.0002
5/2/2018		
11/27/2018		<0.0002
11/28/2018		
1/8/2019		
5/29/2019		<0.0002
5/30/2019		
9/30/2019		
10/1/2019		<0.0002
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020		<0.0002
9/1/2020		
9/2/2020	<0.0002	<0.0002
5/11/2021		<0.0002
5/18/2021		
5/19/2021		
5/25/2021	7.24E-05 (J)	
10/26/2021	<0.0002	<0.0002
10/27/2021		
11/1/2021		
11/2/2021		
5/23/2022		
5/24/2022	<0.0002	
5/25/2022		<0.0002

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		<0.0002							<0.0002
4/19/2016		<0.0002							<0.0002
6/8/2016		<0.0002							<0.0002
8/31/2016		<0.0002							<0.0002
10/19/2016		<0.0002							<0.0002
1/31/2017		<0.0002							<0.0002
5/2/2017		<0.0002							<0.0002
6/6/2017		<0.0002							<0.0002
1/23/2018		<0.0002							
1/24/2018									<0.0002
5/1/2018		<0.0002							<0.0002
11/27/2018		<0.0002							<0.0002
1/8/2019								<0.0002	
3/20/2019						<0.0002			
5/29/2019		<0.0002							<0.0002
7/31/2019	<0.0002			<0.0002			<0.0002		
10/1/2019	<0.0002	<0.0002				<0.0002	<0.0002		<0.0002
10/2/2019				<0.0002				<0.0002	
3/30/2020								<0.0002	
3/31/2020		<0.0002							<0.0002
4/1/2020				<0.0002		<0.0002			
8/31/2020									<0.0002
9/1/2020	<0.0002			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
9/2/2020		<0.0002	<0.0002						
5/17/2021				9.09E-05 (J)					
5/18/2021					0.000137 (J)			<0.0002	<0.0002
5/19/2021		0.000191 (J)	<0.0002			<0.0002			
5/25/2021	<0.0002						<0.0002		
10/25/2021				<0.0002	<0.0002	<0.0002	<0.0002		
10/26/2021	<0.0002		<0.0002						
11/1/2021		<0.0002						<0.0002	<0.0002
5/23/2022						<0.0002			
5/24/2022	0.00011 (J)						<0.0002	<0.0002	<0.0002
5/25/2022		<0.0002	<0.0002	<0.0002	7E-05 (J)				

	BY-AP-MW-20H	BY-AP-MW-20
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
5/2/2017		
6/6/2017		
1/23/2018		
1/24/2018		
5/1/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	<0.0002	
10/1/2019	<0.0002	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	<0.0002	
8/31/2020		
9/1/2020	<0.0002	<0.0002
9/2/2020		
5/17/2021		
5/18/2021		
5/19/2021	0.000224	<0.0002
5/25/2021		
10/25/2021		
10/26/2021	<0.0002	
11/1/2021		<0.0002
5/23/2022	<0.0002	
5/24/2022		<0.0002
5/25/2022		

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016								<0.0002	<0.0002
3/2/2016							<0.0002		
4/19/2016							<0.0002	<0.0002	
4/20/2016									<0.0002
6/7/2016							<0.0002	<0.0002	<0.0002
8/30/2016								<0.0002	<0.0002
8/31/2016							<0.0002		
10/18/2016									<0.0002
10/19/2016							<0.0002	<0.0002	
1/31/2017							<0.0002	<0.0002	<0.0002
5/2/2017							<0.0002	<0.0002	
5/3/2017									<0.0002
6/6/2017							<0.0002	<0.0002	
6/7/2017									<0.0002
1/24/2018							<0.0002	<0.0002	<0.0002
5/1/2018							<0.0002	<0.0002	
5/2/2018									<0.0002
11/27/2018							<0.0002	<0.0002	<0.0002
11/28/2018									
1/8/2019				<0.0002					
5/29/2019							<0.0002	<0.0002	<0.0002
7/31/2019	<0.0002	<0.0002							
10/1/2019	<0.0002	<0.0002					<0.0002	<0.0002	<0.0002
10/2/2019				<0.0002					
3/31/2020				<0.0002			<0.0002	<0.0002	<0.0002
4/1/2020		<0.0002							
9/1/2020	<0.0002	<0.0002	<0.0002				<0.0002	<0.0002	<0.0002
9/2/2020				<0.0002	<0.0002	<0.0002			
5/17/2021			0.000216						
5/18/2021							<0.0002	0.00013 (J)	
5/24/2021		<0.0002			<0.0002	<0.0002			
5/25/2021	<0.0002			<0.0002					
10/26/2021	<0.0002	<0.0002	0.0001 (J)	<0.0002					
11/1/2021							<0.0002	7E-05 (J)	
11/2/2021					<0.0002	<0.0002			<0.0002
5/24/2022	<0.0002			<0.0002					
5/25/2022		<0.0002	0.00012 (J)		<0.0002	<0.0002	<0.0002	0.00018 (J)	<0.0002

	BY-AP-MW-5V	BY-AP-MW-6
3/1/2016		<0.0002
3/2/2016		
4/19/2016		<0.0002
4/20/2016		
6/7/2016		<0.0002
8/30/2016		<0.0002
8/31/2016		
10/18/2016		
10/19/2016		<0.0002
1/31/2017		<0.0002
5/2/2017		
5/3/2017		<0.0002
6/6/2017		
6/7/2017		<0.0002
1/24/2018		<0.0002
5/1/2018		
5/2/2018		<0.0002
11/27/2018		5.0002
11/28/2018		<0.0002
1/8/2019	<0.0002	3.000 <u>L</u>
5/29/2019	0.0002	0.00185 (J)
7/31/2019		J.0010J (J)
		0.00545
10/1/2019 10/2/2019	<0.0002	0.00545
3/31/2020		0.00276 (1)
	<0.0002	0.00276 (J)
4/1/2020	<0.0002	
9/1/2020	<0.0002	0.00171 (!)
9/2/2020		0.00171 (J)
5/17/2021		0.00162
5/18/2021		
5/24/2021		
5/25/2021		
10/26/2021		
11/1/2021		
11/2/2021	<0.0002	0.00336
5/24/2022		
5/25/2022	<0.0002	0.0112

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						<0.0002	<0.0002	<0.0002	<0.0002
3/1/2016	<0.0002		<0.0002		<0.0002				
4/19/2016						<0.0002	<0.0002	<0.0002	<0.0002
4/20/2016	<0.0002		<0.0002		<0.0002				
6/6/2016						<0.0002			<0.0002
6/7/2016	<0.0002		<0.0002				<0.0002	<0.0002	
6/8/2016					<0.0002				
8/30/2016			<0.0002		0.0002	<0.0002	<0.0002	<0.0002	<0.0002
	<0.0000		\0.0002		<0.0000	~0.0002	~0.0002	~0.0002	~0.0002
8/31/2016	<0.0002		-0.0000		<0.0002	-0.0000	-0.0000	-0.0000	-0.0000
10/18/2016			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002
10/19/2016	<0.0002				<0.0002				
1/31/2017	<0.0002		<0.0002			<0.0002	<0.0002	<0.0002	<0.0002
2/1/2017					<0.0002				
5/2/2017						<0.0002	<0.0002	<0.0002	<0.0002
5/3/2017	<0.0002		<0.0002		<0.0002				
6/6/2017						<0.0002	<0.0002	<0.0002	<0.0002
6/7/2017	<0.0002		<0.0002		<0.0002				
1/23/2018					<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
1/24/2018	<0.0002		<0.0002						
5/1/2018							<0.0002	<0.0002	<0.0002
5/2/2018	<0.0002		<0.0002		<0.0002	<0.0002			
11/26/2018									<0.0002
11/27/2018			<0.0002			<0.0002	<0.0002	<0.0002	
11/28/2018	<0.0002		-0.0002		<0.0002	-0.0002	-0.0002	-0.0002	
1/9/2019		<0.0002		<0.0002	-0.000 <u>2</u>				
		<0.0002		<0.0002					-0.0000
5/28/2019	.0.000								<0.0002
5/29/2019	<0.0002		<0.0002			<0.0002	<0.0002	<0.0002	
5/30/2019					0.00108 (J)				
9/30/2019	<0.0002		<0.0002		<0.0002				
10/1/2019		<0.0002		<0.0002					
10/2/2019						<0.0002	<0.0002	<0.0002	<0.0002
3/30/2020	<0.0002	<0.0002	<0.0002	<0.0002					
3/31/2020					<0.0002	<0.0002	<0.0002	<0.0002	0.00126 (J)
9/2/2020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002				
9/8/2020									<0.0002
9/9/2020						<0.0002	<0.0002	<0.0002	
5/11/2021			<0.0002				0.000118 (J)	<0.0002	0.000159 (J)
5/12/2021						9.79E-05 (J)			
5/18/2021	<0.0002	<0.0002		<0.0002	<0.0002				
10/18/2021								<0.0002	0.00012 (J)
10/19/2021						0.00012 (J)	0.0001 (J)		\
10/26/2021			<0.0002	<0.0002		0.00012 (0)	3.3301 (0)		
10/20/2021	<0.0003	<0.0002	-0.0002	-0.0002	<0.0002				
	<0.0002	~U.UUUZ		<0.0002	~U.UUUZ				
5/23/2022	-0.0000	-0.000 2	-0.0000	<0.0002	-0.0000				
5/24/2022	<0.0002	<0.0002	<0.0002		<0.0002	05.05 (1)	05.05.41)		0.00047.45
5/31/2022						8E-05 (J)	8E-05 (J)	<0.0002	0.00017 (J)

3/1/2016	BY-AP-MW-1	BY-AP-MW-10 <0.02	BY-AP-MW-10V	BY-AP-MW-11 <0.02	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/2/2016	<0.02	~0.02		\0.02	<0.02		<0.02		<0.02
4/19/2016	<0.02				10.02		-0.02		10.02
4/20/2016	10.02	<0.02		<0.02	<0.02		<0.02		<0.02
6/8/2016	<0.02	<0.02		<0.02	<0.02		<0.02		<0.02
8/30/2016	10.02	10.02		10.02	10.02		-0.02		<0.02
8/31/2016	<0.02	<0.02		<0.02	<0.02		<0.02		-0.02
10/18/2016	-0.02	-0.02		-0.02	-0.02		10.02		<0.02
10/19/2016	<0.02	<0.02		<0.02	<0.02		<0.02		10.02
1/31/2017	<0.02	-0.02		-0.02	-0.02		<0.02		<0.02
2/1/2017	-0.02	<0.02		<0.02	<0.02		10.02		-0.02
5/2/2017	<0.02	10.02		-0.02	-0.02				<0.02
5/3/2017	10.02	<0.02		<0.02	<0.02		<0.02		10.02
6/6/2017	<0.02	-0.02		-0.02	-0.02		10.02		<0.02
6/7/2017	-0.02	<0.02		<0.02	<0.02		<0.02		-0.02
1/22/2018		-0.02		-0.02	-0.02		<0.02		
1/23/2018		<0.02		<0.02	<0.02		-0.02		<0.02
1/24/2018	<0.02	-0.02		-0.02	-0.02				-0.02
5/1/2018	<0.02								
5/2/2018	-0.02	<0.02		0.0384 (J)	<0.02		<0.02		<0.02
11/27/2018									<0.02
11/28/2018	<0.02	<0.02		0.0262	<0.02		<0.02		
1/8/2019			0.0313			0.0148 (J)			
5/29/2019	<0.02			0.0321	<0.02	(0)	<0.02		<0.02
5/30/2019		<0.02							
9/30/2019		<0.02		0.0228					
10/1/2019	<0.02		<0.02		<0.02		<0.02		<0.02
10/2/2019						<0.02			
3/30/2020	<0.02								
3/31/2020		<0.02	<0.02	0.022	<0.02	<0.02	<0.02		<0.02
4/1/2020									
9/1/2020	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		
9/2/2020								<0.02	<0.02
5/11/2021		<0.02							
5/18/2021	<0.02		<0.02		<0.02	<0.02			
5/19/2021				0.00754 (J)			<0.02	<0.02	
5/25/2021									<0.02
10/26/2021							<0.02	0.0484	
10/27/2021		<0.02	<0.02						<0.02
11/1/2021	<0.02				<0.02	<0.02			
11/2/2021				<0.02					
5/23/2022				0.0269	<0.02	<0.02			
5/24/2022	<0.02	<0.02	<0.02				<0.02		
5/25/2022								0.0318	<0.02

	BY-AP-MW-14V	BY-AP-MW-15
3/1/2016		
3/2/2016		<0.02
4/19/2016		<0.02
4/20/2016		
6/8/2016		<0.02
8/30/2016		
8/31/2016		<0.02
10/18/2016		
10/19/2016		<0.02
1/31/2017		<0.02
2/1/2017		
5/2/2017		<0.02
5/3/2017		
6/6/2017		<0.02
6/7/2017		
1/22/2018		<0.02
1/23/2018		
1/24/2018		
5/1/2018		<0.02
5/2/2018		
11/27/2018		0.0169 (J)
11/28/2018		
1/8/2019		
5/29/2019		0.0254
5/30/2019		
9/30/2019		
10/1/2019		0.0248
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020		0.0174 (J)
9/1/2020		
9/2/2020	<0.02	<0.02
5/11/2021		0.00788 (J)
5/18/2021		
5/19/2021		
5/25/2021	<0.02	
10/26/2021	<0.02	0.0117 (J)
10/27/2021		
11/1/2021		
11/2/2021		
5/23/2022		
5/24/2022	<0.02	
5/25/2022		0.0118 (J)

BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
	<0.02							<0.02
	<0.02							<0.02
	<0.02							<0.02
	<0.02							<0.02
	<0.02							<0.02
	<0.02							<0.02
	<0.02							<0.02
	<0.02							<0.02
	<0.02							
								<0.02
	<0.02							<0.02
	<0.02							<0.02
							0.0219	
					<0.02			
	<0.02							<0.02
<0.02			<0.02			<0.02		
<0.02	<0.02				<0.02	<0.02		<0.02
			<0.02				<0.02	
							<0.02	
	<0.02							<0.02
			<0.02		<0.02			
								<0.02
<0.02			<0.02	<0.02	<0.02	<0.02	<0.02	
	<0.02	<0.02						
			<0.02					
				<0.02			<0.02	<0.02
	<0.02	<0.02			<0.02			
<0.02						<0.02		
			<0.02	<0.02	<0.02	<0.02		
<0.02		<0.02						
	<0.02						<0.02	<0.02
					<0.02			
<0.02						<0.02	<0.02	<0.02
	<0.02	<0.02	<0.02	<0.02				
	<0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<pre><0.02 <0.02 >	 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 	 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 	 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 	-0.02	

	BY-AP-MW-20H	BY-AP-MW-20V
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
5/2/2017		
6/6/2017		
1/23/2018		
1/24/2018		
5/1/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	<0.02	
10/1/2019	<0.02	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	<0.02	
8/31/2020		
9/1/2020	<0.02	<0.02
9/2/2020		
5/17/2021		
5/18/2021		
5/19/2021	<0.02	<0.02
5/25/2021		
10/25/2021		
10/26/2021	<0.02	
11/1/2021		<0.02
5/23/2022	<0.02	
5/24/2022		<0.02
5/25/2022		

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016								<0.02	<0.02
3/2/2016							<0.02		
4/19/2016							<0.02	<0.02	
4/20/2016									<0.02
6/7/2016							<0.02	<0.02	<0.02
8/30/2016								<0.02	<0.02
8/31/2016							<0.02		
10/18/2016									<0.02
10/19/2016							<0.02	<0.02	
1/31/2017							<0.02	<0.02	<0.02
5/2/2017							<0.02	<0.02	
5/3/2017									<0.02
6/6/2017							<0.02	<0.02	
6/7/2017									<0.02
1/24/2018							<0.02	<0.02	<0.02
5/1/2018							<0.02	<0.02	
5/2/2018									<0.02
11/27/2018							<0.02	<0.02	<0.02
11/28/2018									
1/8/2019				0.0183 (J)					
5/29/2019							<0.02	<0.02	<0.02
7/31/2019	<0.02	<0.02							
10/1/2019	<0.02	<0.02					<0.02	<0.02	<0.02
10/2/2019				<0.02					
3/31/2020				<0.02			<0.02	<0.02	<0.02
4/1/2020		<0.02							
9/1/2020	<0.02	<0.02	<0.02				<0.02	<0.02	<0.02
9/2/2020				<0.02	<0.02	<0.02			
5/17/2021			<0.02						
5/18/2021							<0.02	<0.02	
5/24/2021		<0.02			<0.02	<0.02			
5/25/2021	<0.02			<0.02					
10/26/2021	<0.02	<0.02	<0.02	<0.02					
11/1/2021							<0.02	<0.02	
11/2/2021					<0.02	<0.02			<0.02
5/24/2022	<0.02			<0.02					
5/25/2022		<0.02	<0.02		<0.02	<0.02	<0.02	<0.02	<0.02

	BY-AP-MW-5V	BY-AP-MW-6			
3/1/2016		<0.02			
3/2/2016					
4/19/2016		<0.02			
4/20/2016					
6/7/2016		<0.02			
8/30/2016		<0.02			
8/31/2016					
10/18/2016					
10/19/2016		<0.02			
1/31/2017		<0.02			
5/2/2017					
5/3/2017		<0.02			
6/6/2017					
6/7/2017		<0.02			
1/24/2018		<0.02			
5/1/2018					
5/2/2018		<0.02			
11/27/2018					
11/28/2018		<0.02			
1/8/2019	<0.02				
5/29/2019		<0.02			
7/31/2019					
10/1/2019		<0.02			
10/2/2019	<0.02				
3/31/2020	<0.02	<0.02			
4/1/2020					
9/1/2020	<0.02				
9/2/2020		<0.02			
5/17/2021		<0.02			
5/18/2021					
5/24/2021					
5/25/2021					
10/26/2021					
11/1/2021					
11/2/2021	<0.02	<0.02			
5/24/2022					
5/25/2022	<0.02	<0.02			

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						<0.02	<0.02	<0.02	<0.02
3/1/2016	<0.02		<0.02		<0.02				
4/19/2016						<0.02	<0.02	<0.02	<0.02
4/20/2016	<0.02		<0.02		<0.02				
6/6/2016						<0.02			<0.02
6/7/2016	<0.02		<0.02				<0.02	<0.02	
6/8/2016					<0.02				
8/30/2016			<0.02			<0.02	<0.02	<0.02	<0.02
8/31/2016	<0.02				<0.02				
10/18/2016			<0.02			<0.02	<0.02	<0.02	<0.02
10/19/2016	<0.02				<0.02				
1/31/2017	<0.02		<0.02			<0.02	<0.02	<0.02	<0.02
2/1/2017					<0.02				
5/2/2017						<0.02	<0.02	<0.02	<0.02
5/3/2017	<0.02		<0.02		<0.02				
6/6/2017						<0.02	<0.02	<0.02	<0.02
6/7/2017	<0.02		<0.02		<0.02				
1/23/2018					<0.02	<0.02	<0.02	<0.02	<0.02
1/24/2018	<0.02		<0.02						
5/1/2018							<0.02	<0.02	<0.02
5/2/2018	0.0108 (J)		<0.02		<0.02	<0.02			
11/26/2018									<0.02
11/27/2018			<0.02			<0.02	<0.02	<0.02	
11/28/2018	<0.02				<0.02				
1/9/2019		0.0662		0.0217					
5/28/2019									<0.02
5/29/2019	<0.02		<0.02			<0.02	<0.02	<0.02	
5/30/2019					<0.02				
9/30/2019	<0.02		<0.02		<0.02				
10/1/2019		<0.02		<0.02					
10/2/2019						<0.02	<0.02	<0.02	<0.02
12/2/2019		<0.02							
3/30/2020	0.0102 (J)	<0.02	<0.02	<0.02					
3/31/2020					<0.02	<0.02	<0.02	<0.02	<0.02
9/2/2020	<0.02	<0.02	<0.02	<0.02	<0.02				
9/8/2020									<0.02
9/9/2020						<0.02	<0.02	<0.02	
5/11/2021			<0.02				<0.02	<0.02	<0.02
5/12/2021						<0.02			
5/18/2021	0.0882	<0.02		<0.02	<0.02				
10/18/2021								<0.02	<0.02
10/19/2021						<0.02	<0.02		
10/26/2021	.0.00	0.00740./:	<0.02	<0.02	0.00				
10/27/2021	<0.02	0.00746 (J)		0.00	<0.02				
5/23/2022	.0.00		0.00	<0.02	0.00				
5/24/2022	<0.02	<0.02	<0.02		<0.02	-0.00	-0.00	-0.00	-0.00
5/31/2022						<0.02	<0.02	<0.02	<0.02

3/1/2016	BY-AP-MW-1	BY-AP-MW-10 <0.0005	BY-AP-MW-10V	BY-AP-MW-11 <0.0005	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/2/2016	<0.0005	0.000		0.000	<0.0005		<0.0005		<0.0005
4/19/2016	<0.0005								
4/20/2016		<0.0005		<0.0005	<0.0005		<0.0005		<0.0005
6/8/2016	<0.0005	<0.0005		<0.0005	<0.0005		<0.0005		<0.0005
8/30/2016									<0.0005
8/31/2016	<0.0005	<0.0005		<0.0005	<0.0005		<0.0005		
10/18/2016									<0.0005
10/19/2016	<0.0005	<0.0005		<0.0005	<0.0005		<0.0005		
1/31/2017	<0.0005						<0.0005		<0.0005
2/1/2017		<0.0005		<0.0005	<0.0005				
5/2/2017	<0.0005								<0.0005
5/3/2017		<0.0005		<0.0005	<0.0005		<0.0005		
6/6/2017	<0.0005								<0.0005
6/7/2017		<0.0005		<0.0005	<0.0005		<0.0005		
1/22/2018							<0.0005		
1/23/2018		<0.0005		<0.0005	<0.0005				<0.0005
1/24/2018	<0.0005								
5/1/2018	<0.0005								
5/2/2018		<0.0005		<0.0005	<0.0005		<0.0005		<0.0005
11/27/2018									<0.0005
11/28/2018	<0.0005	<0.0005		<0.0005	<0.0005		<0.0005		
1/8/2019			<0.0005			<0.0005			
5/29/2019	<0.0005			<0.0005	<0.0005		<0.0005		<0.0005
5/30/2019		<0.0005							
7/31/2019		<0.0005							
9/30/2019		<0.0005		<0.0005					
10/1/2019	<0.0005		<0.0005		<0.0005		<0.0005		<0.0005
10/2/2019						<0.0005			
3/30/2020	<0.0005								
3/31/2020		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005
4/1/2020									
9/1/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
9/2/2020		.0.005						<0.0005	<0.0005
5/11/2021	.0.005	<0.0005			0.0005	.0.005			
5/18/2021	<0.0005		<0.0005	-0.0005	<0.0005	<0.0005	-0.0005	10.0005	
5/19/2021				<0.0005			<0.0005	<0.0005	<0.000E
5/25/2021 10/26/2021							<0.0005	<0.0005	<0.0005
10/27/2021		<0.0005	<0.0005				<0.0003	<0.0005	<0.0005
11/1/2021	<0.0005	~0.0003	<0.0003		<0.0005	<0.0005			<0.0003
11/2/2021	-0.0000			<0.0005	-0.0000	-0.0000			
5/23/2022				<0.0005	<0.0005	<0.0005			
5/24/2022	<0.0005	<0.0005	<0.0005	2.0000	3.0000	5.5555	<0.0005		
5/25/2022	3.0000	3.0000	3.0000				5.5555	<0.0005	<0.0005
								0.0000	3.0000

	BY-AP-MW-14V	BY-AP-MW-15
3/1/2016		
3/2/2016		<0.0005
4/19/2016		<0.0005
4/20/2016		
6/8/2016		<0.0005
8/30/2016		
8/31/2016		<0.0005
10/18/2016		
10/19/2016		<0.0005
1/31/2017		<0.0005
2/1/2017		
5/2/2017		<0.0005
5/3/2017		
6/6/2017		<0.0005
6/7/2017		
1/22/2018		<0.0005
1/23/2018		
1/24/2018		
5/1/2018		<0.0005
5/2/2018		
11/27/2018		<0.0005
11/28/2018		
1/8/2019		
5/29/2019		<0.0005
5/30/2019		
7/31/2019		
9/30/2019		
10/1/2019		<0.0005
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020		<0.0005
9/1/2020		
9/2/2020	<0.0005	<0.0005
5/11/2021		<0.0005
5/18/2021		
5/19/2021		
5/25/2021	<0.0005	
10/26/2021	<0.0005	<0.0005
10/27/2021		
11/1/2021		
11/2/2021		
5/23/2022		
5/24/2022	<0.0005	
5/25/2022		<0.0005

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		<0.0005							<0.0005
4/19/2016		<0.0005							<0.0005
6/8/2016		<0.0005							<0.0005
8/31/2016		<0.0005							<0.0005
10/19/2016		<0.0005							<0.0005
1/31/2017		<0.0005							<0.0005
5/2/2017		<0.0005							<0.0005
6/6/2017		<0.0005							<0.0005
1/23/2018		<0.0005							
1/24/2018									<0.0005
5/1/2018		<0.0005							<0.0005
11/27/2018		<0.0005							<0.0005
1/8/2019								<0.0005	
3/20/2019						<0.0005			
5/29/2019		<0.0005							<0.0005
7/31/2019	<0.0005			<0.0005			<0.0005		
10/1/2019	<0.0005	<0.0005				<0.0005	<0.0005		<0.0005
10/2/2019				<0.0005				<0.0005	
3/30/2020								<0.0005	
3/31/2020		<0.0005							<0.0005
4/1/2020				<0.0005		<0.0005			
8/31/2020									<0.0005
9/1/2020	<0.0005			<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
9/2/2020		<0.0005	<0.0005						
5/17/2021				<0.0005					
5/18/2021					<0.0005			<0.0005	<0.0005
5/19/2021		<0.0005	<0.0005			<0.0005			
5/25/2021	<0.0005						<0.0005		
10/25/2021				<0.0005	<0.0005	<0.0005	<0.0005		
10/26/2021	<0.0005		<0.0005						
11/1/2021		<0.0005						<0.0005	<0.0005
5/23/2022						<0.0005			
5/24/2022	<0.0005						<0.0005	<0.0005	<0.0005
5/25/2022		<0.0005	<0.0005	<0.0005	<0.0005				

	BY-AP-MW-20H	BY-AP-MW-20
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
5/2/2017		
6/6/2017		
1/23/2018		
1/24/2018		
5/1/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	<0.0005	
10/1/2019	<0.0005	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	<0.0005	
8/31/2020		
9/1/2020	<0.0005	<0.0005
9/2/2020		
5/17/2021		
5/18/2021		
5/19/2021	<0.0005	<0.0005
5/25/2021		
10/25/2021		
10/26/2021	<0.0005	
11/1/2021	2.0000	<0.0005
5/23/2022	<0.0005	2.0000
5/24/2022	2.0000	<0.0005
5/25/2022		2.0000

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	DV AD MW 2	BY-AP-MW-4	BY-AP-MW-5
3/1/2016	DI-AF-WW-ZZII	D1-AF-WW-2311	DI-AF-WW-25V	D1-AF-WW-2411	D1-AF-WW-2511	DI-AF-WW-25VW	BT-AF-WW-5	<0.0005	<0.0005
3/2/2016							<0.0005	10.0003	10.0003
4/19/2016							<0.0005	<0.0005	
4/20/2016							-0.0003	10.0003	<0.0005
6/7/2016							<0.0005	<0.0005	<0.0005
8/30/2016							-0.0003	<0.0005	<0.0005
8/31/2016							<0.0005	-0.0000	-0.0000
10/18/2016							-0.0003		<0.0005
10/19/2016							<0.0005	<0.0005	10.0003
1/31/2017							<0.0005	<0.0005	<0.0005
5/2/2017							<0.0005	<0.0005	-0.0000
5/3/2017							-0.0000	-0.0000	<0.0005
6/6/2017							<0.0005	<0.0005	-0.0000
6/7/2017							0.0000	0.0000	<0.0005
1/24/2018							<0.0005	<0.0005	<0.0005
5/1/2018							<0.0005	<0.0005	
5/2/2018									<0.0005
11/27/2018							<0.0005	<0.0005	<0.0005
11/28/2018									
1/8/2019				<0.0005					
5/29/2019							<0.0005	<0.0005	<0.0005
7/31/2019	<0.0005	<0.0005							
10/1/2019	<0.0005	<0.0005					<0.0005	<0.0005	<0.0005
10/2/2019				<0.0005					
3/31/2020				<0.0005			<0.0005	<0.0005	<0.0005
4/1/2020		<0.0005							
9/1/2020	<0.0005	<0.0005	<0.0005				<0.0005	<0.0005	<0.0005
9/2/2020				<0.0005	<0.0005	<0.0005			
5/17/2021			<0.0005						
5/18/2021							<0.0005	<0.0005	
5/24/2021		<0.0005			<0.0005	<0.0005			
5/25/2021	<0.0005			<0.0005					
10/26/2021	<0.0005	<0.0005	<0.0005	<0.0005					
11/1/2021							<0.0005	<0.0005	
11/2/2021					<0.0005	<0.0005			<0.0005
5/24/2022	<0.0005			<0.0005					
5/25/2022		<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005

	BY-AP-MW-5V	BY-AP-MW-6
3/1/2016		<0.0005
3/2/2016		
4/19/2016		<0.0005
4/20/2016		
6/7/2016		<0.0005
8/30/2016		<0.0005
8/31/2016		
10/18/2016		
10/19/2016		<0.0005
1/31/2017		<0.0005
5/2/2017		
5/3/2017		<0.0005
6/6/2017		
6/7/2017		<0.0005
1/24/2018		<0.0005
5/1/2018		
5/2/2018		<0.0005
11/27/2018		
11/28/2018		<0.0005
1/8/2019	<0.0005	
5/29/2019		<0.0005
7/31/2019		
10/1/2019		<0.0005
10/2/2019	<0.0005	
3/31/2020	<0.0005	<0.0005
4/1/2020		
9/1/2020	<0.0005	
9/2/2020		<0.0005
5/17/2021		<0.0005
5/18/2021		
5/24/2021		
5/25/2021		
10/26/2021		
11/1/2021		
11/2/2021	<0.0005	<0.0005
5/24/2022		
5/25/2022	<0.0005	<0.0005

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						<0.0005	<0.0005	<0.0005	<0.0005
3/1/2016	<0.0005		<0.0005		<0.0005				
4/19/2016						<0.0005	<0.0005	<0.0005	<0.0005
4/20/2016	<0.0005		<0.0005		<0.0005				
6/6/2016						<0.0005			<0.0005
6/7/2016	<0.0005		<0.0005				<0.0005	<0.0005	
6/8/2016					<0.0005				
8/30/2016			<0.0005			<0.0005	<0.0005	<0.0005	<0.0005
8/31/2016	<0.0005				<0.0005				
10/18/2016			<0.0005			<0.0005	<0.0005	<0.0005	<0.0005
10/19/2016	<0.0005				<0.0005				
1/31/2017	<0.0005		<0.0005			<0.0005	<0.0005	<0.0005	<0.0005
2/1/2017					<0.0005				
5/2/2017						<0.0005	<0.0005	<0.0005	<0.0005
5/3/2017	<0.0005		<0.0005		<0.0005				
6/6/2017						<0.0005	<0.0005	<0.0005	<0.0005
6/7/2017	<0.0005		<0.0005		<0.0005	0.000	0.0000	0.0000	0.000
1/23/2018					<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
1/24/2018	<0.0005		<0.0005		0.0000	0.000	0.0000	0.0000	0.000
5/1/2018	-0.0000		-0.0000				<0.0005	<0.0005	<0.0005
5/2/2018	<0.0005		<0.0005		<0.0005	<0.0005	-0.0000	-0.0000	-0.0000
11/26/2018	-0.0000		-0.0000		-0.0000	-0.0000			<0.0005
11/27/2018			<0.0005			<0.0005	<0.0005	<0.0005	10.0003
11/28/2018	<0.0005		-0.0003		<0.0005	~0.0003	~0.0003	~0.0003	
1/9/2019	10.0003	<0.0005		<0.0005	10.0003				
		<0.0005		<0.0005					<0.000E
5/28/2019 5/29/2019	<0.0005		<0.0005			<0.0005	<0.0005	<0.0005	<0.0005
	<0.0005		<0.0005		<0.000E	<0.0003	<0.0005	<0.0005	
5/30/2019	-0.0005		-0.0005		<0.0005				
9/30/2019	<0.0005	.0.005	<0.0005	.0.005	<0.0005				
10/1/2019		<0.0005		<0.0005		-0.0005	-0.0005	-0.0005	-0.0005
10/2/2019		.0.005				<0.0005	<0.0005	<0.0005	<0.0005
3/30/2020	<0.0005	<0.0005	<0.0005	<0.0005	.0.005			.0.005	
3/31/2020					<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
9/2/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
9/8/2020									<0.0005
9/9/2020						<0.0005	<0.0005	<0.0005	
5/11/2021			<0.0005				<0.0005	<0.0005	<0.0005
5/12/2021						<0.0005			
5/18/2021	<0.0005	<0.0005		<0.0005	<0.0005				
10/18/2021								<0.0005	<0.0005
10/19/2021						<0.0005	<0.0005		
10/26/2021			<0.0005	<0.0005					
10/27/2021	<0.0005	<0.0005			<0.0005				
5/23/2022				<0.0005					
5/24/2022	<0.0005	<0.0005	<0.0005		<0.0005				
5/31/2022						<0.0005	<0.0005	<0.0005	<0.0005

3/1/2016	BY-AP-MW-1	BY-AP-MW-10 <0.0002	BY-AP-MW-10V	BY-AP-MW-11 <0.0002	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/2/2016	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002		<0.0002
					<0.0002		<0.0002		\0.0002
4/19/2016	<0.0002	<0.0000		<0.0002	-0.0000		-0.0003		~ 0.0000
4/20/2016	-0.0000	<0.0002		<0.0002	<0.0002		<0.0002		<0.0002
6/8/2016	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002		<0.0002
8/30/2016									<0.0002
8/31/2016	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002		
10/18/2016									<0.0002
10/19/2016	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002		
1/31/2017	<0.0002						<0.0002		<0.0002
2/1/2017		<0.0002		<0.0002	<0.0002				
5/2/2017	<0.0002								<0.0002
5/3/2017		<0.0002		<0.0002	<0.0002		<0.0002		
6/6/2017	<0.0002								<0.0002
6/7/2017		<0.0002		<0.0002	<0.0002		<0.0002		
1/22/2018							<0.0002		
1/23/2018		<0.0002		<0.0002	<0.0002				<0.0002
1/24/2018	<0.0002								
5/1/2018	<0.0002								
5/2/2018		<0.0002		<0.0002	<0.0002		<0.0002		<0.0002
11/27/2018									<0.0002
11/28/2018	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002		
1/8/2019			0.00335 (J)			0.00303 (J)			
5/29/2019	<0.0002			<0.0002	<0.0002		<0.0002		<0.0002
5/30/2019		<0.0002							
9/30/2019		<0.0002		<0.0002					
10/1/2019	<0.0002		<0.0002		<0.0002		<0.0002		<0.0002
10/2/2019						<0.0002			
3/30/2020	<0.0002								
3/31/2020		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002
4/1/2020									
9/1/2020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
9/2/2020								<0.0002	<0.0002
5/11/2021		<0.0002							
5/18/2021	0.000106 (J)		0.000148 (J)		0.000947	0.00106			
5/19/2021				0.00652			0.000437	0.000642	
5/25/2021									0.000701
10/26/2021							0.00043	0.00135	
10/27/2021		<0.0002	0.00014 (J)						0.00053
11/1/2021	8E-05 (J)		.,		0.00099	0.00118			
11/2/2021	.,			0.00161					
5/23/2022				0.00141	0.00109	0.00123			
5/24/2022	<0.0002	<0.0002	0.00011 (J)				0.00356		
5/25/2022			· · · · · · · · · · · · · · · · · · ·					0.0008	0.00052

	BY-AP-MW-14V	BY-AP-MW-15
3/1/2016		
3/2/2016		0.00238 (J)
4/19/2016		0.00203 (J)
4/20/2016		
6/8/2016		<0.0002
8/30/2016		
8/31/2016		<0.0002
10/18/2016		
10/19/2016		<0.0002
1/31/2017		<0.0002
2/1/2017		
5/2/2017		0.00201 (J)
5/3/2017		
6/6/2017		<0.0002
6/7/2017		
1/22/2018		0.00211 (J)
1/23/2018		
1/24/2018		
5/1/2018		<0.0002
5/2/2018		
11/27/2018		<0.0002
11/28/2018		
1/8/2019		
5/29/2019		<0.0002
5/30/2019		
9/30/2019		
10/1/2019		<0.0002
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020		<0.0002
9/1/2020		
9/2/2020	0.00229 (J)	0.00209 (J)
5/11/2021		0.00171
5/18/2021		
5/19/2021		
5/25/2021	0.00135	
10/26/2021	0.0012	0.00206
10/27/2021		
11/1/2021		
11/2/2021		
5/23/2022		
5/24/2022	0.0031	
5/25/2022		0.0018

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		<0.0002							<0.0002
4/19/2016		<0.0002							<0.0002
6/8/2016		<0.0002							<0.0002
8/31/2016		<0.0002							<0.0002
10/19/2016		<0.0002							<0.0002
1/31/2017		<0.0002							<0.0002
5/2/2017		<0.0002							<0.0002
6/6/2017		<0.0002							<0.0002
1/23/2018		<0.0002							
1/24/2018									<0.0002
5/1/2018		<0.0002							<0.0002
11/27/2018		<0.0002							<0.0002
1/8/2019								<0.0002	
3/20/2019						<0.0002			
5/29/2019		<0.0002							<0.0002
7/31/2019	<0.0002			<0.0002			<0.0002		
10/1/2019	<0.0002	<0.0002				<0.0002	<0.0002		<0.0002
10/2/2019				<0.0002				<0.0002	
3/30/2020								<0.0002	
3/31/2020		<0.0002							<0.0002
4/1/2020				<0.0002		<0.0002			
8/31/2020									<0.0002
9/1/2020	<0.0002			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
9/2/2020		<0.0002	<0.0002						
5/17/2021				0.000469					
5/18/2021					0.000571			0.00018 (J)	<0.0002
5/19/2021		0.000136 (J)	<0.0002			0.00025			
5/25/2021	0.000106 (J)						0.000124 (J)		
10/25/2021				0.00078	0.00088	0.00025	8E-05 (J)		
10/26/2021	0.00011 (J)		<0.0002						
11/1/2021		<0.0002						0.00013 (J)	<0.0002
5/23/2022						0.00036			
5/24/2022	<0.0002						<0.0002	0.00011 (J)	<0.0002
5/25/2022		<0.0002	<0.0002	0.00045	0.00043				

	BY-AP-MW-20H	BY-AP-MW-20
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
5/2/2017		
6/6/2017		
1/23/2018		
1/24/2018		
5/1/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	<0.0002	
10/1/2019	<0.0002	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	<0.0002	
8/31/2020		
9/1/2020	<0.0002	<0.0002
9/2/2020		
5/17/2021		
5/18/2021		
5/19/2021	0.000503	0.00155
5/25/2021		
10/25/2021		
10/26/2021	0.00048	
11/1/2021	0.00040	0.00181
5/23/2022	0.00054	0.00101
5/24/2022	0.0004	0.00164
5/25/2022		0.00104

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016								<0.0002	<0.0002
3/2/2016							<0.0002		
4/19/2016							<0.0002	<0.0002	
4/20/2016									<0.0002
6/7/2016							<0.0002	<0.0002	<0.0002
8/30/2016								<0.0002	<0.0002
8/31/2016							<0.0002		
10/18/2016									<0.0002
10/19/2016							<0.0002	<0.0002	
1/31/2017							<0.0002	<0.0002	<0.0002
5/2/2017							<0.0002	<0.0002	
5/3/2017									<0.0002
6/6/2017							<0.0002	<0.0002	
6/7/2017									<0.0002
1/24/2018							<0.0002	<0.0002	<0.0002
5/1/2018							<0.0002	<0.0002	
5/2/2018									<0.0002
11/27/2018							<0.0002	<0.0002	<0.0002
11/28/2018									
1/8/2019				0.00399 (J)					
5/29/2019							<0.0002	<0.0002	<0.0002
7/31/2019	0.00426 (J)	<0.0002							
10/1/2019	<0.0002	<0.0002					<0.0002	<0.0002	<0.0002
10/2/2019				<0.0002					
3/31/2020				<0.0002			<0.0002	<0.0002	<0.0002
4/1/2020		<0.0002							
9/1/2020	<0.0002	<0.0002	<0.0002				<0.0002	<0.0002	<0.0002
9/2/2020				<0.0002	<0.0002	<0.0002			
5/17/2021			0.00147						
5/18/2021							<0.0002	<0.0002	
5/24/2021		0.00069			0.000102 (J)	9.23E-05 (J)			
5/25/2021	0.00137			0.000869					
10/26/2021	0.00136	0.00035	0.00124	0.00096					
11/1/2021							<0.0002	<0.0002	
11/2/2021					0.00014 (J)	<0.0002			0.00012 (J)
5/24/2022	0.00145			0.00092					
5/25/2022		0.00013 (J)	0.00142		0.0001 (J)	<0.0002	<0.0002	<0.0002	0.00011 (J)

	BY-AP-MW-5V	BY-AP-MW-6
3/1/2016		<0.0002
3/2/2016		
4/19/2016		<0.0002
4/20/2016		
6/7/2016		<0.0002
8/30/2016		<0.0002
8/31/2016		
10/18/2016		
10/19/2016		<0.0002
1/31/2017		<0.0002
5/2/2017		*****
5/3/2017		<0.0002
6/6/2017		-0.0002
6/7/2017		<0.0002
1/24/2018		<0.0002
5/1/2018		₹0.000 Z
5/1/2018		<0.0002
11/27/2018		~U.UUUZ
		<0.0002
11/28/2018	<0.0002	<0.0002
1/8/2019	<0.0002	-0.0000
5/29/2019		<0.0002
7/31/2019		
10/1/2019		<0.0002
10/2/2019	<0.0002	
3/31/2020	<0.0002	<0.0002
4/1/2020		
9/1/2020	<0.0002	
9/2/2020		<0.0002
5/17/2021		0.000117 (J)
5/18/2021		
5/24/2021		
5/25/2021		
10/26/2021		
11/1/2021		
11/2/2021	8E-05 (J)	0.00011 (J)
5/24/2022		
5/25/2022	<0.0002	0.00033

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						<0.0002	<0.0002	<0.0002	<0.0002
3/1/2016	<0.0002		<0.0002		<0.0002				
4/19/2016						<0.0002	<0.0002	<0.0002	<0.0002
4/20/2016	<0.0002		<0.0002		<0.0002				
6/6/2016						<0.0002			<0.0002
6/7/2016	<0.0002		<0.0002				<0.0002	<0.0002	
6/8/2016					<0.0002				
8/30/2016			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002
8/31/2016	<0.0002				<0.0002				
10/18/2016	0.0002		<0.0002		0.0002	<0.0002	<0.0002	<0.0002	<0.0002
10/19/2016	<0.0002		0.0002		<0.0002	0.0002	0.0002	0.0002	0.0002
1/31/2017	<0.0002		<0.0002		10.0002	<0.0002	<0.0002	<0.0002	<0.0002
2/1/2017	~0.0002		\0.0002		<0.0002	~0.0002	~0.0002	~0.0002	~0.0002
						<0.0002	<0.0002	<0.0002	~ 0.0000
5/2/2017	-0.0000		-0.0000			<0.0002	<0.0002	<0.0002	<0.0002
5/3/2017	<0.0002		<0.0002		<0.0002				
6/6/2017						<0.0002	<0.0002	<0.0002	<0.0002
6/7/2017	<0.0002		<0.0002		<0.0002				
1/23/2018					<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
1/24/2018	<0.0002		<0.0002						
5/1/2018							<0.0002	<0.0002	<0.0002
5/2/2018	<0.0002		<0.0002		<0.0002	<0.0002			
11/26/2018									<0.0002
11/27/2018			<0.0002			<0.0002	<0.0002	<0.0002	
11/28/2018	<0.0002				<0.0002				
1/9/2019		0.00511 (J)		0.00243 (J)					
5/28/2019									<0.0002
5/29/2019	<0.0002		<0.0002			<0.0002	<0.0002	<0.0002	
5/30/2019					<0.0002				
9/30/2019	<0.0002		<0.0002		<0.0002				
10/1/2019		<0.0002		<0.0002					
10/2/2019						<0.0002	<0.0002	<0.0002	<0.0002
3/30/2020	<0.0002	<0.0002	<0.0002	<0.0002					
3/31/2020					<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
9/2/2020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002				
9/8/2020									<0.0002
9/9/2020						<0.0002	<0.0002	<0.0002	
5/11/2021			0.000321			-0.0002	<0.0002	<0.0002	<0.0002
5/12/2021			0.000021			<0.0002	-0.0002	-0.0002	-0.0002
5/18/2021	0.000214	0.00021		0.000363	0.00022	-0.000 <u>2</u>			
	0.000214	0.00021		0.000303	0.00022			<0.0000	<0.0000
10/18/2021						<0.0002	<0.0002	<0.0002	<0.0002
10/19/2021			0.00010 / 15	0.00028		<0.0002	<0.0002		
10/26/2021	0.00010./**		0.00019 (J)	0.00028	0.00001				
10/27/2021	0.00018 (J)	0.00046			0.00021				
5/23/2022				0.00029					
5/24/2022	0.00018 (J)	0.00074	0.00023		0.00024				
5/31/2022						<0.0002	<0.0002	<0.0002	<0.0002

	BY-AP-MW-1	BY-AP-MW-10	BY-AP-MW-10V	BY-AP-MW-11	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/1/2016		6.33		6.34					
3/2/2016	5.78				6.16		6.1		6.08
4/19/2016	5.8								
4/20/2016		6.31		6.31	6.17		6.14		6.04
6/8/2016	5.83	6.34		6.33	6.25		6.11		6.13
8/30/2016									6.08
8/31/2016	5.85	6.35		6.29	6.23		6.1		
10/18/2016									6.13
10/19/2016	5.87	6.35		6.26	6.2		6.1		
1/31/2017	5.83						6.07		6.06
2/1/2017		6.27		6.22	6.08				
3/21/2017	5.83								
3/22/2017		6.29		6.22	6.12		6.07		6.09
5/2/2017	5.73								5.94
5/3/2017		6.23		6.15	6.12		6.1		
6/6/2017	5.83								6.1
6/7/2017		6.27		6.21	6.13		6.07		
9/13/2017	5.91			6.26	6.19		6.12		6.11
9/14/2017		6.27							
1/22/2018							6.12		
1/23/2018		6.32		6.28	6.17				6.12
1/24/2018	5.9								
5/1/2018	5.83								
5/2/2018		6.36		6.33	6.15		6.13		6.13
8/28/2018	5.78	6.31							
8/29/2018				6.3	6.19		6.1		6.14
11/27/2018									6.07
11/28/2018	5.82	6.32		6.28	6.11		6.04		
1/8/2019			6.5			6.48			
5/29/2019	5.82			6.24	6.13		6.01		6.07
5/30/2019		6.23							
9/30/2019		6.11		5.85					
10/1/2019	5.47		6.05		6		6.02		6.01
10/2/2019						5.9			
3/30/2020	5.79								
3/31/2020		6.37	6.38	6.26	6.21	6.33	5.98		5.76
4/1/2020									
9/1/2020	5.89	6.33	6.34	5.87	6.19	6.2	5.82		
9/2/2020								6.23	5.8
5/11/2021		6.4							
5/18/2021	5.86		6.34		5.58	5.92			
5/19/2021				6.33			5.79	6.2	
5/25/2021									5.82
10/26/2021							5.69	6.81	
10/27/2021		5.91	6.1						6.41
11/1/2021	6.01	-			5.75	6.09			
11/2/2021				5.84	- · · · -				
5/23/2022				6.32	6.12	6.22			
5/24/2022	5.44	5.81	5.77	- - -		- 	5.5		
5/25/2022		-					-	6.3	6.14
								0	

			Plant Barry	Client: Southern Company	Data: Barry Ash Pond		
	BY-AP-MW-14V	BY-AP-MW-15					
3/1/2016							
3/2/2016		6.61					
4/19/2016		6.75					
4/20/2016							
6/8/2016		6.63					
8/30/2016							
8/31/2016		6.71					
10/18/2016							
10/19/2016		6.66					
1/31/2017		6.73					
2/1/2017							
3/21/2017		6.62					
3/22/2017							
5/2/2017		6.49					
5/3/2017							
6/6/2017		6.7					
6/7/2017							
9/13/2017		6.66					
9/14/2017							
1/22/2018		6.73					
1/23/2018							
1/24/2018							
5/1/2018		6.62					
5/2/2018							
8/28/2018							
8/29/2018		6.68					
11/27/2018		6.58					
11/28/2018							
1/8/2019							
5/29/2019		6.63					
5/30/2019							
9/30/2019							
10/1/2019		6.2					
10/2/2019							
3/30/2020							
3/31/2020							
4/1/2020		6.72					
9/1/2020							
9/2/2020	7.02	6.57					
5/11/2021		6.76					
5/18/2021							
5/19/2021							
5/25/2021	7.2						
10/26/2021	6.91	6.7					
10/27/2021							
11/1/2021							
11/2/2021							
5/23/2022							
5/24/2022	6.71						
5/25/2022		6.68					

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		5.79							6.08
4/19/2016		5.78							5.92
6/8/2016		5.8							5.9
8/31/2016		5.83							5.87
10/19/2016		5.81							5.82
1/31/2017		5.84							5.87
3/21/2017		5.79							5.85
5/2/2017		5.68							5.61
6/6/2017		5.8							5.82
9/12/2017									5.61
9/13/2017		5.86							
1/23/2018		5.86							
1/24/2018									5.83
5/1/2018		5.85							5.8
8/28/2018									5.56
8/29/2018		5.87							
11/27/2018		5.76							5.71
1/8/2019								6.38	
3/20/2019						6.19			
5/29/2019		5.76							5.7
7/31/2019	5.37			6.64			6.21		
10/1/2019	5.68	5.23				6.26	6.33		4.97
10/2/2019				6.58				5.27	
3/30/2020								5.65	
3/31/2020		5.75							5.71
4/1/2020				6.52		6.48			
8/31/2020									5.57
9/1/2020	5.91			6.56	6.49	6.15	6.31	5.62	
9/2/2020		5.47	5.23						
5/17/2021				6.35					
5/18/2021					6.55			5.55	5.83
5/19/2021		5.8	5.24			6.23			
5/25/2021	5.6						6.1		
10/25/2021				6.48	6.53	6.76	6.13		
10/26/2021	5.93		5.26						
11/1/2021		5.36						5.76	5.2
5/23/2022						6.24			
5/24/2022	5.7						5.8	4.9	4.78
5/25/2022		5.74	5.26	6.21	6.34				

	BY-AP-MW-20H	BY-AP-MW-20V
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
3/21/2017		
5/2/2017		
6/6/2017		
9/12/2017		
9/13/2017		
1/23/2018		
1/24/2018		
5/1/2018		
8/28/2018		
8/29/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	6.22	
10/1/2019	6.24	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	6.45	
8/31/2020		
9/1/2020	6.15	6.03
9/2/2020		
5/17/2021		
5/18/2021		
5/19/2021	6.17	6.44
5/25/2021		
10/25/2021		
10/26/2021	6.49	
11/1/2021		6
5/23/2022	6.15	
5/24/2022		6.28
5/25/2022		

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016								5.19	5.99
3/2/2016							5.14		
4/19/2016							5.06	5.06	
4/20/2016									5.96
6/7/2016							5.13	4.7	6.03
8/30/2016								4.77	6
8/31/2016							5.11		
10/18/2016									5.99
10/19/2016							5.05	4.67	
1/31/2017							5.14	4.42	5.96
3/21/2017							5.13	4.45	
3/22/2017									6.01
5/2/2017							4.85	4.46	
5/3/2017									5.99
6/6/2017							5.15	4.89	
6/7/2017									6.01
9/12/2017							4.96	4.71	
9/14/2017									6
1/24/2018							5.22	5.03	5.98
5/1/2018							5.11	4.44	
5/2/2018									5.99
8/28/2018							4.92	4.85	
8/29/2018									6.03
11/27/2018							5.05	4.78	6.01
11/28/2018									
1/8/2019				6.51					
5/29/2019							5.05	4.65	5.93
7/31/2019	6.54	6.08							
10/1/2019	6.6	6.03					4.37	4.28	5.47
10/2/2019				6.21					
3/31/2020				6.23			5.08	4.69	6.01
4/1/2020		6.44							
9/1/2020	6.48	6.14	7.98				4.24	4.23	5.93
9/2/2020				6.01	5.39	5.32			
5/17/2021			7.87						
5/18/2021							4.93	4.17	
5/24/2021		6.19			4.12	5.24			
5/25/2021	6.44			6.16					
10/26/2021	6.86	6.54	8.31	6.2					
11/1/2021							4.94	5.18	
11/2/2021					5.01	5.13			6.36
5/24/2022	6.57			6.22					
5/25/2022		5.92	7.44		5.23	5.45	4.64	4.6	5.99

	BY-AP-MW-5V	BY-AP-MW-6
3/1/2016		5.59
3/2/2016		
4/19/2016		5.55
4/20/2016		
6/7/2016		5.43
8/30/2016		5.39
8/31/2016		
10/18/2016		
10/19/2016		5.31
1/31/2017		5.26
3/21/2017		
3/22/2017		5.32
5/2/2017		
5/3/2017		5.35
6/6/2017		
6/7/2017		5.32
9/12/2017		
9/14/2017		5.29
1/24/2018		5.32
5/1/2018		
5/2/2018		5.33
8/28/2018		
8/29/2018		5.41
11/27/2018		
11/28/2018		5.46
1/8/2019	6.07	
5/29/2019		5.31
7/31/2019		
10/1/2019		4.7
10/2/2019	5.9	
3/31/2020	6.05	5.22
4/1/2020		
9/1/2020	5.7	
9/2/2020		5.16
5/17/2021		5.21
5/18/2021		
5/24/2021		
5/25/2021		
10/26/2021		
11/1/2021		
11/2/2021	6.35	5.59
5/24/2022		
5/25/2022	5.88	4.57

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						4.62	4.79	4.96	4.74
3/1/2016	6.36		6.21		6.26				
4/19/2016						4.74	4.84	4.94	4.86
4/20/2016	6.31		6.22		6.26				
	0.51		0.22		0.20	4.65			4.88
6/6/2016	6.2		6.26			4.03	4.01	4.06	4.00
6/7/2016	6.3		6.26		0.05		4.81	4.96	
6/8/2016					6.25				
8/30/2016			6.21			4.64	4.76	4.92	4.91
8/31/2016	6.31				6.29				
10/18/2016			6.21			4.74	4.84	4.98	4.95
10/19/2016	6.23				6.22				
1/31/2017	6.26		6.17			4.54	4.6	4.74	4.71
2/1/2017					6.24				
3/20/2017						4.67	4.71	4.9	4.83
3/22/2017	6.32		6.22		6.28				
5/2/2017						4.79	4.8	4.98	4.93
5/3/2017	6.29		6.22		6.17				
6/6/2017						4.76	4.72	4.94	4.9
6/7/2017	6.27		6.21		6.24				
9/12/2017									4.82
9/13/2017						4.81	4.71	4.93	
9/14/2017	6.25		6.18		6.24				
1/23/2018	0.23		0.10		6.3	4.79	4.67	4.91	4.85
	6.25		6.16		0.5	4.75	4.07	4.91	4.00
1/24/2018	6.35		0.10				4.04	4.07	4.0
5/1/2018	0.00		0.47		0.04	1.00	4.61	4.87	4.8
5/2/2018	6.29		6.17		6.31	4.62			
8/28/2018					6.28				
8/29/2018			6.21						
11/26/2018									4.88
11/27/2018			6.18			4.73	4.72	4.94	
11/28/2018	6.33				6.32				
1/9/2019		7.12		6.38					
5/28/2019									4.73
5/29/2019	6.18		6.11			4.65	4.58	4.8	
5/30/2019					6.14				
9/30/2019	6.36		6.19		6.07				
10/1/2019		6.67		6.16					
10/2/2019						4.57	4.43	4.52	4.67
3/30/2020	6.32	6.69	6.2	6.2					
3/31/2020					6.31	4.64	4.6	4.4	4.51
9/2/2020	6.25	6.49	5.89	5.79	5.97				
9/8/2020	0.20	0.40	0.00	0.70	0.07				4.75
9/9/2020						4.65	4.67	4.76	4.73
			C 05			4.03			4.07
5/11/2021			6.25			4.74	4.29	4.53	4.67
5/12/2021						4.74			
5/18/2021	6.4	6.53		6.33	6.3				
10/18/2021								4.55	4.38
10/19/2021						4.67	4.6		
10/26/2021			6.26	6.26					
10/27/2021	6.35	6.78			6.13				
5/23/2022				6.08					
5/24/2022	6.32	6.92	5.6		6.03				

Page 2

Time Series

Constituent: pH, field (SU) Analysis Run 7/21/2022 3:46 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

BY-AP-MW-7 BY-AP-MW-7 BY-AP-MW-8 BY-AP-MW-8 BY-AP-MW-8 BY-AP-MW-9 BY-UP-MW-1 (bg) BY-UP-MW-2 (bg) BY-UP-MW-3 (bg) BY-UP-MW-4 (bg)
5/31/2022 3.89 3.31 3.54 3.97

3/1/2016	5	BY-AP-MW-1	BY-AP-MW-10 <0.00102	BY-AP-MW-10V	BY-AP-MW-11 <0.00102	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/2/2016		<0.00102				<0.00102		<0.00102		<0.00102
4/19/201		<0.00102								
4/20/201			<0.00102		<0.00102	<0.00102		<0.00102		<0.00102
6/8/2016	6	<0.00102	<0.00102		<0.00102	<0.00102		<0.00102		<0.00102
8/30/201										<0.00102
8/31/201	16	<0.00102	<0.00102		<0.00102	<0.00102		<0.00102		
10/18/20)16									<0.00102
10/19/20)16	<0.00102	<0.00102		<0.00102	<0.00102		<0.00102		
1/31/201	17	<0.00102						<0.00102		<0.00102
2/1/2017	7		<0.00102		<0.00102	<0.00102				
5/2/2017	7	<0.00102								<0.00102
5/3/2017	7		<0.00102		<0.00102	<0.00102		<0.00102		
6/6/2017	7	<0.00102								<0.00102
6/7/2017	7		<0.00102		<0.00102	<0.00102		<0.00102		
1/22/201	8							<0.00102		
1/23/201	8		<0.00102		<0.00102	<0.00102				<0.00102
1/24/201	8	<0.00102								
5/1/2018	3	<0.00102								
5/2/2018	3		<0.00102		<0.00102	<0.00102		<0.00102		<0.00102
11/27/20	18									<0.00102
11/28/20	18	<0.00102	<0.00102		<0.00102	<0.00102		<0.00102		
1/8/2019)			<0.00102			<0.00102			
5/29/201	19	<0.00102			<0.00102	<0.00102		<0.00102		<0.00102
5/30/201	19		<0.00102							
9/30/201	19		<0.00102		<0.00102					
10/1/201	9	<0.00102		<0.00102		<0.00102		<0.00102		<0.00102
10/2/201	9						<0.00102			
3/30/202	20	<0.00102								
3/31/202	20		<0.00102	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102		<0.00102
4/1/2020)									
9/1/2020)	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102		
9/2/2020)								<0.00102	<0.00102
5/11/202	21		<0.00102							
5/18/202	21	<0.00102		<0.00102		<0.00102	<0.00102			
5/19/202	21				<0.00102			<0.00102	<0.00102	
5/25/202	21									<0.00102
10/26/20)21							<0.00102	<0.00102	
10/27/20			<0.00102	<0.00102						<0.00102
11/1/202		<0.00102				<0.00102	<0.00102			
11/2/202					<0.00102					
5/23/202					<0.00102	<0.00102	<0.00102			
5/24/202		<0.00102	<0.00102	<0.00102				0.00056 (J)		
5/25/202	22								<0.00102	<0.00102

		,		
	BY-AP-MW-14V	BY-AP-MW-15		
3/1/2016				
3/2/2016		<0.00102		
4/19/2016		<0.00102		
4/20/2016				
6/8/2016		<0.00102		
8/30/2016				
8/31/2016		<0.00102		
10/18/2016				
10/19/2016		<0.00102		
1/31/2017		<0.00102		
2/1/2017				
5/2/2017		<0.00102		
5/3/2017				
6/6/2017		<0.00102		
6/7/2017				
1/22/2018		<0.00102		
1/23/2018				
1/24/2018				
5/1/2018		<0.00102		
5/2/2018				
11/27/2018		<0.00102		
11/28/2018				
1/8/2019				
5/29/2019		<0.00102		
5/30/2019				
9/30/2019				
10/1/2019		<0.00102		
10/2/2019				
3/30/2020				
3/31/2020				
4/1/2020		<0.00102		
9/1/2020				
9/2/2020	<0.00102	<0.00102		
5/11/2021		<0.00102		
5/18/2021				
5/19/2021				
5/25/2021	<0.00102			
10/26/2021	<0.00102	<0.00102		
10/27/2021				
11/1/2021				
11/2/2021				
5/23/2022	0.00105			
5/24/2022	<0.00102			
5/25/2022		<0.00102		

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		<0.00102							<0.00102
4/19/2016		<0.00102							<0.00102
6/8/2016		<0.00102							<0.00102
8/31/2016		<0.00102							<0.00102
10/19/2016		<0.00102							<0.00102
1/31/2017		<0.00102							<0.00102
5/2/2017		<0.00102							<0.00102
6/6/2017		<0.00102							<0.00102
1/23/2018		<0.00102							
1/24/2018									<0.00102
5/1/2018		<0.00102							<0.00102
11/27/2018		<0.00102							<0.00102
1/8/2019								<0.00102	
3/20/2019						<0.00102			
5/29/2019		<0.00102							<0.00102
7/31/2019	<0.00102			<0.00102			<0.00102		
10/1/2019	<0.00102	<0.00102				<0.00102	<0.00102		<0.00102
10/2/2019				<0.00102				<0.00102	
3/30/2020								<0.00102	
3/31/2020		<0.00102							<0.00102
4/1/2020				<0.00102		<0.00102			
8/31/2020									<0.00102
9/1/2020	<0.00102			<0.00102	<0.00102	<0.00102	<0.00102	<0.00102	
9/2/2020		<0.00102	<0.00102						
5/17/2021				<0.00102					
5/18/2021					<0.00102			<0.00102	<0.00102
5/19/2021		<0.00102	<0.00102			<0.00102			
5/25/2021	<0.00102						<0.00102		
10/25/2021				<0.00102	<0.00102	<0.00102	<0.00102		
10/26/2021	<0.00102		<0.00102						
11/1/2021		<0.00102						<0.00102	<0.00102
5/23/2022						<0.00102			
5/24/2022	<0.00102						<0.00102	<0.00102	<0.00102
5/25/2022		<0.00102	<0.00102	<0.00102	<0.00102				

	BY-AP-MW-20H	BY-AP-MW-20
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
5/2/2017		
6/6/2017		
1/23/2018		
1/24/2018		
5/1/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	<0.00102	
10/1/2019	<0.00102	
10/2/2019		
3/30/2020		
3/31/2020	.0.0100	
4/1/2020	<0.00102	
8/31/2020	.0.00100	0.00400
9/1/2020	<0.00102	<0.00102
9/2/2020		
5/17/2021 5/18/2021		
5/18/2021	<0.00102	<0.00102
5/25/2021	~0.00102	<0.00102
10/25/2021		
10/25/2021	<0.00102	
11/1/2021	-0.00102	<0.00102
5/23/2022	0.00054 (J)	J.00102
5/24/2022	1.0000 . (0)	<0.00102
5/25/2022		

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	RY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016	5174 WW 2211	D174 WW 2011	D174 WW 20V	5170 MW 2411	51 71 WW 2011	D174 WW 204W	D174 WW 0	<0.00102	<0.00102
3/2/2016							<0.00102	0.00.02	0.00102
4/19/2016							<0.00102	<0.00102	
4/20/2016									<0.00102
6/7/2016							<0.00102	<0.00102	<0.00102
8/30/2016								<0.00102	<0.00102
8/31/2016							<0.00102		
10/18/2016									<0.00102
10/19/2016							<0.00102	<0.00102	
1/31/2017							<0.00102	<0.00102	<0.00102
5/2/2017							<0.00102	<0.00102	
5/3/2017									<0.00102
6/6/2017							<0.00102	<0.00102	
6/7/2017									<0.00102
1/24/2018							<0.00102	<0.00102	<0.00102
5/1/2018							<0.00102	<0.00102	
5/2/2018									<0.00102
11/27/2018							<0.00102	<0.00102	<0.00102
11/28/2018									
1/8/2019				<0.00102					
5/29/2019							<0.00102	<0.00102	<0.00102
7/31/2019	<0.00102	<0.00102							
10/1/2019	<0.00102	<0.00102					<0.00102	<0.00102	<0.00102
10/2/2019				<0.00102					
3/31/2020				<0.00102			<0.00102	<0.00102	<0.00102
4/1/2020		<0.00102							
9/1/2020	<0.00102	<0.00102	<0.00102				<0.00102	<0.00102	<0.00102
9/2/2020				<0.00102	<0.00102	<0.00102			
5/17/2021			<0.00102						
5/18/2021							<0.00102	<0.00102	
5/24/2021		<0.00102			<0.00102	<0.00102			
5/25/2021	<0.00102			<0.00102					
10/26/2021	<0.00102	<0.00102	<0.00102	<0.00102					
11/1/2021							<0.00102	<0.00102	
11/2/2021					<0.00102	<0.00102			<0.00102
5/24/2022	<0.00102			<0.00102					
5/25/2022		<0.00102	<0.00102		<0.00102	<0.00102	<0.00102	<0.00102	<0.00102

	BY-AP-MW-5V	BY-AP-MW-6
3/1/2016		<0.00102
3/2/2016		
4/19/2016		<0.00102
4/20/2016		
6/7/2016		<0.00102
8/30/2016		<0.00102
8/31/2016		
10/18/2016		
10/19/2016		<0.00102
1/31/2017		<0.00102
5/2/2017		
5/3/2017		<0.00102
6/6/2017		
6/7/2017		<0.00102
1/24/2018		<0.00102
5/1/2018		
5/2/2018		<0.00102
11/27/2018		
11/28/2018		<0.00102
1/8/2019	<0.00102	
5/29/2019		<0.00102
7/31/2019		
10/1/2019		<0.00102
10/2/2019	<0.00102	
3/31/2020	<0.00102	<0.00102
4/1/2020		
9/1/2020	<0.00102	
9/2/2020		<0.00102
5/17/2021		<0.00102
5/18/2021		
5/24/2021		
5/25/2021		
10/26/2021		
11/1/2021		
11/2/2021	<0.00102	<0.00102
5/24/2022		
5/25/2022	<0.00102	<0.00102

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						<0.00102	<0.00102	<0.00102	<0.00102
3/1/2016	<0.00102		<0.00102		<0.00102				
4/19/2016						<0.00102	<0.00102	<0.00102	<0.00102
4/20/2016	<0.00102		<0.00102		<0.00102				
6/6/2016						<0.00102			<0.00102
6/7/2016	<0.00102		<0.00102				<0.00102	<0.00102	
6/8/2016					<0.00102				
8/30/2016	.0.00100		<0.00102		.0.00100	<0.00102	<0.00102	<0.00102	<0.00102
8/31/2016	<0.00102		<0.00102		<0.00102	-0.00102	-0.00102	-0.00102	-0.00102
10/18/2016 10/19/2016	<0.00102		<0.00102		<0.00102	<0.00102	<0.00102	<0.00102	<0.00102
1/31/2017	<0.00102		<0.00102		<0.00102	<0.00102	<0.00102	<0.00102	<0.00102
2/1/2017	10.00102		10.00102		<0.00102	~0.00102	-0.00102	10.00102	V0.00102
5/2/2017					0.00.02	<0.00102	<0.00102	<0.00102	<0.00102
5/3/2017	<0.00102		<0.00102		<0.00102				
6/6/2017						<0.00102	<0.00102	<0.00102	<0.00102
6/7/2017	<0.00102		<0.00102		<0.00102				
1/23/2018					<0.00102	<0.00102	<0.00102	<0.00102	<0.00102
1/24/2018	<0.00102		<0.00102						
5/1/2018							<0.00102	<0.00102	<0.00102
5/2/2018	<0.00102		<0.00102		<0.00102	<0.00102			
11/26/2018									<0.00102
11/27/2018			<0.00102			<0.00102	<0.00102	<0.00102	
11/28/2018	<0.00102				<0.00102				
1/9/2019		<0.00102		<0.00102					
5/28/2019									<0.00102
5/29/2019	<0.00102		<0.00102			<0.00102	<0.00102	<0.00102	
5/30/2019					<0.00102				
9/30/2019	<0.00102		<0.00102		<0.00102				
10/1/2019		<0.00102		<0.00102					
10/2/2019						<0.00102	<0.00102	<0.00102	<0.00102
3/30/2020	<0.00102	<0.00102	<0.00102	<0.00102					
3/31/2020					<0.00102	<0.00102	<0.00102	<0.00102	<0.00102
9/2/2020	<0.00102	<0.00102	<0.00102	<0.00102	<0.00102				-0.00102
9/8/2020						<0.00102	-0.00102	<0.00102	<0.00102
9/9/2020 5/11/2021			<0.00102			\0.00102	<0.00102 0.000602 (J)	<0.00102	<0.00102
5/12/2021			<0.00102			<0.00102	0.000002 (3)	<0.00102	<0.00102
5/18/2021	<0.00102	<0.00102		<0.00102	<0.00102	10.00102			
10/18/2021	10.00102	10.00102		10.00102	10.00102			<0.00102	<0.00102
10/19/2021						<0.00102	<0.00102	0.00.02	0.00102
10/26/2021			<0.00102	<0.00102		0.00102	0.00.02		
10/27/2021	<0.00102	<0.00102			<0.00102				
5/23/2022				<0.00102					
5/24/2022	<0.00102	<0.00102	<0.00102		<0.00102				
5/31/2022						<0.00102	0.00063 (J)	<0.00102	<0.00102

3/1/2016	BY-AP-MW-1	BY-AP-MW-10 0.34 (J)	BY-AP-MW-10V	BY-AP-MW-11 1.02	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/2/2016	0.31 (J)	0.54 (5)		1.02	<1		<1		<1
					~1		\ 1		~ 1
4/19/2016 4/20/2016	0.335 (J)	-1		1.1	-1		<1		-1
	0.550 (1)	<1		1.1	<1				<1
6/8/2016	0.556 (J)	0.538 (J)		0.701 (J)	0.511 (J)		0.496 (J)		0.514 (J)
8/30/2016		.ai							<1
8/31/2016	<1	<1		<1	<1		<1		
10/18/2016									<1
10/19/2016	<1	<1		<1	<1		<1		
3/21/2017	<1	.ai		0.4 (1)					
3/22/2017		<1		2.1 (J)	<1		6.9		<1
5/2/2017	6	4.4.00		0.071	0.1 (1)				1.8 (J)
5/3/2017		4.1 (J)		3.6 (J)	2.1 (J)		6.6		
6/6/2017	<1								<1
6/7/2017		<1		<1	<1		6		
9/13/2017	4.7 (J)			<1	<1		2.2 (J)		<1
9/14/2017		<1							
5/1/2018	<1								4.2.4.0
5/2/2018		<1		<1	<1		4.1 (J)		1.6 (J)
8/28/2018	<1	<1							
8/29/2018				2.3 (J)	<1		<1		<1
11/27/2018					== (=)				<1
11/28/2018	4.1 (J)	<1	00.7	<1	<50 (O)	10.0	4.9 (J)		
1/8/2019			93.7	0.1.1	7.04	10.3	40.5 ()		07.0 ()
5/29/2019	5.75			24.1	7.04		49.5 (o)		67.6 (o)
5/30/2019		3.76		07.4					
9/30/2019		2.77		37.4					
10/1/2019	7.82		5.19		35.3	7.40	47.7		61.6
10/2/2019	00.4					7.18			
3/30/2020	28.4	00.4	00.0		05.0	0.1.1	00.0		0.4.7
3/31/2020		20.1	20.3	57.5	35.8	61.1	23.2		34.7
4/1/2020	00.4	15.0	00.4	10.0	00.4	47.5	44.0		
9/1/2020	23.1	15.6	30.1	42.8	32.1	47.5	14.2	00.0	10.5
9/2/2020		12.0						30.6	18.5
5/11/2021	10.5	13.2	04.0		05.4	00.0			
5/18/2021	16.5		24.9		25.1	32.8			
5/19/2021				16.5			50.4	39.7	50.0
5/25/2021							0.1	47.0	59.2
10/26/2021		E 70	6.04				21	47.3	08 5
10/27/2021	10.0	5.72	6.04		27	10.0			98.5
11/1/2021	10.9			122	27	10.9			
11/2/2021				133	12	6.64			
5/23/2022	21	14.7	F 70	29.3	13	6.64	20.2		
5/24/2022	21	14.7	5.73				38.3	122	105
5/25/2022								122	105

	BY-AP-MW-14V	BY-AP-MW-15
3/1/2016		
3/2/2016		<1
4/19/2016		<1
4/20/2016		
6/8/2016		0.489 (J)
8/30/2016		
8/31/2016		<1
10/18/2016		
10/19/2016		<1
3/21/2017		<1
3/22/2017		
5/2/2017		<1
5/3/2017		
6/6/2017		<1
6/7/2017		
9/13/2017		<1
9/14/2017		
5/1/2018		<1
5/2/2018		
8/28/2018		
8/29/2018		6.2
11/27/2018		<1
11/28/2018		
1/8/2019		
5/29/2019		3.27
5/30/2019		
9/30/2019		
10/1/2019		1.72
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020		7.5
9/1/2020		
9/2/2020	63.6	7.61
5/11/2021		7.54
5/18/2021		
5/19/2021		
5/25/2021	39.5	
10/26/2021	75.1	26.4
10/27/2021		
11/1/2021		
11/2/2021		
5/23/2022		
5/24/2022	13.6	
5/25/2022		1.8 (J)
		- (-)

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		<1							3.3
4/19/2016		<1							2.68
6/8/2016		0.514 (J)							1.1
8/31/2016		<1							<1
10/19/2016		<1							<1
3/21/2017		<1							<1
5/2/2017		<1							<1
6/6/2017		<1							<1
9/12/2017									<1
9/13/2017		2.6 (J)							
5/1/2018		<1							<1
8/28/2018									<1
8/29/2018		3.9 (J)							
11/27/2018		<1							<1
1/8/2019								20.9	
3/20/2019						12.8			
5/29/2019		6.72							0.885 (J)
7/31/2019	2.65			23			11.4		
10/1/2019	0.854 (J)	3.4				8.49	5.9		<1
10/2/2019				10.6				10.5	
3/30/2020								11.1	
3/31/2020		17.5 (o)							1.69
4/1/2020				19.4		24.2			
8/31/2020									0.576 (J)
9/1/2020	2.21			7.61	26.6	30.6	16.9	13	
9/2/2020		13.3 (o)	40						
5/17/2021				10.2					
5/18/2021					17.4			16	<1
5/19/2021		3.11	40.9			7.48			
5/25/2021	1.19						26.6		
10/25/2021				24.5	11	55	28.7		
10/26/2021	0.966 (J)		38.1						
11/1/2021		11.9						20.2	1.56
5/23/2022						9.46			
5/24/2022	2.35						34.7	21.1	0.615 (J)
5/25/2022		6.29	35.1	3.58	49.1				

3/2/2016 4/19/2016 6/8/2016 8/31/2016 10/19/2016 3/21/2017 5/2/2017 6/6/2017 9/12/2017 9/13/2017 5/1/2018 8/28/2018 8/29/2018 11/27/2018 11/8/2019 3/20/2019 5/29/2019 7/31/2019 83.2 10/1/2019 28.9 10/2/2019 3/30/2020 3/31/2020 4/1/2020 9/1/2020 5/17/2021 5/18/2021 5/19/2021 5/19/2021 5/19/2021 5/19/2021 5/19/2021 5/19/2021 5/19/2021 5/19/2021 5/23/2022 5/11/1/2021 5/23/2022 5/23/2022 5/17/2021 5/23/2022 5/24/2022 5/25/2022		BY-AP-MW-20H	BY-AP-MW-20V
6/8/2016 8/31/2016 10/19/2016 3/21/2017 5/2/2017 6/6/2017 9/12/2017 9/13/2017 5/1/2018 8/28/2018 8/28/2018 11/27/2018 11/27/2018 11/8/2019 3/20/2019 5/29/2019 7/31/2019 28.9 10/1/2019 3/30/2020 3/31/2020 4/1/2020 18.7 8/31/2020 9/1/2020 5/17/2021 5/18/2021 5/18/2021 5/19/2021 5/19/2021 5/19/2021 10/25/2021 10/25/2021 10/25/2021 10/25/2021 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 5.19	3/2/2016		
8/31/2016 10/19/2016 3/21/2017 5/2/2017 6/6/2017 9/12/2017 9/13/2017 5/1/2018 8/28/2018 8/29/2018 11/27/2018 11/8/2019 3/20/2019 5/29/2019 7/31/2019 3/30/2020 3/31/2020 4/1/2020 4/1/2020 9/1/2020 5/17/2021 5/18/2021 5/19/2021 5/19/2021 5/19/2021 5/19/2021 10/25/2021 10/25/2021 10/25/2021 10/25/2021 11/1/2021 5.66 5/23/2022 5.17	4/19/2016		
10/19/2016 3/21/2017 5/2/2017 6/6/2017 9/12/2017 9/13/2017 5/1/2018 8/28/2018 8/28/2018 8/29/2018 11/27/2018 11/8/2019 3/20/2019 5/29/2019 7/31/2019 3/30/2020 3/31/2020 4/1/2020 18.7 8/31/2020 9/1/2020 5/17/2021 5/18/2021 5/19/2021 5/19/2021 5/19/2021 5/19/2021 5/19/2021 5/19/2021 5/25/2021 10/26/2021 73.2 11/1/2021 5.66 5/23/2022 5/17/2022 5/23/2022 5/17/2021 5/24/2022 5/25/2021	6/8/2016		
3/21/2017 5/2/2017 6/6/2017 9/12/2017 9/13/2017 5/1/2018 8/28/2018 8/29/2018 11/27/2018 11/8/2019 3/20/2019 5/29/2019 7/31/2019 3/30/2020 3/31/2020 4/1/2020 4/1/2020 5/17/2021 5/18/2021 5/19/2021 5/19/2021 10/25/2021 10/25/2021 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 5.179	8/31/2016		
5/2/2017 6/6/2017 9/12/2017 9/13/2017 5/1/2018 8/28/2018 8/28/2018 11/27/2018 11/8/2019 3/20/2019 5/29/2019 7/31/2019 83.2 10/1/2019 28.9 10/2/2019 3/30/2020 3/31/2020 4/1/2020 4/1/2020 5/17/2021 5/18/2021 5/18/2021 5/19/2021 10/25/2021 10/25/2021 11/1/2021 5/23/2022 9/11 5/24/2022 5/17/2021 5/24/2022 5/17/2021 5/24/2022 5/17/2021 5/24/2022 5/17/2021 5/24/2022 5/17/2021 5/24/2022 5/17/2021 5/24/2022 5/17/2021 5/24/2022 5/17/2021 5/24/2022 5/17/2021 5/24/2022 5/17/2021 5/24/2022 5/17/2021 5/24/2022 5/17/2021 5/24/2022 5/17/2021 5/24/2022 5/17/2021	10/19/2016		
6/6/2017 9/12/2017 9/13/2017 5/1/2018 8/28/2018 8/29/2018 11/27/2018 11/27/2018 1/8/2019 3/20/2019 5/29/2019 7/31/2019 3/30/2020 3/31/2020 4/1/2020 4/1/2020 5/17/2021 5/18/2021 5/19/2021 5/19/2021 10/25/2021 10/25/2021 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 5.179	3/21/2017		
9/12/2017 9/13/2017 5/1/2018 8/28/2018 8/29/2018 11/27/2018 11/8/2019 3/20/2019 5/29/2019 7/31/2019 83.2 10/1/2019 28.9 10/2/2019 3/30/2020 3/31/2020 4/1/2020 18.7 8/31/2020 9/1/2020 5/17/2021 5/18/2021 5/19/2021 5/19/2021 10/25/2021 10/26/2021 73.2 11/1/2021 5/23/2022 95.1 5/24/2022 5/2022	5/2/2017		
9/13/2017 5/1/2018 8/28/2018 8/28/2018 11/27/2018 11/8/2019 3/20/2019 5/29/2019 7/31/2019 83.2 10/1/2019 28.9 10/2/2019 3/30/2020 3/31/2020 4/1/2020 9/1/2020 9/1/2020 5/17/2021 5/18/2021 5/19/2021 10/25/2021 10/26/2021 73.2 11/1/2021 5/23/2022 95.1 5/24/2022 95.1	6/6/2017		
5/1/2018 8/28/2018 8/28/2018 11/27/2018 11/27/2018 11/8/2019 3/20/2019 5/29/2019 7/31/2019 83.2 10/1/2019 28.9 10/2/2019 3/30/2020 3/31/2020 4/1/2020 9/1/2020 9/1/2020 5/17/2021 5/18/2021 5/19/2021 5/19/2021 10/25/2021 10/26/2021 73.2 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 5.179	9/12/2017		
8/28/2018 8/29/2018 11/27/2018 11/8/2019 3/20/2019 5/29/2019 7/31/2019 83.2 10/1/2019 28.9 10/2/2019 3/30/2020 3/31/2020 4/1/2020 9/1/2020 9/1/2020 5/17/2021 5/18/2021 5/19/2021 5/19/2021 10/25/2021 10/25/2021 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 5.179	9/13/2017		
8/29/2018 11/27/2018 11/8/2019 3/20/2019 5/29/2019 7/31/2019 83.2 10/1/2019 28.9 10/2/2019 3/30/2020 3/31/2020 4/1/2020 9/1/2020 5/17/2021 5/18/2021 5/19/2021 5/19/2021 10/25/2021 10/25/2021 10/26/2021 73.2 11/1/2021 5.66 5/23/2022 5/17/2022 5/24/2022 3.79	5/1/2018		
11/27/2018 11/8/2019 3/20/2019 5/29/2019 7/31/2019 83.2 10/1/2019 28.9 10/2/2019 3/30/2020 3/31/2020 4/1/2020 4/1/2020 9/1/2020 5/17/2021 5/18/2021 5/19/2021 5/19/2021 10/25/2021 10/26/2021 73.2 11/1/2021 5/23/2022 95.1 5/24/2022 5/24/2022 5/201	8/28/2018		
1/8/2019 3/20/2019 5/29/2019 7/31/2019 83.2 10/1/2019 28.9 10/2/2019 3/30/2020 3/31/2020 4/1/2020 4/1/2020 9/1/2020 5/17/2021 5/18/2021 5/19/2021 10/25/2021 10/26/2021 73.2 11/1/2021 5/23/2022 95.1 5/23/2022 95.1 5/24/2022 5/201	8/29/2018		
3/20/2019 5/29/2019 7/31/2019 83.2 10/1/2019 28.9 10/2/2019 3/30/2020 3/31/2020 4/1/2020 18.7 8/31/2020 9/1/2020 5/17/2021 5/18/2021 5/19/2021 5/19/2021 10/25/2021 10/26/2021 73.2 11/1/2021 5/23/2022 95.1 5/24/2022 5/29/2020 5/23/2022 5/23/2022 5/23/2022 5/23/2022 5/23/2022 5/24/2022 5/29/2020 5/23/2022 5/23/2022 5/24/2022 5/23/2022 5/24/2022 5/23/2022 5/23/2022 5/24/2022 5/3/3/2023 5/24/2022 5/3/3/2023 5/24/2022 5/3/3/2023 5/3/3/2022 5/3/3/2022 5/3/3/2022 5/3/3/2022 5/3/3/2022 5/3/3/2022 5/3/3/2022 5/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3	11/27/2018		
5/29/2019 7/31/2019 83.2 10/1/2019 28.9 10/2/2019 3/30/2020 3/31/2020 4/1/2020 18.7 8/31/2020 9/1/2020 5/17/2021 5/18/2021 5/19/2021 5/25/2021 10/25/2021 10/26/2021 73.2 11/1/2021 5/23/2022 95.1 5/24/2022 3.79	1/8/2019		
7/31/2019 83.2 10/1/2019 28.9 10/2/2019 3/30/2020 3/31/2020 4/1/2020 18.7 8/31/2020 9/1/2020 43.5 38.3 9/2/2020 5/17/2021 5/18/2021 5/19/2021 59.5 1.93 5/25/2021 10/25/2021 10/26/2021 73.2 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 3.79	3/20/2019		
10/1/2019 28.9 10/2/2019 3/30/2020 3/31/2020 4/1/2020 18.7 8/31/2020 9/1/2020 43.5 38.3 9/2/2020 5/17/2021 5/18/2021 5/19/2021 59.5 1.93 5/25/2021 10/25/2021 10/26/2021 73.2 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 3.79	5/29/2019		
10/2/2019 3/30/2020 3/31/2020 4/1/2020 18.7 8/31/2020 9/1/2020 5/17/2021 5/18/2021 5/19/2021 5/25/2021 10/26/2021 73.2 11/1/2021 5/23/2022 95.1 5/24/2022 3.79	7/31/2019	83.2	
3/30/2020 3/31/2020 4/1/2020 18.7 8/31/2020 9/1/2020 43.5 9/2/2020 5/17/2021 5/18/2021 5/19/2021 5/25/2021 10/26/2021 73.2 11/1/2021 5/23/2022 95.1 5/24/2022 3.79	10/1/2019	28.9	
3/31/2020 4/1/2020 18.7 8/31/2020 9/1/2020 43.5 38.3 9/2/2020 5/17/2021 5/18/2021 59.5 1.93 5/25/2021 10/25/2021 73.2 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 3.79	10/2/2019		
4/1/2020 18.7 8/31/2020 9/1/2020 9/1/2020 43.5 38.3 9/2/2020 5/17/2021 5/18/2021 5/19/2021 59.5 1.93 5/25/2021 10/25/2021 10/26/2021 73.2 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 3.79	3/30/2020		
8/31/2020 9/1/2020 43.5 38.3 9/2/2020 5/17/2021 5/18/2021 5/19/2021 59.5 1.93 5/25/2021 10/25/2021 10/26/2021 73.2 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 3.79	3/31/2020		
9/1/2020 43.5 38.3 9/2/2020 5/17/2021 5/18/2021 5/19/2021 59.5 1.93 5/25/2021 10/25/2021 10/26/2021 73.2 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 3.79	4/1/2020	18.7	
9/2/2020 5/17/2021 5/18/2021 5/19/2021 59.5 1.93 5/25/2021 10/25/2021 10/26/2021 73.2 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 3.79	8/31/2020		
5/17/2021 5/18/2021 5/19/2021 59.5 1.93 5/25/2021 10/25/2021 10/26/2021 73.2 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 3.79	9/1/2020	43.5	38.3
5/18/2021 5/19/2021 59.5 1.93 5/25/2021 10/25/2021 73.2 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 3.79	9/2/2020		
5/19/2021 59.5 1.93 5/25/2021 10/25/2021 10/26/2021 73.2 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 3.79	5/17/2021		
5/25/2021 10/25/2021 10/26/2021 73.2 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 3.79	5/18/2021		
10/25/2021 10/26/2021 73.2 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 3.79	5/19/2021	59.5	1.93
10/26/2021 73.2 11/1/2021 5.66 5/23/2022 95.1 5/24/2022 3.79	5/25/2021		
11/1/2021 5.66 5/23/2022 95.1 5/24/2022 3.79	10/25/2021		
5/23/2022 95.1 5/24/2022 3.79	10/26/2021	73.2	
5/24/2022 3.79	11/1/2021		5.66
	5/23/2022	95.1	
5/25/2022	5/24/2022		3.79
	5/25/2022		

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016								2.58	<1
3/2/2016							0.79 (J)		
4/19/2016							0.674 (J)	2.3	
4/20/2016									<1
6/7/2016							1	2.58	0.583 (J)
8/30/2016								2.81	<1
8/31/2016							0.702 (J)		
10/18/2016									<1
10/19/2016							0.739 (J)	5.06	
3/21/2017							<1	3.4 (J)	
3/22/2017									<1
5/2/2017							<1	2.7 (J)	
5/3/2017									<1
6/6/2017							<1	1.5 (J)	
6/7/2017									<1
9/12/2017							<1	1.9 (J)	
9/14/2017									<1
5/1/2018							<1	1.4 (J)	
5/2/2018									<1
8/28/2018							<1	<1	
8/29/2018									1.6 (J)
11/27/2018							<1	2.3 (J)	2.7 (J)
11/28/2018									
1/8/2019				31.2					
5/29/2019							0.747 (J)	2.92	5.51
7/31/2019	171	18.4							
10/1/2019	17.2	4.89					0.61 (J)	2.09	7.4
10/2/2019				92.3					
3/31/2020				84.5			1.02	4.12	23.7 (o)
4/1/2020		18.1							
9/1/2020	93.2	24.5	9.25				0.705 (J)	1.83	11
9/2/2020				59.7	4.39	2.26			
5/17/2021			6.92						
5/18/2021							0.883 (J)	4.43	
5/24/2021		3.99			4.94	2.59			
5/25/2021	72.3			17					
10/26/2021	140	29.5	4.23	122					
11/1/2021							1.01	3.34	
11/2/2021					4.28	2.08			15
5/24/2022	103			92.3					
5/25/2022		4.01	4.25		4.24	2.13	1.41 (J)	1.97 (J)	5.53

	BY-AP-MW-5V	BY-AP-MW-6
3/1/2016		0.36 (J)
3/2/2016		
4/19/2016		0.435 (J)
4/20/2016		
6/7/2016		1.22
8/30/2016		1.08
8/31/2016		
10/18/2016		
10/19/2016		1.01
3/21/2017		
3/22/2017		<1
5/2/2017		
5/3/2017		1.4 (J)
6/6/2017		
6/7/2017		1.5 (J)
9/12/2017		
9/14/2017		1.8 (J)
5/1/2018		
5/2/2018		<1
8/28/2018		
8/29/2018		<1
11/27/2018		
11/28/2018		<1
1/8/2019	1.75	
5/29/2019		1.17
7/31/2019		
10/1/2019		1.04
10/2/2019	5.8	
3/31/2020	0.98 (J)	1.21
4/1/2020		
9/1/2020	1.47	
9/2/2020		1.02
5/17/2021		0.981 (J)
5/18/2021		
5/24/2021		
5/25/2021		
10/26/2021		
11/1/2021		
11/2/2021	1.34	1.37
5/24/2022		
5/25/2022	2.91	1.27 (J)

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9		BY-UP-MW-2 (bg)		
2/23/2016						8.59	7.2	7.44	7.04
3/1/2016	0.3 (J)		<1		<1				
4/19/2016						8.27	7.22	7.66	6.74
4/20/2016	0.514 (J)		<1		<1				
6/6/2016						8.66			7.04
6/7/2016	0.971 (J)		0.504 (J)				7.92	8.16	
6/8/2016					0.51 (J)				
8/30/2016			<1			9.74	8.17	8.43	7.57
8/31/2016	0.445 (J)				<1				
10/18/2016			<1			10.2	7.99	8.47	6.62
10/19/2016	0.366 (J)				<1				
3/20/2017						8.3	6.1	7.4	7
3/22/2017	<1		<1		<1				
5/2/2017						6.6	5	6.3	5.6
5/3/2017	<1		2.7 (J)		2.7 (J)				
6/6/2017						7.6	5.3	7.1	6.6
6/7/2017	<1		<1		<1				
9/12/2017									7.2
9/13/2017						8.4	4.9 (J)	7.3	
9/14/2017	<1		<1		<1				
5/1/2018							4.2 (J)	6.9	5.9
5/2/2018	<1		<1		<1	5.9			
8/28/2018					<1				
8/29/2018			<1						
11/26/2018									5.1
11/27/2018			<1			22		6.5	
11/28/2018	<1				1.4 (J)				
1/9/2019		3.69		1.74					
5/28/2019									7.1
5/29/2019	2.77		6.01			23.3	5.94	7.81	
5/30/2019					5.91				
9/30/2019	2.51		5.29		3.77				
10/1/2019		2		7					
10/2/2019						17.5	6.04	7.62	6.88
3/30/2020	4.78	9.65	33.1	75.8					
3/31/2020					43.5	24.3	6.83	7.98	10.8
9/2/2020	3.59	6.7	15.8	24	21.9				
9/8/2020									6.52
9/9/2020						16.5	6.08	7.13	
5/11/2021			35.4				7.92	7.73	6.8
5/12/2021						16.3			
5/18/2021	4.6	5.53		19.6	27.7				
10/18/2021								7.36	6.58
10/19/2021						15.5	7.48		
10/26/2021			25.7	58.2					
10/27/2021	5.17	5.31			6.33				
5/23/2022				8.35					
5/24/2022	7.14	6.06	81.3		5.76				
5/31/2022						12.8	8.09	7.02	7.94

		BY-AP-MW-1	BY-AP-MW-10	BY-AP-MW-10V	BY-AP-MW-11	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
3/	1/2016		326		395					
3/	2/2016	426				351		319		266
4/	19/2016	442								
4/	20/2016		366		376	353		305		311
6/3	8/2016	461	314		324	330		287		353
8/	30/2016									328
8/	31/2016	456	368		367	354		295		
10	0/18/2016									310
10	0/19/2016	444	381		367	354		305		
1/3	31/2017	422						325		312
2/	1/2017		342		391	360				
5/	2/2017	442								300
5/	3/2017		369		373	341		306		
6/	6/2017	433								335
6/	7/2017		340		367	337		320		
9/	13/2017	456			378	359		332		339
	14/2017		391							
	1/2018	416								
	2/2018		343		330	310		320		301
	28/2018	420	375							
8/	29/2018				352	307		312		318
11	1/27/2018									295
11	1/28/2018	408	378		357	336		304		
1/3	8/2019			462			348			
5/	29/2019	403			367	321		307		318
5/3	30/2019		377							
9/	30/2019		361		399					
10	0/1/2019	430		393		344		290		317
10	0/2/2019						321			
	30/2020	419								
	31/2020		387	413	393	331	328	290		317
	1/2020									
	1/2020	454	392	403	399	356	338	285		
	2/2020								361	327
	11/2021		391							
	18/2021	450		401		332	329			
	19/2021				422			300	362	
	25/2021									318
	0/26/2021							280	355	
	0/27/2021		373	400						327
	1/1/2021	480				349	352			
	1/2/2021				390					
	23/2022				404	345	352			
	24/2022	464	398	403				257		
5/:	25/2022								343	328

	BY-AP-MW-14V	BY-AP-MW-15
3/1/2016		
3/2/2016		182
4/19/2016		151
4/20/2016		
6/8/2016		168
8/30/2016		
8/31/2016		188
10/18/2016		
10/19/2016		180
1/31/2017		166
2/1/2017		
5/2/2017		183
5/3/2017		
6/6/2017		187
6/7/2017		
9/13/2017		202
9/14/2017		
5/1/2018		197
5/2/2018		
8/28/2018		
8/29/2018		192
11/27/2018		190
11/28/2018		
1/8/2019		
5/29/2019		198
5/30/2019		
9/30/2019		
10/1/2019		236
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020		231
9/1/2020		
9/2/2020	498	208
5/11/2021		279
5/18/2021		
5/19/2021		
5/25/2021	520	
10/26/2021	474	269
10/27/2021		
11/1/2021		
11/2/2021		
5/23/2022		
5/24/2022	508	
5/25/2022		255

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		263							42
4/19/2016		259							51.3
6/8/2016		285							46.7
8/31/2016		279							32.7
10/19/2016		264							37.3
1/31/2017		270							47.3
5/2/2017		259							44
6/6/2017		278							48
9/12/2017									40.7
9/13/2017		333							
5/1/2018		274							42.7
8/28/2018									28
8/29/2018		283							
11/27/2018		250							48
1/8/2019								192	
3/20/2019						293			
5/29/2019		264							47.3
7/31/2019	337			212			318		
10/1/2019	321	295				283	316		44.7
10/2/2019				203				154	
3/30/2020								160	
3/31/2020		276							42
4/1/2020				243		210			
8/31/2020									45.3
9/1/2020	318			236	576	281	294	175	
9/2/2020		279	219						
5/17/2021				201					
5/18/2021					438			189	48.7
5/19/2021		274	213			293			
5/25/2021	335						162		
10/25/2021				225	280	302	123		
10/26/2021	358		195						
11/1/2021		324						190	52
5/23/2022						292			
5/24/2022	348						133	176	40.7
5/25/2022		299	188	194	1270				

	BY-AP-MW-20H	BY-AP-MW-20V
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
5/2/2017		
6/6/2017		
9/12/2017		
9/13/2017		
5/1/2018		
8/28/2018		
8/29/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	481	
10/1/2019	470	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	319	
8/31/2020		
9/1/2020	479	308
9/2/2020		
5/17/2021		
5/18/2021		
5/19/2021	479	271
5/25/2021		
10/25/2021		
10/26/2021	493	
11/1/2021		282
5/23/2022	462	
5/24/2022		296
5/25/2022		

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016								27.3	273
3/2/2016							27.3		
4/19/2016							33.3	38	
4/20/2016									269
6/7/2016							44	48.7	272
8/30/2016								32.7	244
8/31/2016							29.3		
10/18/2016									238
10/19/2016							29.3	36	
1/31/2017							36.7	40.7	266
5/2/2017							28	30.7	
5/3/2017									259
6/6/2017							36.7	41.3	
6/7/2017									255
9/12/2017							35.3	34.7	
9/14/2017									276
5/1/2018							34.7	39.3	
5/2/2018									247
8/28/2018							34	26	
8/29/2018									263
11/27/2018							41.3	32	248
11/28/2018									
1/8/2019				504					
5/29/2019							40	39.3	259
7/31/2019	345	241							
10/1/2019	346	261					36.7	32	243
10/2/2019				430					
3/31/2020				418			37.3	42.7	243
4/1/2020		105							
9/1/2020	362	271	391				39.3	36	253
9/2/2020				471	36	34			
5/17/2021			386						
5/18/2021							38	47.3	
5/24/2021		244			39.3	26.7			
5/25/2021	378			420					
10/26/2021	362	252	362	448					
11/1/2021							35.3	32	
11/2/2021					34.7	36			297
5/24/2022	372			486					
5/25/2022		236	359		37.3	29.3	50.7	48.7	252

	BY-AP-MW-5V	BY-AP-MW-6
3/1/2016		45.3
3/2/2016		
4/19/2016		46
4/20/2016		
6/7/2016		46
8/30/2016		30
8/31/2016		
10/18/2016		
10/19/2016		37.3
1/31/2017		43.3
5/2/2017		
5/3/2017		44.7
6/6/2017		
6/7/2017		45.3
9/12/2017		
9/14/2017		48.7
5/1/2018		
5/2/2018		44
8/28/2018		
8/29/2018		50
11/27/2018		
11/28/2018		50.7
1/8/2019	76.7	
5/29/2019		48.7
7/31/2019		
10/1/2019		38
10/2/2019	98	
3/31/2020	81.3	42
4/1/2020		
9/1/2020	94	07.0
9/2/2020		37.3
5/17/2021		46.7
5/18/2021		
5/24/2021		
5/25/2021		
10/26/2021		
11/1/2021	77.0	
11/2/2021	77.3	38
5/24/2022	75.0	40.7
5/25/2022	75.3	40.7

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						26.7	30.7	40	<25
3/1/2016	129		309		314				
4/19/2016						<25	<25	32	<25
4/20/2016	128		324		338				
6/6/2016						32.7			28.7
6/7/2016	140		314				35.3	38.7	
6/8/2016					288				
8/30/2016			308			33.3	27.3	31.3	25.3
8/31/2016	112				334				
10/18/2016			295			27.3	<25	26.7	<25
10/19/2016	134				333				
1/31/2017	134		303			32	32.7	30	26
2/1/2017					330				
5/2/2017						31.3	30.7	30.7	<25
5/3/2017	127		300		338				
6/6/2017						35.3	34.7	32.7	42.7
6/7/2017	134		284		300				
9/12/2017									26.7
9/13/2017						36.7	39.3	38	
9/14/2017	141		325		350				
5/1/2018							42	35.3	34.7
5/2/2018	133		306		333	34			
8/28/2018					324				
8/29/2018			287						
11/26/2018									32.7
11/27/2018			303			50.7	31.3	36	
11/28/2018	138				330				
1/9/2019		240		276					
5/28/2019									31.3
5/29/2019	132		291			58	40	37.3	
5/30/2019					315				
9/30/2019	137		293		319				
10/1/2019		182		324					
10/2/2019						46	41.3	36.7	36
3/30/2020	135	204	310	328					
3/31/2020					330	53.3	40	39.3	36.7
9/2/2020	129	168	298	318	301				
9/8/2020									39.3
9/9/2020						42	40.7	42.7	
5/11/2021			318				35.3	44	46.7
5/12/2021						40.7			
5/18/2021	175	192		331	314				
10/18/2021								36	36
10/19/2021						40	36		
10/26/2021			332	350					
10/27/2021	123	169			302				
5/23/2022				331					
5/24/2022	148	228	303		268				
5/31/2022						32	30.7	35.3	36.7

		BY-AP-MW-1	BY-AP-MW-10	BY-AP-MW-10V	BY-AP-MW-11	BY-AP-MW-12	BY-AP-MW-12V	BY-AP-MW-13	BY-AP-MW-13V	BY-AP-MW-14
;	3/1/2016		<0.0002		<0.0002					
;	3/2/2016	<0.0002				<0.0002		<0.0002		<0.0002
	4/19/2016	<0.0002								
	4/20/2016		<0.0002		<0.0002	<0.0002		<0.0002		<0.0002
(6/8/2016	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002		<0.0002
:	8/30/2016									<0.0002
:	8/31/2016	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002		
	10/18/2016									<0.0002
	10/19/2016	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002		
	1/31/2017	<0.0002						<0.0002		<0.0002
:	2/1/2017		<0.0002		<0.0002	<0.0002				
!	5/2/2017	<0.0002								<0.0002
	5/3/2017		<0.0002		<0.0002	<0.0002		<0.0002		
(6/6/2017	<0.0002								<0.0002
(6/7/2017		<0.0002		<0.0002	<0.0002		0.000878 (J)		
	1/22/2018							<0.0002		
	1/23/2018		<0.0002		<0.0002	<0.0002				<0.0002
	1/24/2018	<0.0002								
	5/1/2018	<0.0002								
	5/2/2018		<0.0002		<0.0002	<0.0002		<0.0002		<0.0002
	11/27/2018									<0.0002
	11/28/2018	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002		
	1/8/2019			<0.0002			<0.0002			
	5/29/2019	<0.0002			<0.0002	<0.0002		<0.0002		<0.0002
	5/30/2019		<0.0002							
:	9/30/2019		<0.0002		<0.0002					
	10/1/2019	<0.0002		<0.0002		<0.0002		<0.0002		<0.0002
	10/2/2019						<0.0002			
;	3/30/2020	<0.0002								
;	3/31/2020		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002
•	4/1/2020									
!	9/1/2020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
	9/2/2020								<0.0002	<0.0002
	5/11/2021		<0.0002							
!	5/18/2021	<0.0002		<0.0002		<0.0002	<0.0002			
	5/19/2021				<0.0002			<0.0002	<0.0002	
!	5/25/2021									<0.0002
	10/26/2021							<0.0002	<0.0002	
	10/27/2021		<0.0002	<0.0002						<0.0002
	11/1/2021	<0.0002				<0.0002	<0.0002			
	11/2/2021				<0.0002					
	5/23/2022				<0.0002	<0.0002	<0.0002			
	5/24/2022	<0.0002	<0.0002	<0.0002				<0.0002		
	5/25/2022								<0.0002	<0.0002

3/1/2016 3/2/2016 4/19/2016 4/20/2016 6/8/2016	BY-AP-MW-14V	BY-AP-MW-15 <0.0002
3/2/2016 4/19/2016 4/20/2016 6/8/2016		
4/19/2016 4/20/2016 6/8/2016		
4/20/2016 6/8/2016		
6/8/2016		<0.0002
		<0.0002
8/30/2016		
8/31/2016		<0.0002
10/18/2016		
10/19/2016		<0.0002
1/31/2017		<0.0002
2/1/2017		
5/2/2017		<0.0002
5/3/2017		
6/6/2017		<0.0002
6/7/2017		
1/22/2018		<0.0002
1/23/2018		
1/24/2018		
5/1/2018		<0.0002
5/2/2018		
11/27/2018		<0.0002
11/28/2018		
1/8/2019		
5/29/2019		<0.0002
5/30/2019		
9/30/2019		
10/1/2019		<0.0002
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020		<0.0002
9/1/2020		
9/2/2020	<0.0002	<0.0002
5/11/2021		<0.0002
5/18/2021		
5/19/2021		
5/25/2021	<0.0002	
10/26/2021	<0.0002	<0.0002
10/27/2021		
11/1/2021		
11/2/2021		
5/23/2022		
5/24/2022	<0.0002	
5/25/2022		<0.0002

	BY-AP-MW-15V	BY-AP-MW-16	BY-AP-MW-16V	BY-AP-MW-17H	BY-AP-MW-17V	BY-AP-MW-18H	BY-AP-MW-19H	BY-AP-MW-1V	BY-AP-MW-2
3/2/2016		<0.0002							<0.0002
4/19/2016		<0.0002							<0.0002
6/8/2016		<0.0002							<0.0002
8/31/2016		<0.0002							<0.0002
10/19/2016		<0.0002							<0.0002
1/31/2017		<0.0002							<0.0002
5/2/2017		<0.0002							<0.0002
6/6/2017		<0.0002							<0.0002
1/23/2018		<0.0002							
1/24/2018									<0.0002
5/1/2018		<0.0002							<0.0002
11/27/2018		<0.0002							<0.0002
1/8/2019								<0.0002	
3/20/2019						<0.0002			
5/29/2019		<0.0002							<0.0002
7/31/2019	<0.0002			<0.0002			<0.0002		
10/1/2019	<0.0002	<0.0002				<0.0002	<0.0002		<0.0002
10/2/2019				<0.0002				<0.0002	
3/30/2020								<0.0002	
3/31/2020		<0.0002							<0.0002
4/1/2020				<0.0002		<0.0002			
8/31/2020									<0.0002
9/1/2020	<0.0002			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
9/2/2020		<0.0002	<0.0002						
5/17/2021				<0.0002					
5/18/2021					<0.0002			<0.0002	<0.0002
5/19/2021		<0.0002	9.13E-05 (J)			<0.0002			
5/25/2021	8.49E-05 (J)						<0.0002		
10/25/2021				<0.0002	<0.0002	<0.0002	<0.0002		
10/26/2021	7E-05 (J)		0.0001 (J)						
11/1/2021		<0.0002						<0.0002	<0.0002
5/23/2022						<0.0002			
5/24/2022	0.00014 (J)						<0.0002	<0.0002	<0.0002
5/25/2022		<0.0002	9E-05 (J)	<0.0002	0.0001 (J)				

	BY-AP-MW-20H	BY-AP-MW-20\
3/2/2016		
4/19/2016		
6/8/2016		
8/31/2016		
10/19/2016		
1/31/2017		
5/2/2017		
6/6/2017		
1/23/2018		
1/24/2018		
5/1/2018		
11/27/2018		
1/8/2019		
3/20/2019		
5/29/2019		
7/31/2019	<0.0002	
10/1/2019	<0.0002	
10/2/2019		
3/30/2020		
3/31/2020		
4/1/2020	<0.0002	
8/31/2020		
9/1/2020	<0.0002	<0.0002
9/2/2020		
5/17/2021		
5/18/2021		
5/19/2021	<0.0002	<0.0002
5/25/2021		
10/25/2021		
10/26/2021	<0.0002	
11/1/2021		<0.0002
5/23/2022	<0.0002	
5/24/2022		<0.0002
5/25/2022		

	BY-AP-MW-22H	BY-AP-MW-23H	BY-AP-MW-23V	BY-AP-MW-24H	BY-AP-MW-25H	BY-AP-MW-25VM	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
3/1/2016								<0.0002	<0.0002
3/2/2016							<0.0002		
4/19/2016							<0.0002	<0.0002	
4/20/2016									<0.0002
6/7/2016							<0.0002	<0.0002	<0.0002
8/30/2016								<0.0002	<0.0002
8/31/2016							<0.0002		
10/18/2016									<0.0002
10/19/2016							<0.0002	<0.0002	
1/31/2017							<0.0002	<0.0002	<0.0002
5/2/2017							<0.0002	<0.0002	
5/3/2017									<0.0002
6/6/2017							<0.0002	<0.0002	
6/7/2017									<0.0002
1/24/2018							<0.0002	<0.0002	<0.0002
5/1/2018							<0.0002	<0.0002	
5/2/2018									<0.0002
11/27/2018							<0.0002	<0.0002	<0.0002
11/28/2018									
1/8/2019				<0.0002					
5/29/2019							<0.0002	<0.0002	<0.0002
7/31/2019	<0.0002	<0.0002							
10/1/2019	<0.0002	<0.0002					<0.0002	<0.0002	<0.0002
10/2/2019				<0.0002					
3/31/2020				<0.0002			<0.0002	<0.0002	<0.0002
4/1/2020		<0.0002							
9/1/2020	<0.0002	<0.0002	<0.0002				<0.0002	<0.0002	<0.0002
9/2/2020				<0.0002	<0.0002	<0.0002			
5/17/2021			<0.0002						
5/18/2021							<0.0002	<0.0002	
5/24/2021		<0.0002			<0.0002	<0.0002			
5/25/2021	<0.0002			<0.0002					
10/26/2021	<0.0002	<0.0002	<0.0002	<0.0002					
11/1/2021							<0.0002	<0.0002	
11/2/2021					<0.0002	<0.0002			<0.0002
5/24/2022	<0.0002			<0.0002					
5/25/2022		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002

	BY-AP-MW-5V	BY-AP-MW-6
3/1/2016		<0.0002
3/2/2016		
4/19/2016		<0.0002
4/20/2016		
6/7/2016		<0.0002
8/30/2016		<0.0002
8/31/2016		
10/18/2016		
10/19/2016		<0.0002
1/31/2017		<0.0002
5/2/2017		
5/3/2017		<0.0002
6/6/2017		
6/7/2017		<0.0002
1/24/2018		<0.0002
5/1/2018		
5/2/2018		<0.0002
11/27/2018		
11/28/2018		<0.0002
1/8/2019	<0.0002	
5/29/2019		<0.0002
7/31/2019		
10/1/2019		<0.0002
10/2/2019	<0.0002	
3/31/2020	<0.0002	<0.0002
4/1/2020		
9/1/2020	<0.0002	
9/2/2020		<0.0002
5/17/2021		<0.0002
5/18/2021		
5/24/2021		
5/25/2021		
10/26/2021		
11/1/2021		
11/2/2021	<0.0002	<0.0002
5/24/2022		
5/25/2022	<0.0002	<0.0002

	BY-AP-MW-7	BY-AP-MW-7V	BY-AP-MW-8	BY-AP-MW-8V	BY-AP-MW-9	BY-UP-MW-1 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)
2/23/2016						<0.0002	<0.0002	<0.0002	<0.0002
3/1/2016	<0.0002		<0.0002		<0.0002				
4/19/2016						<0.0002	<0.0002	<0.0002	<0.0002
4/20/2016	<0.0002		<0.0002		<0.0002				
6/6/2016						<0.0002			<0.0002
6/7/2016	<0.0002		<0.0002				<0.0002	<0.0002	
6/8/2016					<0.0002				
8/30/2016			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002
8/31/2016	<0.0002				<0.0002				
10/18/2016			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002
10/19/2016	<0.0002				<0.0002				
1/31/2017	<0.0002		<0.0002			<0.0002	<0.0002	<0.0002	<0.0002
2/1/2017					<0.0002				
5/2/2017						<0.0002	<0.0002	<0.0002	<0.0002
5/3/2017	<0.0002		<0.0002		<0.0002				
6/6/2017						<0.0002	<0.0002	<0.0002	<0.0002
6/7/2017	<0.0002		<0.0002		<0.0002				
1/23/2018					<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
1/24/2018	<0.0002		<0.0002						
5/1/2018							<0.0002	<0.0002	<0.0002
5/2/2018	<0.0002		<0.0002		<0.0002	<0.0002			
11/26/2018									<0.0002
11/27/2018			<0.0002			<0.0002	<0.0002	<0.0002	
11/28/2018	<0.0002				<0.0002				
1/9/2019		<0.0002		<0.0002					
5/28/2019									<0.0002
5/29/2019	<0.0002		<0.0002			<0.0002	<0.0002	<0.0002	
5/30/2019					<0.0002				
9/30/2019	<0.0002		<0.0002		<0.0002				
10/1/2019		<0.0002		<0.0002					
10/2/2019						<0.0002	<0.0002	<0.0002	<0.0002
3/30/2020	<0.0002	<0.0002	<0.0002	<0.0002					
3/31/2020					<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
9/2/2020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002				
9/8/2020									<0.0002
9/9/2020						<0.0002	<0.0002	<0.0002	
5/11/2021			<0.0002				<0.0002	<0.0002	<0.0002
5/12/2021						<0.0002			
5/18/2021	<0.0002	<0.0002		<0.0002	<0.0002				
10/18/2021								<0.0002	<0.0002
10/19/2021						<0.0002	<0.0002		
10/26/2021			<0.0002	<0.0002		0002	0002		
10/27/2021	<0.0002	<0.0002			<0.0002				
5/23/2022	0.0002	3.0002		<0.0002	0.0002				
5/24/2022	<0.0002	<0.0002	<0.0002	5.0002	<0.0002				
5/31/2022	0.0002	3.0002	5.0002		0.0002	<0.0002	<0.0002	<0.0002	<0.0002
5.5 112022						-0.0002	-0.0002	-0.0002	-0.0002

FIGURE B.

Box & Whiskers Plot

Constituent: Antimony Analysis Run 7/21/2022 3:46 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Constituent: Antimony Analysis Run 7/21/2022 3:46 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Antimony Analysis Run 7/21/2022 3:46 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Antimony Analysis Run 7/21/2022 3:46 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Arsenic Analysis Run 7/21/2022 3:46 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Arsenic Analysis Run 7/21/2022 3:46 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Arsenic Analysis Run 7/21/2022 3:46 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Arsenic Analysis Run 7/21/2022 3:46 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Sanitas™ v.9.6.35 . UG

Constituent: Barium Analysis Run 7/21/2022 3:46 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Constituent: Barium Analysis Run 7/21/2022 3:46 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Barium Analysis Run 7/21/2022 3:46 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Beryllium Analysis Run 7/21/2022 3:46 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Beryllium Analysis Run 7/21/2022 3:46 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Beryllium Analysis Run 7/21/2022 3:46 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Boron, total Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Sanitas™ v.9.6.35 . UG

Constituent: Boron, total Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Boron, total Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Boron, total Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Cadmium Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Cadmium Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Cadmium Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Calcium, total Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Constituent: Calcium, total Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Calcium, total Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Calcium, total Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chloride, Total Analysis Run 7/21/2022 3:47 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Chloride, Total Analysis Run 7/21/2022 3:47 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Chloride, Total Analysis Run 7/21/2022 3:47 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Chloride, Total Analysis Run 7/21/2022 3:47 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chromium Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Chromium Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Chromium Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Cobalt Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Cobalt Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Cobalt Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Cobalt Analysis Run 7/21/2022 3:47 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 7/21/2022 3:47 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 7/21/2022 3:47 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 7/21/2022 3:47 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 7/21/2022 3:47 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Fluoride, total Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Fluoride, total Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Fluoride, total Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Fluoride, total Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Sanitas™ v.9.6.35 . UG

Constituent: Lead Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Constituent: Lead Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Lead Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Lead Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Lithium Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Lithium Analysis Run 7/21/2022 3:47 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Lithium Analysis Run 7/21/2022 3:47 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Lithium Analysis Run 7/21/2022 3:47 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Mercury Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Constituent: Mercury Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Mercury Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Mercury Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Molybdenum Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Molybdenum Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Molybdenum Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Molybdenum Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: pH, field Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: pH, field Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: pH, field Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: pH, field Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Selenium Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Selenium Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Selenium Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Selenium Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Sulfate as SO4 Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Sulfate as SO4 Analysis Run 7/21/2022 3:47 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Sulfate as SO4 Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Sulfate as SO4 Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: TDS Analysis Run 7/21/2022 3:47 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Sanitas™ v.9.6.35 . UG

Constituent: TDS Analysis Run 7/21/2022 3:47 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: TDS Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: TDS Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Thallium Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Constituent: Thallium Analysis Run 7/21/2022 3:47 PM View: Descriptive
Plant Barry Client: Southern Company Data: Barry Ash Pond

Box & Whiskers Plot

Constituent: Thallium Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Box & Whiskers Plot

Constituent: Thallium Analysis Run 7/21/2022 3:47 PM View: Descriptive Plant Barry Client: Southern Company Data: Barry Ash Pond

FIGURE C.

Outlier Summary

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:09 PM

BY-AP-MW-1 Chloride, Total (mg/L)

BY-AP-MW-4 Cobalt (mg/L)

BY-AP-MW-12 Sulfate as SO4 (mg/L)

BY-AP-MW-13 Sulfate as SO4 (mg/L)

BY-AP-MW-15 Sulfate as SO4 (mg/L)

BY-AP-MW-15 Sulfate as SO4 (mg/L)

BY-AP-MW-15 Sulfate as SO4 (mg/L)

BY-AP-MW-16 Sulfate as SO4 (mg/L)

3/2/2016 2.18 (O) 4/19/2016 9.01 (O)

1/31/2017 0.0127 (O) 5/1/2018 0.0126 (O)

11/28/2018 <50 (O)

5/29/2019 49.5 (o) 67.6 (o)

3/31/2020 17.5 (o) 23.7 (o)

9/2/2020 13.3 (o)

FIGURE D.

Intrawell Prediction Limits - Significant Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:21 PM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig. Bg N	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	n Alpha	Method
pH, field (SU)	BY-AP-MW-1	5.91	5.47	5/24/2022	2 5.44	Yes 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-10	6.463	6.143	5/24/2022	2 5.81	Yes 19	6.303	0.06515	0	None	No	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-AP-MW-13	6.14	5.79	5/24/2022	2 5.5	Yes 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-2	6.2	5.161	5/24/2022	2 4.78	Yes 19	1094	156.3	0	None	x^4	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-AP-MW-6	5.694	4.846	5/25/2022	2 4.57	Yes 19	801.5	101.6	0	None	x^4	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-AP-MW-8	6.26	5.89	5/24/2022	2 5.6	Yes 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-UP-MW-1	4.882	4.49	5/31/2022	2 3.89	Yes 18	4.686	0.0786	0	None	No	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-UP-MW-2	5.032	4.318	5/31/2022	2 3.31	Yes 18	4.675	0.1431	0	None	No	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-UP-MW-3	4.98	4.4	5/31/2022	2 3.54	Yes 18	n/a	n/a	0	n/a	n/a	0.01075	NP Intra (normality) 1 of 2
pH, field (SU)	BY-UP-MW-4	5.082	4.517	5/31/2022	2 3.97	Yes 18	4.799	0.1134	0	None	No	0.0002351	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-1	6.348	n/a	5/24/2022	2 21	Yes 13	52.17	74.33	46.15	Kaplan-Mei	ек^3	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-10	5	n/a	5/24/2022	2 14.7	Yes 13	n/a	n/a	69.23	n/a	n/a	0.009692	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-11	19.37	n/a	5/23/2022	2 29.3	Yes 13	1.308	0.5028	46.15	Kaplan-Mei	ex^(1/3)	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-12	7.04	n/a	5/23/2022	2 13	Yes 12	n/a	n/a	75	n/a	n/a	0.01077	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-13	9.841	n/a	5/24/2022	2 38.3	Yes 12	3.818	2.151	41.67	Kaplan-Mei	eNo	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-14	61.6	n/a	5/25/2022	2 105	Yes 16	n/a	n/a	56.25	n/a	n/a	0.006456	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-7	5	n/a	5/24/2022	2 7.14	Yes 16	n/a	n/a	37.5	n/a	n/a	0.006456	NP Intra (normality) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-8	6.01	n/a	5/24/2022	2 81.3	Yes 13	n/a	n/a	76.92	n/a	n/a	0.009692	NP Intra (NDs) 1 of 2

Intrawell Prediction Limits - All Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:21 PM

Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig. Bo	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	n Alpha	Method
pH, field (SU)	BY-AP-MW-1	5.91	5.47	5/24/2022	5.44	Yes 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-10	6.463	6.143	5/24/2022	5.81	Yes 19	6.303	0.06515	0	None	No	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-AP-MW-11	6.34	5.85	5/23/2022	6.32	No 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-12	6.25	5.58	5/23/2022	6.12	No 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-13	6.14	5.79	5/24/2022	5.5	Yes 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-14	6.14	5.76	5/25/2022	6.14	No 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-15	6.76	6.2	5/25/2022	6.68	No 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-16	5.87	5.23	5/25/2022	5.74	No 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-2	6.2	5.161	5/24/2022	4.78	Yes 19	1094	156.3	0	None	x^4	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-AP-MW-3	5.22	4.24	5/25/2022	4.64	No 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-4	5.355	3.955	5/25/2022	4.6	No 19	4.655	0.2846	0	None	No	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-AP-MW-5	6.03	5.47	5/25/2022	5.99	No 18	n/a	n/a	0	n/a	n/a	0.01075	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-6	5.694	4.846	5/25/2022	4.57	Yes 19	801.5	101.6	0	None	x^4	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-AP-MW-7	6.432	6.166	5/24/2022	6.32	No 18	6.299	0.05346	0	None	No	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-AP-MW-8	6.26	5.89	5/24/2022	5.6	Yes 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-AP-MW-9	6.32	5.97	5/24/2022	6.03	No 19	n/a	n/a	0	n/a	n/a	0.009664	NP Intra (normality) 1 of 2
pH, field (SU)	BY-UP-MW-1	4.882	4.49	5/31/2022	3.89	Yes 18	4.686	0.0786	0	None	No	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-UP-MW-2	5.032	4.318	5/31/2022	3.31	Yes 18	4.675	0.1431	0	None	No	0.0002351	Param Intra 1 of 2
pH, field (SU)	BY-UP-MW-3	4.98	4.4	5/31/2022	3.54	Yes 18	n/a	n/a	0	n/a	n/a	0.01075	NP Intra (normality) 1 of 2
pH, field (SU)	BY-UP-MW-4	5.082	4.517	5/31/2022	3.97	Yes 18	4.799	0.1134	0	None	No	0.0002351	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-1	6.348	n/a	5/24/2022	21	Yes 13	52.17	74.33	46.15	Kaplan-Me	iex^3	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-10	5	n/a	5/24/2022	14.7	Yes 13	n/a	n/a	69.23	n/a	n/a	0.009692	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-11	19.37	n/a	5/23/2022	29.3	Yes 13	1.308	0.5028	46.15	Kaplan-Me	iex^(1/3)	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-12	7.04	n/a	5/23/2022	13	Yes 12	n/a	n/a	75	n/a	n/a	0.01077	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-13	9.841	n/a	5/24/2022	38.3	Yes 12	3.818	2.151	41.67	Kaplan-Me	ieNo	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-14	61.6	n/a	5/25/2022	105	Yes 16	n/a	n/a	56.25	n/a	n/a	0.006456	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-15	7.61	n/a	5/25/2022	1.8J	No 17	n/a	n/a	58.82	n/a	n/a	0.005914	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-16	6.72	n/a	5/25/2022	6.29	No 15	n/a	n/a	60	n/a	n/a	0.007533	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-2	3.3	n/a	5/24/2022	0.615J	No 17	n/a	n/a	64.71	n/a	n/a	0.005914	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-3	5	n/a	5/25/2022	1.41J	No 17	n/a	n/a	41.18	n/a	n/a	0.005914	NP Intra (normality) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-4	5.778	n/a	5/25/2022	1.97J	No 17	2.878	1.149	5.882	None	No	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-5	11	n/a	5/25/2022	5.53	No 15	n/a	n/a	60	n/a	n/a	0.007533	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-6	3.037	n/a	5/25/2022	1.27J	No 17	0.01145	0.4356	23.53	Kaplan-Mei	erln(x)	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-7	5	n/a	5/24/2022	7.14	Yes 16	n/a	n/a	37.5	n/a	n/a	0.006456	NP Intra (normality) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-8	6.01	n/a	5/24/2022	81.3	Yes 13	n/a	n/a	76.92	n/a	n/a	0.009692	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-AP-MW-9	5.91	n/a	5/24/2022	5.76	No 13	n/a	n/a	69.23	n/a	n/a	0.009692	NP Intra (NDs) 1 of 2
Sulfate as SO4 (mg/L)	BY-UP-MW-1	31.7	n/a	5/31/2022	12.8	No 16	3.458	0.85	0	None	sqrt(x)	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-UP-MW-2	9.774	n/a	5/31/2022	8.09	No 15		1.269	0	None	No	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-UP-MW-3	9.087	n/a	5/31/2022	7.02	No 16		0.6224	0	None	No	0.0004702	Param Intra 1 of 2
Sulfate as SO4 (mg/L)	BY-UP-MW-4	10.8	n/a	5/31/2022	7.94	No 16	n/a	n/a	0	n/a	n/a	0.006456	NP Intra (normality) 1 of 2

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 19 background values. Well-constituent pair annual alpha = 0.01928. Individual comparison alpha = 0.009664 (1 of 2).

Constituent: pH, field Analysis Run 7/20/2022 3:20 PM View: AllI Plant Barry Client: Southern Company Data: Barry Ash Pond

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 19 background values. Well-constituent pair annual alpha = 0.01928. Individual comparison alpha = 0.009664 (1 of 2).

Background Data Summary: Mean=6.303, Std. Dev.=0.06515, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8965, critical = 0.863. Kappa = 2.46 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha = 0.0004702.

Constituent: pH, field Analysis Run 7/20/2022 3:20 PM View: AllI Plant Barry Client: Southern Company Data: Barry Ash Pond

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 19 background values. Well-constituent pair annual alpha = 0.01928. Individual comparison alpha = 0.009664 (1 of 2).

Exceeds Limits Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 19 background values. Well-constituent pair annual alpha = 0.01928. Individual comparison alpha = 0.009664 (1 of 2).

Constituent: pH, field Analysis Run 7/20/2022 3:20 PM View: AllI Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Within Limits

Prediction Limit
Intrawell Non-parametric

BY-AP-MW-15
background
BY-AP-MW-15
compliance
Limit = 6.76
Limit = 6.2

5/31/17 8/29/18 11/27/19 2/24/21

3/2/16

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 19 background values. Well-constituent pair annual alpha = 0.01928. Individual comparison alpha = 0.009664 (1 of 2).

5/25/22

Sanitas™ v.9.6.35 . UG

Within Limits Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 19 background values. Well-constituent pair annual alpha = 0.01928. Individual comparison alpha = 0.009664 (1 of 2).

Constituent: pH, field Analysis Run 7/20/2022 3:20 PM View: AIII
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Within Limits Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 19 background values. Well-constituent pair annual alpha = 0.01928. Individual comparison alpha = 0.009664 (1 of 2).

Exceeds Limits Prediction Limit

Background Data Summary (based on x^4 transformation): Mean=1094, Std. Dev.=156.3, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8685, critical = 0.863. Kappa = 2.46 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha = 0.0004702.

Constituent: pH, field Analysis Run 7/20/2022 3:20 PM View: AllI Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Prediction Limit Within Limits Intrawell Parametric BY-AP-MW-4 6 background BY-AP-MW-4 4.8 compliance Limit = 5.355 3.6 Limit = 3.955 2.4 1.2 5/30/17 8/28/18 11/26/19 2/23/21 3/1/16 5/25/22

Background Data Summary: Mean=4.655, Std. Dev.=0.2846, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.972, critical = 0.863. Kappa = 2.46 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha = 0.0004702.

Sanitas™ v.9.6.35 . UG

Within Limits Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 19 background values. Well-constituent pair annual alpha = 0.01928. Individual comparison alpha = 0.009664 (1 of 2).

Constituent: pH, field Analysis Run 7/20/2022 3:20 PM View: AIII
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

SU

Within Limits Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 18 background values. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01075 (1 of 2).

Prediction Limit Exceeds Limits Intrawell Parametric

Background Data Summary (based on x⁴ transformation): Mean=801.5, Std. Dev.=101.6, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8738, critical = 0.863. Kappa = 2.46 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha = 0.0004702.

> Constituent: pH, field Analysis Run 7/20/2022 3:20 PM View: AIII Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 19 background values. Well-constituent pair annual alpha = 0.01928. Individual comparison alpha = 0.009664 (1 of 2).

Sanitas™ v.9.6.35 . UG

Background Data Summary: Mean=6.299, Std. Dev.=0.05346, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9863, critical = 0.858. Kappa = 2.492 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: pH, field Analysis Run 7/20/2022 3:20 PM View: AIII Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

3/1/16

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 19 background values. Well-constituent pair annual alpha = 0.01928. Individual comparison alpha = 0.009664 (1 of 2).

2/23/16 5/25/17 8/26/18 11/27/19 2/27/21

Background Data Summary: Mean=4.686, Std. Dev.=0.0786, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9444, critical = 0.858. Kappa = 2.492 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha = 0.004732

5/31/22

Constituent: pH, field Analysis Run 7/20/2022 3:20 PM View: AllI Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas** v.9.6.35 . UG

Exceeds Limits

Prediction Limit
Intrawell Non-parametric

BY-UP-MW-3
background
BY-UP-MW-3
compliance
Limit = 4.98

Limit = 4.4

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 18 background values. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01075 (1 of 2).

Background Data Summary: Mean=4.675, Std. Dev.=0.1431, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8886, critical = 0.858. Kappa = 2.492 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha = 0.0004702.

Constituent: pH, field Analysis Run 7/20/2022 3:20 PM View: AIII
Plant Barry Client: Southern Company Data: Barry Ash Pond

Background Data Summary: Mean=4.799, Std. Dev.=0.1134, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9332, critical = 0.858. Kappa = 2.492 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha = 0.0004702.

Exceeds Limit

BY-AP-MW-1 background

BY-AP-MW-1 compliance

Limit = 6.348

Prediction Limit

Background Data Summary (based on cube transformation) (after Kaplan-Meier Adjustment): Mean=52.17, Std. Dev.=74.33, n=13, 46.15% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8687, critical = 0.814. Kappa = 2.739 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha = 0.0004702.

5/24/22

5/30/17 8/28/18 11/26/19 2/23/21

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:20 PM View: AllI Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values.

3/2/16

Background Data Summary (based on cube root transformation) (after Kaplan-Meier Adjustment): Mean=1.308, Std. Dev.=0.5028, n=13, 46.15% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8281, critical = 0.814. Kappa = 2.739 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha = 0.0004702.

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values.

Exceeds Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 13 background values. 69.23% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:20 PM View: AllI Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG
Hollow symbols indicate censored values.
Exceeds Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 75% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Exceeds Limit

Prediction Limit

Background Data Summary (after Kaplan-Meier Adjustment): Mean=3.818, Std. Dev.=2.151, n=12, 41.67% NDs. Normality test: Shapiro Wilk (@alpha = 0.01, calculated = 0.8449, critical = 0.805. Kappa = 2.8 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha = 0.004702.

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:20 PM View: AllI Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 17 background values. 58.82% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2).

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values.

Exceeds Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 16 background values. 56.25% NDs. Well-constituent pair annual alpha = 0.01287. Individual comparison alpha = 0.006456 (1 of 2).

Prediction Limit

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:20 PM View: AllI Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG
Hollow symbols indicate censored values.
Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 15 background values. 60% NDs. Well-constituent pair annual alpha = 0.01501. Individual comparison alpha = 0.007533 (1 of 2).

Within Limit

BY-AP-MW-2 background

3.2

BY-AP-MW-2 compliance

Limit = 3.3

5/30/17 8/28/18 11/26/19 2/23/21

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 17 background values. 64.71% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2).

5/24/22

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:20 PM View: AllI Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values. Within Limit

3/2/16

BY-AP-MW-4 background BY-AP-MW-4 compliance Limit = 5.778

Background Data Summary: Mean=2.878, Std. Dev.=1.149, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9059, critical = 0.851. Kappa = 2.524 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha = 0.0004702.

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. 41.18% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2).

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:20 PM View: AllI Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG
Hollow symbols indicate censored values.
Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 15 background values. 60% NDs. Well-constituent pair annual alpha = 0.01501. Individual comparison alpha = 0.007533 (1 of 2).

3/1/16

Within Limit

Intrawell Parametric

BY-AP-MW-6 background

BY-AP-MW-6 compliance

Limit = 3.037

Prediction Limit

Background Data Summary (based on natural log transformation) (after Kaplan-Meier Adjustment): Mean=0.01145, Std. Dev.=0.4356, n=17, 23.53% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8672, critical = 0.851. Kappa = 2.524 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha = 0.0004702.

5/25/22

5/30/17 8/28/18 11/26/19 2/23/21

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:20 PM View: AllI Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 13 background values. 76.92% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values. Exceeds Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 16 background values. 37.5% NDs. Well-constituent pair annual alpha = 0.01287. Individual comparison alpha = 0.006456 (1 of 2).

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:20 PM View: AllI Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG
Hollow symbols indicate censored values.
Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 13 background values. 69.23% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Within Limit Prediction Limit

Background Data Summary (based on square root transformation): Mean=3.458, Std. Dev.=0.85, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8598, critical = 0.844. Kappa = 2.556 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha = 0.0004702.

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:20 PM View: AllI Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Background Data Summary: Mean=7.496, Std. Dev.=0.6224, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9756, critical = 0.844. Kappa = 2.556 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha = 0.0004702.

Sanitas™ v.9.6.35 . UG

Background Data Summary: Mean=6.454, Std. Dev.=1.269, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.937, critical = 0.835. Kappa = 2.617 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha = 0.0004702.

2/23/16 5/25/17 8/26/18 11/27/19 2/27/21 5/31/22

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:20 PM View: AllI Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 16 background values. Well-constituent pair annual alpha = 0.01287. Individual comparison alpha = 0.006456 (1 of 2).

	BY-AP-MW-1	BY-AP-MW-1
3/2/2016	5.78	
4/19/2016	5.8	
6/8/2016	5.83	
8/31/2016	5.85	
10/19/2016	5.87	
1/31/2017	5.83	
3/21/2017	5.83	
5/2/2017	5.73	
6/6/2017	5.83	
9/13/2017	5.91	
1/24/2018	5.9	
5/1/2018	5.83	
8/28/2018	5.78	
11/28/2018	5.82	
5/29/2019	5.82	
10/1/2019	5.47	
3/30/2020	5.79	
9/1/2020	5.89	
5/18/2021	5.86	
11/1/2021		6.01
5/24/2022		5.44

	BY-AP-MW-10	BY-AP-MW-10
3/1/2016	6.33	
4/20/2016	6.31	
6/8/2016	6.34	
8/31/2016	6.35	
10/19/2016	6.35	
2/1/2017	6.27	
3/22/2017	6.29	
5/3/2017	6.23	
6/7/2017	6.27	
9/14/2017	6.27	
1/23/2018	6.32	
5/2/2018	6.36	
8/28/2018	6.31	
11/28/2018	6.32	
5/30/2019	6.23	
9/30/2019	6.11	
3/31/2020	6.37	
9/1/2020	6.33	
5/11/2021	6.4	
10/27/2021		5.91
5/24/2022		5.81

	BY-AP-MW-11	BY-AP-MW-11
3/1/2016	6.34	
4/20/2016	6.31	
6/8/2016	6.33	
8/31/2016	6.29	
10/19/2016	6.26	
2/1/2017	6.22	
3/22/2017	6.22	
5/3/2017	6.15	
6/7/2017	6.21	
9/13/2017	6.26	
1/23/2018	6.28	
5/2/2018	6.33	
8/29/2018	6.3	
11/28/2018	6.28	
5/29/2019	6.24	
9/30/2019	5.85	
3/31/2020	6.26	
9/1/2020	5.87	
5/19/2021	6.33	
11/2/2021		5.84
5/23/2022		6.32

	BY-AP-MW-12	BY-AP-MW-12
3/2/2016	6.16	
4/20/2016	6.17	
6/8/2016	6.25	
8/31/2016	6.23	
10/19/2016	6.2	
2/1/2017	6.08	
3/22/2017	6.12	
5/3/2017	6.12	
6/7/2017	6.13	
9/13/2017	6.19	
1/23/2018	6.17	
5/2/2018	6.15	
8/29/2018	6.19	
11/28/2018	6.11	
5/29/2019	6.13	
10/1/2019	6	
3/31/2020	6.21	
9/1/2020	6.19	
5/18/2021	5.58	
11/1/2021		5.75
5/23/2022		6.12

	BY-AP-MW-13	BY-AP-MW-13
3/2/2016	6.1	
4/20/2016	6.14	
6/8/2016	6.11	
8/31/2016	6.1	
10/19/2016	6.1	
1/31/2017	6.07	
3/22/2017	6.07	
5/3/2017	6.1	
6/7/2017	6.07	
9/13/2017	6.12	
1/22/2018	6.12	
5/2/2018	6.13	
8/29/2018	6.1	
11/28/2018	6.04	
5/29/2019	6.01	
10/1/2019	6.02	
3/31/2020	5.98	
9/1/2020	5.82	
5/19/2021	5.79	
10/26/2021		5.69
5/24/2022		5.5

	BY-AP-MW-14	BY-AP-MW-14
3/2/2016	6.08	
4/20/2016	6.04	
6/8/2016	6.13	
8/30/2016	6.08	
10/18/2016	6.13	
1/31/2017	6.06	
3/22/2017	6.09	
5/2/2017	5.94	
6/6/2017	6.1	
9/13/2017	6.11	
1/23/2018	6.12	
5/2/2018	6.13	
8/29/2018	6.14	
11/27/2018	6.07	
5/29/2019	6.07	
10/1/2019	6.01	
3/31/2020	5.76	
9/2/2020	5.8	
5/25/2021	5.82	
10/27/2021		6.41
5/25/2022		6.14

	BY-AP-MW-15	BY-AP-MW-15
3/2/2016	6.61	
4/19/2016	6.75	
6/8/2016	6.63	
8/31/2016	6.71	
10/19/2016	6.66	
1/31/2017	6.73	
3/21/2017	6.62	
5/2/2017	6.49	
6/6/2017	6.7	
9/13/2017	6.66	
1/22/2018	6.73	
5/1/2018	6.62	
8/29/2018	6.68	
11/27/2018	6.58	
5/29/2019	6.63	
10/1/2019	6.2	
4/1/2020	6.72	
9/2/2020	6.57	
5/11/2021	6.76	
10/26/2021		6.7
5/25/2022		6.68

	BY-AP-MW-16	BY-AP-MW-16
3/2/2016	5.79	
4/19/2016	5.78	
6/8/2016	5.8	
8/31/2016	5.83	
10/19/2016	5.81	
1/31/2017	5.84	
3/21/2017	5.79	
5/2/2017	5.68	
6/6/2017	5.8	
9/13/2017	5.86	
1/23/2018	5.86	
5/1/2018	5.85	
8/29/2018	5.87	
11/27/2018	5.76	
5/29/2019	5.76	
10/1/2019	5.23	
3/31/2020	5.75	
9/2/2020	5.47	
5/19/2021	5.8	
11/1/2021		5.36
5/25/2022		5.74

	BY-AP-MW-2	BY-AP-MW-2
3/2/2016	6.08	
4/19/2016	5.92	
6/8/2016	5.9	
8/31/2016	5.87	
10/19/2016	5.82	
1/31/2017	5.87	
3/21/2017	5.85	
5/2/2017	5.61	
6/6/2017	5.82	
9/12/2017	5.61	
1/24/2018	5.83	
5/1/2018	5.8	
8/28/2018	5.56	
11/27/2018	5.71	
5/29/2019	5.7	
10/1/2019	4.97	
3/31/2020	5.71	
8/31/2020	5.57	
5/18/2021	5.83	
11/1/2021		5.2
5/24/2022		4.78

	BY-AP-MW-3	BY-AP-MW-3
3/2/2016	5.14	
4/19/2016	5.06	
6/7/2016	5.13	
8/31/2016	5.11	
10/19/2016	5.05	
1/31/2017	5.14	
3/21/2017	5.13	
5/2/2017	4.85	
6/6/2017	5.15	
9/12/2017	4.96	
1/24/2018	5.22	
5/1/2018	5.11	
8/28/2018	4.92	
11/27/2018	5.05	
5/29/2019	5.05	
10/1/2019	4.37	
3/31/2020	5.08	
9/1/2020	4.24	
5/18/2021	4.93	
11/1/2021		4.94
5/25/2022		4.64

	BY-AP-MW-4	BY-AP-MW-4
3/1/2016	5.19	
4/19/2016	5.06	
6/7/2016	4.7	
8/30/2016	4.77	
10/19/2016	4.67	
1/31/2017	4.42	
3/21/2017	4.45	
5/2/2017	4.46	
6/6/2017	4.89	
9/12/2017	4.71	
1/24/2018	5.03	
5/1/2018	4.44	
8/28/2018	4.85	
11/27/2018	4.78	
5/29/2019	4.65	
10/1/2019	4.28	
3/31/2020	4.69	
9/1/2020	4.23	
5/18/2021	4.17	
11/1/2021		5.18
5/25/2022		4.6

	BY-AP-MW-5	BY-AP-MW-5
3/1/2016	5.99	
4/20/2016	5.96	
6/7/2016	6.03	
8/30/2016	6	
10/18/2016	5.99	
1/31/2017	5.96	
3/22/2017	6.01	
5/3/2017	5.99	
6/7/2017	6.01	
9/14/2017	6	
1/24/2018	5.98	
5/2/2018	5.99	
8/29/2018	6.03	
11/27/2018	6.01	
5/29/2019	5.93	
10/1/2019	5.47	
3/31/2020	6.01	
9/1/2020	5.93	
11/2/2021		6.36
5/25/2022		5.99

	BY-AP-MW-6	BY-AP-MW-6
3/1/2016	5.59	
4/19/2016	5.55	
6/7/2016	5.43	
8/30/2016	5.39	
10/19/2016	5.31	
1/31/2017	5.26	
3/22/2017	5.32	
5/3/2017	5.35	
6/7/2017	5.32	
9/14/2017	5.29	
1/24/2018	5.32	
5/2/2018	5.33	
8/29/2018	5.41	
11/28/2018	5.46	
5/29/2019	5.31	
10/1/2019	4.7	
3/31/2020	5.22	
9/2/2020	5.16	
5/17/2021	5.21	
11/2/2021		5.59
5/25/2022		4.57

	BY-AP-MW-7	BY-AP-MW-7
3/1/2016	6.36	
4/20/2016	6.31	
6/7/2016	6.3	
8/31/2016	6.31	
10/19/2016	6.23	
1/31/2017	6.26	
3/22/2017	6.32	
5/3/2017	6.29	
6/7/2017	6.27	
9/14/2017	6.25	
1/24/2018	6.35	
5/2/2018	6.29	
11/28/2018	6.33	
5/29/2019	6.18	
9/30/2019	6.36	
3/30/2020	6.32	
9/2/2020	6.25	
5/18/2021	6.4	
10/27/2021		6.35
5/24/2022		6.32

	BY-AP-MW-8	BY-AP-MW-8
3/1/2016	6.21	
4/20/2016	6.22	
6/7/2016	6.26	
8/30/2016	6.21	
10/18/2016	6.21	
1/31/2017	6.17	
3/22/2017	6.22	
5/3/2017	6.22	
6/7/2017	6.21	
9/14/2017	6.18	
1/24/2018	6.16	
5/2/2018	6.17	
8/29/2018	6.21	
11/27/2018	6.18	
5/29/2019	6.11	
9/30/2019	6.19	
3/30/2020	6.2	
9/2/2020	5.89	
5/11/2021	6.25	
10/26/2021		6.26
5/24/2022		5.6

	BY-AP-MW-9	BY-AP-MW-9
3/1/2016	6.26	
4/20/2016	6.26	
6/8/2016	6.25	
8/31/2016	6.29	
10/19/2016	6.22	
2/1/2017	6.24	
3/22/2017	6.28	
5/3/2017	6.17	
6/7/2017	6.24	
9/14/2017	6.24	
1/23/2018	6.3	
5/2/2018	6.31	
8/28/2018	6.28	
11/28/2018	6.32	
5/30/2019	6.14	
9/30/2019	6.07	
3/31/2020	6.31	
9/2/2020	5.97	
5/18/2021	6.3	
10/27/2021		6.13
5/24/2022		6.03

	BY-UP-MW-1	BY-UP-MW-1
2/23/2016	4.62	
4/19/2016	4.74	
6/6/2016	4.65	
8/30/2016	4.64	
10/18/2016	4.74	
1/31/2017	4.54	
3/20/2017	4.67	
5/2/2017	4.79	
6/6/2017	4.76	
9/13/2017	4.81	
1/23/2018	4.79	
5/2/2018	4.62	
11/27/2018	4.73	
5/29/2019	4.65	
10/2/2019	4.57	
3/31/2020	4.64	
9/9/2020	4.65	
5/12/2021	4.74	
10/19/2021		4.67
5/31/2022		3.89

	BY-UP-MW-2	BY-UP-MW-2
2/23/2016	4.79	
4/19/2016	4.84	
6/7/2016	4.81	
8/30/2016	4.76	
10/18/2016	4.84	
1/31/2017	4.6	
3/20/2017	4.71	
5/2/2017	4.8	
6/6/2017	4.72	
9/13/2017	4.71	
1/23/2018	4.67	
5/1/2018	4.61	
11/27/2018	4.72	
5/29/2019	4.58	
10/2/2019	4.43	
3/31/2020	4.6	
9/9/2020	4.67	
5/11/2021	4.29	
10/19/2021		4.6
5/31/2022		3.31

	BY-UP-MW-3	BY-UP-MW-3
2/23/2016	4.96	
4/19/2016	4.94	
6/7/2016	4.96	
8/30/2016	4.92	
10/18/2016	4.98	
1/31/2017	4.74	
3/20/2017	4.9	
5/2/2017	4.98	
6/6/2017	4.94	
9/13/2017	4.93	
1/23/2018	4.91	
5/1/2018	4.87	
11/27/2018	4.94	
5/29/2019	4.8	
10/2/2019	4.52	
3/31/2020	4.4	
9/9/2020	4.76	
5/11/2021	4.53	
10/18/2021		4.55
5/31/2022		3.54

	BY-UP-MW-4	BY-UP-MW-4
2/23/2016	4.74	
4/19/2016	4.86	
6/6/2016	4.88	
8/30/2016	4.91	
10/18/2016	4.95	
1/31/2017	4.71	
3/20/2017	4.83	
5/2/2017	4.93	
6/6/2017	4.9	
9/12/2017	4.82	
1/23/2018	4.85	
5/1/2018	4.8	
11/26/2018	4.88	
5/28/2019	4.73	
10/2/2019	4.67	
3/31/2020	4.51	
9/8/2020	4.75	
5/11/2021	4.67	
10/18/2021		4.38
5/31/2022		3.97

	BY-AP-MW-1	BY-AP-MW-1
3/2/2016	0.31 (J)	
4/19/2016	0.335 (J)	
6/8/2016	0.556 (J)	
8/31/2016	<5	
10/19/2016	<5	
3/21/2017	<5	
5/2/2017	6	
6/6/2017	<5	
9/13/2017	4.7 (J)	
5/1/2018	<5	
8/28/2018	<5	
11/28/2018	4.1 (J)	
5/29/2019	5.75	
10/1/2019		7.82
3/30/2020		28.4
9/1/2020		23.1
5/18/2021		16.5
11/1/2021		10.9
5/24/2022		21

	BY-AP-MW-10	BY-AP-MW-10
3/1/2016	0.34 (J)	
4/20/2016	<5	
6/8/2016	0.538 (J)	
8/31/2016	<5	
10/19/2016	<5	
3/22/2017	<5	
5/3/2017	4.1 (J)	
6/7/2017	<5	
9/14/2017	<5	
5/2/2018	<5	
8/28/2018	<5	
11/28/2018	<5	
5/30/2019	3.76	
9/30/2019		2.77
3/31/2020		20.1
9/1/2020		15.6
5/11/2021		13.2
10/27/2021		5.72
5/24/2022		14.7

	BY-AP-MW-11	BY-AP-MW-11
3/1/2016	1.02	
4/20/2016	1.1	
6/8/2016	0.701 (J)	
8/31/2016	<5	
10/19/2016	<5	
3/22/2017	2.1 (J)	
5/3/2017	3.6 (J)	
6/7/2017	<5	
9/13/2017	<5	
5/2/2018	<5	
8/29/2018	2.3 (J)	
11/28/2018	<5	
5/29/2019	24.1	
9/30/2019		37.4
3/31/2020		57.5
9/1/2020		42.8
5/19/2021		16.5
11/2/2021		133
5/23/2022		29.3

	BY-AP-MW-12	BY-AP-MW-12
3/2/2016	<5	
4/20/2016	<5	
6/8/2016	0.511 (J)	
8/31/2016	<5	
10/19/2016	<5	
3/22/2017	<5	
5/3/2017	2.1 (J)	
6/7/2017	<5	
9/13/2017	<5	
5/2/2018	<5	
8/29/2018	<5	
11/28/2018	<50 (O)	
5/29/2019	7.04	
10/1/2019		35.3
3/31/2020		35.8
9/1/2020		32.1
5/18/2021		25.1
11/1/2021		27
5/23/2022		13

	BY-AP-MW-13	BY-AP-MW-13
3/2/2016	<5	
4/20/2016	<5	
6/8/2016	0.496 (J)	
8/31/2016	<5	
10/19/2016	<5	
3/22/2017	6.9	
5/3/2017	6.6	
6/7/2017	6	
9/13/2017	2.2 (J)	
5/2/2018	4.1 (J)	
8/29/2018	<5	
11/28/2018	4.9 (J)	
5/29/2019	49.5 (o)	
10/1/2019		47.7
3/31/2020		23.2
9/1/2020		14.2
5/19/2021		50.4
10/26/2021		21
5/24/2022		38.3

	BY-AP-MW-14	BY-AP-MW-14
3/2/2016	<5	
4/20/2016	<5	
6/8/2016	0.514 (J)	
8/30/2016	<5	
10/18/2016	<5	
3/22/2017	<5	
5/2/2017	1.8 (J)	
6/6/2017	<5	
9/13/2017	<5	
5/2/2018	1.6 (J)	
8/29/2018	<5	
11/27/2018	<5	
5/29/2019	67.6 (o)	
10/1/2019	61.6	
3/31/2020	34.7	
9/2/2020	18.5	
5/25/2021	59.2	
10/27/2021		98.5
5/25/2022		105

	BY-AP-MW-15	BY-AP-MW-15
3/2/2016	<5	
4/19/2016	<5	
6/8/2016	0.489 (J)	
8/31/2016	<5	
10/19/2016	<5	
3/21/2017	<5	
5/2/2017	<5	
6/6/2017	<5	
9/13/2017	<5	
5/1/2018	<5	
8/29/2018	6.2	
11/27/2018	<5	
5/29/2019	3.27	
10/1/2019	1.72	
4/1/2020	7.5	
9/2/2020	7.61	
5/11/2021	7.54	
10/26/2021		26.4
5/25/2022		1.8 (J)

	BY-AP-MW-16	BY-AP-MW-16
3/2/2016	<5	
4/19/2016	<5	
6/8/2016	0.514 (J)	
8/31/2016	<5	
10/19/2016	<5	
3/21/2017	<5	
5/2/2017	<5	
6/6/2017	<5	
9/13/2017	2.6 (J)	
5/1/2018	<5	
8/29/2018	3.9 (J)	
11/27/2018	<5	
5/29/2019	6.72	
10/1/2019	3.4	
3/31/2020	17.5 (o)	
9/2/2020	13.3 (o)	
5/19/2021	3.11	
11/1/2021		11.9
5/25/2022		6.29

	BY-AP-MW-2	BY-AP-MW-2
3/2/2016	3.3	
4/19/2016	2.68	
6/8/2016	1.1	
8/31/2016	<1	
10/19/2016	<1	
3/21/2017	<1	
5/2/2017	<1	
6/6/2017	<1	
9/12/2017	<1	
5/1/2018	<1	
8/28/2018	<1	
11/27/2018	<1	
5/29/2019	0.885 (J)	
10/1/2019	<1	
3/31/2020	1.69	
8/31/2020	0.576 (J)	
5/18/2021	<1	
11/1/2021		1.56
5/24/2022		0.615 (J)

	BY-AP-MW-3	BY-AP-MW-3
3/2/2016	0.79 (J)	
4/19/2016	0.674 (J)	
6/7/2016	1	
8/31/2016	0.702 (J)	
10/19/2016	0.739 (J)	
3/21/2017	<5	
5/2/2017	<5	
6/6/2017	<5	
9/12/2017	<5	
5/1/2018	<5	
8/28/2018	<5	
11/27/2018	<5	
5/29/2019	0.747 (J)	
10/1/2019	0.61 (J)	
3/31/2020	1.02	
9/1/2020	0.705 (J)	
5/18/2021	0.883 (J)	
11/1/2021		1.01
5/25/2022		1.41 (J)

	BY-AP-MW-4	BY-AP-MW-4
3/1/2016	2.58	
4/19/2016	2.3	
6/7/2016	2.58	
8/30/2016	2.81	
10/19/2016	5.06	
3/21/2017	3.4 (J)	
5/2/2017	2.7 (J)	
6/6/2017	1.5 (J)	
9/12/2017	1.9 (J)	
5/1/2018	1.4 (J)	
8/28/2018	<5	
11/27/2018	2.3 (J)	
5/29/2019	2.92	
10/1/2019	2.09	
3/31/2020	4.12	
9/1/2020	1.83	
5/18/2021	4.43	
11/1/2021		3.34
5/25/2022		1.97 (J)

	BY-AP-MW-5	BY-AP-MW-5
3/1/2016	<5	
4/20/2016	<5	
6/7/2016	0.583 (J)	
8/30/2016	<5	
10/18/2016	<5	
3/22/2017	<5	
5/3/2017	<5	
6/7/2017	<5	
9/14/2017	<5	
5/2/2018	<5	
8/29/2018	1.6 (J)	
11/27/2018	2.7 (J)	
5/29/2019	5.51	
10/1/2019	7.4	
3/31/2020	23.7 (o)	
9/1/2020	11	
11/2/2021		15
5/25/2022		5.53

	BY-AP-MW-6	BY-AP-MW-6
3/1/2016	0.36 (J)	
4/19/2016	0.435 (J)	
6/7/2016	1.22	
8/30/2016	1.08	
10/19/2016	1.01	
3/22/2017	<5	
5/3/2017	1.4 (J)	
6/7/2017	1.5 (J)	
9/14/2017	1.8 (J)	
5/2/2018	<5	
8/29/2018	<5	
11/28/2018	<5	
5/29/2019	1.17	
10/1/2019	1.04	
3/31/2020	1.21	
9/2/2020	1.02	
5/17/2021	0.981 (J)	
11/2/2021		1.37
5/25/2022		1.27 (J)

	BY-AP-MW-7	BY-AP-MW-7
3/1/2016	0.3 (J)	
4/20/2016	0.514 (J)	
6/7/2016	0.971 (J)	
8/31/2016	0.445 (J)	
10/19/2016	0.366 (J)	
3/22/2017	<5	
5/3/2017	<5	
6/7/2017	<5	
9/14/2017	<5	
5/2/2018	<5	
11/28/2018	<5	
5/29/2019	2.77	
9/30/2019	2.51	
3/30/2020	4.78	
9/2/2020	3.59	
5/18/2021	4.6	
10/27/2021		5.17
5/24/2022		7.14

	BY-AP-MW-8	BY-AP-MW-8
3/1/2016	<5	
4/20/2016	<5	
6/7/2016	0.504 (J)	
8/30/2016	<5	
10/18/2016	<5	
3/22/2017	<5	
5/3/2017	2.7 (J)	
6/7/2017	<5	
9/14/2017	<5	
5/2/2018	<5	
8/29/2018	<5	
11/27/2018	<5	
5/29/2019	6.01	
9/30/2019		5.29
3/30/2020		33.1
9/2/2020		15.8
5/11/2021		35.4
10/26/2021		25.7
5/24/2022		81.3

	BY-AP-MW-9	BY-AP-MW-9
3/1/2016	<5	D1711 11111 0
4/20/2016	<5	
6/8/2016	0.51 (J)	
8/31/2016	<5	
10/19/2016	<5	
3/22/2017	<5	
5/3/2017	•	
	2.7 (J)	
6/7/2017	<5	
9/14/2017	<5	
5/2/2018	<5	
8/28/2018	<5	
11/28/2018	1.4 (J)	
5/30/2019	5.91	
9/30/2019		3.77
3/31/2020		43.5
9/2/2020		21.9
5/18/2021		27.7
10/27/2021		6.33
5/24/2022		5.76

	BY-UP-MW-1	BY-UP-MW-1
2/23/2016	8.59	
4/19/2016	8.27	
6/6/2016	8.66	
8/30/2016	9.74	
10/18/2016	10.2	
3/20/2017	8.3	
5/2/2017	6.6	
6/6/2017	7.6	
9/13/2017	8.4	
5/2/2018	5.9	
11/27/2018	22	
5/29/2019	23.3	
10/2/2019	17.5	
3/31/2020	24.3	
9/9/2020	16.5	
5/12/2021	16.3	
10/19/2021		15.5
5/31/2022		12.8

	BY-UP-MW-2	BY-UP-MW-2
2/23/2016	7.2	
4/19/2016	7.22	
6/7/2016	7.92	
8/30/2016	8.17	
10/18/2016	7.99	
3/20/2017	6.1	
5/2/2017	5	
6/6/2017	5.3	
9/13/2017	4.9 (J)	
5/1/2018	4.2 (J)	
5/29/2019	5.94	
10/2/2019	6.04	
3/31/2020	6.83	
9/9/2020	6.08	
5/11/2021	7.92	
10/19/2021		7.48
5/31/2022		8.09

	BY-UP-MW-3	BY-UP-MW-3
2/23/2016	7.44	
4/19/2016	7.66	
6/7/2016	8.16	
8/30/2016	8.43	
10/18/2016	8.47	
3/20/2017	7.4	
5/2/2017	6.3	
6/6/2017	7.1	
9/13/2017	7.3	
5/1/2018	6.9	
11/27/2018	6.5	
5/29/2019	7.81	
10/2/2019	7.62	
3/31/2020	7.98	
9/9/2020	7.13	
5/11/2021	7.73	
10/18/2021		7.36
5/31/2022		7.02

2/23/2016 7.04 4/19/2016 6.74 6/6/2016 7.04 8/30/2016 7.57 10/18/2016 6.62 3/20/2017 7 5/2/2017 5.6 6/6/2017 6.6 9/12/2017 7.2 5/1/2018 5.9 11/26/2018 5.1 5/28/2019 7.1		BY-UP-MW-4	BY-UP-MW-4
6/6/2016 7.04 8/30/2016 7.57 10/18/2016 6.62 3/20/2017 7 5/2/2017 5.6 6/6/2017 6.6 9/12/2017 7.2 5/1/2018 5.9 11/26/2018 5.1 5/28/2019 7.1	2/23/2016	7.04	
8/30/2016 7.57 10/18/2016 6.62 3/20/2017 7 5/2/2017 5.6 6/6/2017 6.6 9/12/2017 7.2 5/1/2018 5.9 11/26/2018 5.1 5/28/2019 7.1	4/19/2016	6.74	
10/18/2016 6.62 3/20/2017 7 5/2/2017 5.6 6/6/2017 6.6 9/12/2017 7.2 5/1/2018 5.9 11/26/2018 5.1 5/28/2019 7.1	6/6/2016	7.04	
3/20/2017 7 5/2/2017 5.6 6/6/2017 6.6 9/12/2017 7.2 5/1/2018 5.9 11/26/2018 5.1 5/28/2019 7.1	8/30/2016	7.57	
5/2/2017 5.6 6/6/2017 6.6 9/12/2017 7.2 5/1/2018 5.9 11/26/2018 5.1 5/28/2019 7.1	10/18/2016	6.62	
6/6/2017 6.6 9/12/2017 7.2 5/1/2018 5.9 11/26/2018 5.1 5/28/2019 7.1	3/20/2017	7	
9/12/2017 7.2 5/1/2018 5.9 11/26/2018 5.1 5/28/2019 7.1	5/2/2017	5.6	
5/1/2018 5.9 11/26/2018 5.1 5/28/2019 7.1	6/6/2017	6.6	
11/26/2018 5.1 5/28/2019 7.1	9/12/2017	7.2	
5/28/2019 7.1	5/1/2018	5.9	
	11/26/2018	5.1	
	5/28/2019	7.1	
10/2/2019 6.88	10/2/2019	6.88	
3/31/2020 10.8	3/31/2020	10.8	
9/8/2020 6.52	9/8/2020	6.52	
5/11/2021 6.8	5/11/2021	6.8	
10/18/2021 6.58	10/18/2021		6.58
5/31/2022 7.94	5/31/2022		7.94

FIGURE E.

Interwell Prediction Limits - Significant Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:14 PM

Constituent	Well	Upper Lim.	<u>Date</u>	Observ.	Sig. Bg I	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transforr	n Alpha	Method
Boron, total (mg/L)	BY-AP-MW-1	0.188	5/24/2022		Yes 71	n/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-10	0.188	5/24/2022	2.34	Yes 71	n/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-16	0.188	5/25/2022	1.98	Yes 71	n/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-8	0.188	5/24/2022	1.12	Yes 71	n/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-9	0.188	5/24/2022		Yes 71	n/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Calcium, total (mg/L)	BY-AP-MW-1	2.141	5/24/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-10	2.141	5/24/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-11	2.141	5/23/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-12	2.141	5/23/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-13	2.141	5/24/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-14	2.141	5/25/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-15	2.141	5/25/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-16	2.141	5/25/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-2	2.141	5/24/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-5	2.141	5/25/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-7	2.141	5/24/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-8	2.141	5/24/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-9	2.141	5/24/2022		Yes 72	1.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-1	9.9	5/24/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0004702	NP Inter (normality) 1 of 2
· · · · ·	BY-AP-MW-10	9.9	5/24/2022		Yes 72	n/a		0	n/a	n/a	0.0003634	
Chloride, Total (mg/L)	BY-AP-MW-11	9.9	5/23/2022		Yes 72	n/a	n/a n/a	0	n/a n/a	n/a	0.0003634	NP Inter (normality) 1 of 2 NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-12	9.9	5/23/2022		Yes 72	n/a		0	n/a n/a	n/a	0.0003634	` •
Chloride, Total (mg/L)							n/a					NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-13	9.9	5/24/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-14	9.9	5/25/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-15	9.9	5/25/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-16	9.9	5/25/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-3	9.9	5/25/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-4	9.9	5/25/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-5	9.9	5/25/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-7	9.9	5/24/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-8	9.9	5/24/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-9	9.9	5/24/2022		Yes 72	n/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-15	0.125	5/25/2022		Yes 76	n/a	n/a	55.26	n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
TDS (mg/L)	BY-AP-MW-1	58	5/24/2022		Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-10	58	5/24/2022		Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-11	58	5/23/2022		Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-12	58	5/23/2022		Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-13	58	5/24/2022		Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-14	58	5/25/2022	328	Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-15	58	5/25/2022		Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-16	58	5/25/2022		Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-5	58	5/25/2022		Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-7	58	5/24/2022	148	Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-8	58	5/24/2022	303	Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-9	58	5/24/2022	268	Yes 72	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2

Interwell Prediction Limits - All Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:14 PM

Constituent	Well	Upper Lim.	<u>Date</u>	Observ.	Sig. B	g N Bo	g Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron, total (mg/L)	BY-AP-MW-1	0.188	5/24/2022	2.08	Yes 7	1 n/	/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-10	0.188	5/24/2022	2.34	Yes 7	1 n/	/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-11	0.188	5/23/2022	0.0558J	No 7	1 n/a	'a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-12	0.188	5/23/2022		No 7			n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-13	0.188	5/24/2022		No 7			n/a		n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-14	0.188	5/25/2022		No 7			n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-15	0.188	5/25/2022		No 7			n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-16 BY-AP-MW-2	0.188	5/25/2022	0.1015ND	Yes 7			n/a	80.28	n/a n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L) Boron, total (mg/L)	BY-AP-MW-3	0.188 0.188		0.1015ND 0.1015ND	No 7			n/a	80.28 80.28	n/a n/a	n/a	0.000372 0.000372	NP Inter (NDs) 1 of 2 NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-4	0.188		0.1015ND				n/a n/a		n/a	n/a n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-5	0.188	5/25/2022		No 7			n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-6	0.188		0.1015ND	No 7			n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-7	0.188	5/24/2022		No 7			n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-8	0.188	5/24/2022		Yes 7		/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Boron, total (mg/L)	BY-AP-MW-9	0.188	5/24/2022	2.01	Yes 7	1 n/	/a	n/a	80.28	n/a	n/a	0.000372	NP Inter (NDs) 1 of 2
Calcium, total (mg/L)	BY-AP-MW-1	2.141	5/24/2022	43.9	Yes 7	2 1.	.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-10	2.141	5/24/2022	63.9	Yes 7	2 1.	.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-11	2.141	5/23/2022	26	Yes 7	2 1.	.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-12	2.141	5/23/2022	20.6	Yes 7	2 1.	.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-13	2.141	5/24/2022	19.2	Yes 7	2 1.	.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-14	2.141	5/25/2022	11.4	Yes 7	2 1.	.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-15	2.141	5/25/2022	6.41	Yes 7	2 1.	.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-16	2.141	5/25/2022	13.9	Yes 7	2 1.	.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-2	2.141	5/24/2022		Yes 7		.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-3	2.141	5/25/2022		No 72		.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-4	2.141	5/25/2022		No 72		.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-5	2.141	5/25/2022		Yes 7		.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-6	2.141	5/25/2022		No 72		.501	0.3034	0	None	No	0.0004702	Param Inter 1 of 2
Calcium, total (mg/L)	BY-AP-MW-7	2.141	5/24/2022		Yes 7		.501 .501	0.3034	0	None	No	0.0004702 0.0004702	Param Inter 1 of 2
Calcium, total (mg/L) Calcium, total (mg/L)	BY-AP-MW-8 BY-AP-MW-9	2.141 2.141	5/24/2022 5/24/2022		Yes 7		.501	0.3034 0.3034	0	None None	No No	0.0004702	Param Inter 1 of 2 Param Inter 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-1	9.9	5/24/2022		Yes 7			n/a	0	n/a	n/a	0.0004702	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-10	9.9	5/24/2022		Yes 7			n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-11	9.9	5/23/2022		Yes 7			n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-12	9.9	5/23/2022		Yes 7			n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-13	9.9	5/24/2022		Yes 7		/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-14	9.9	5/25/2022	45.3	Yes 7	2 n/	/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-15	9.9	5/25/2022	80.7	Yes 7	2 n/	/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-16	9.9	5/25/2022	20	Yes 7	2 n/	/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-2	9.9	5/24/2022	9.21	No 72	2 n/a	/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-3	9.9	5/25/2022	15.2	Yes 7	2 n/	/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-4	9.9	5/25/2022	16.1	Yes 7	2 n/	/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-5	9.9	5/25/2022	20	Yes 7	2 n/	/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-6	9.9	5/25/2022	6.63	No 72	2 n/a	/a	n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-7	9.9	5/24/2022		Yes 7			n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L)	BY-AP-MW-8	9.9	5/24/2022		Yes 7			n/a	0	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
Chloride, Total (mg/L) Fluoride, total (mg/L)	BY-AP-MW-9 BY-AP-MW-1	9.9 0.125	5/24/2022 5/24/2022		Yes 7:			n/a	0 55.26	n/a	n/a	0.0003634 0.000329	NP Inter (normality) 1 of 2
. (0)	BY-AP-MW-10							n/a		n/a n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L) Fluoride, total (mg/L)	BY-AP-MW-11	0.125 0.125	5/24/2022 5/23/2022		No 76			n/a n/a	55.26	n/a n/a	n/a n/a	0.000329	NP Inter (NDs) 1 of 2 NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-12	0.125	5/23/2022		No 76			n/a		n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-13	0.125	5/24/2022		No 76			n/a	55.26	n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-14	0.125	5/25/2022		No 76			n/a		n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-15	0.125	5/25/2022		Yes 7		/a	n/a		n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-16	0.125	5/25/2022	0.125ND	No 76	6 n/a	/a	n/a	55.26	n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-2	0.125	5/24/2022	0.125ND	No 76	6 n/a	/a	n/a	55.26	n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-3	0.125	5/25/2022	0.125ND	No 76	6 n/a	/a	n/a	55.26	n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-4	0.125	5/25/2022	0.125ND	No 76	6 n/a	/a	n/a	55.26	n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-5	0.125	5/25/2022	0.125ND	No 76	6 n/a	/a	n/a	55.26	n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-6	0.125		0.125ND	No 76	6 n/a	/a	n/a		n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-7	0.125	5/24/2022		No 76			n/a		n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-8	0.125	5/24/2022		No 76			n/a		n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
Fluoride, total (mg/L)	BY-AP-MW-9	0.125	5/24/2022		No 70			n/a	55.26	n/a	n/a	0.000329	NP Inter (NDs) 1 of 2
TDS (mg/L)	BY-AP-MW-1	58	5/24/2022		Yes 7			n/a		n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-10	58	5/24/2022		Yes 7			n/a		n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-11	58 50	5/23/2022		Yes 7			n/a		n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-12	58	5/23/2022	345	Yes 7	2 n/	ra	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2

Interwell Prediction Limits - All Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:14 PM

Constituent	Well	Upper Lim.	<u>Date</u>	Observ.	Sig. B	lg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
TDS (mg/L)	BY-AP-MW-13	58	5/24/2022	257	Yes 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-14	58	5/25/2022	328	Yes 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-15	58	5/25/2022	255	Yes 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-16	58	5/25/2022	299	Yes 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-2	58	5/24/2022	40.7	No 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-3	58	5/25/2022	50.7	No 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-4	58	5/25/2022	48.7	No 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-5	58	5/25/2022	252	Yes 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-6	58	5/25/2022	40.7	No 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-7	58	5/24/2022	148	Yes 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-8	58	5/24/2022	303	Yes 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2
TDS (mg/L)	BY-AP-MW-9	58	5/24/2022	268	Yes 7	2	n/a	n/a	9.722	n/a	n/a	0.0003634	NP Inter (normality) 1 of 2

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values

Exceeds Limit: BY-AP-MW-1, BY-AP-MW-10, BY-AP-MW-16, BY-AP-MW-8, BY-AP-MW-9

Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 71 background values. 80.28% NDs. Annual per-constituent alpha = 0.01184. Individual comparison alpha = 0.000372 (1 of 2). Comparing 16 points to limit.

Constituent: Boron, total Analysis Run 7/20/2022 3:13 PM View: AllI Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 72 background values. Annual per-constituent alpha = 0.01156. Individual comparison alpha = 0.0003634 (1 of 2). Comparing 16 points to limit.

Sanitas™ v.9.6.35 . UG

Prediction Limit Interwell Parametric

Background Data Summary: Mean=1.501, Std. Dev.=0.3034, n=72. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9742, critical = 0.954. Kappa = 2.11 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0004702. Comparing 16 points to limit.

Constituent: Calcium, total Analysis Run 7/20/2022 3:13 PM View: AllI
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values. Exceeds Limit: BY-AP-MW-15

Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 76 background values. 55.26% NDs. Annual per-constituent alpha = 0.01047. Individual comparison alpha = 0.000329 (1 of 2). Comparing 16 points to limit.

Sanitas™ v.9.6.35 . UG

Exceeds Limit: BY-AP-MW-1, BY-AP-MW-10, BY-AP-MW-11, BY-AP-MW-12, BY-AP-MW-13, BY-AP-MW-14, BY-AP-MW-15,..

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 72 background values. 9.722% NDs. Annual perconstituent alpha = 0.01156. Individual comparison alpha = 0.0003634 (1 of 2). Comparing 16 points to limit.

	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-1 (bg)	BY-AP-MW-10	BY-AP-MW-6	BY-AP-MW-8	BY-AP-MW-5	BY-AP-MW-9
2/23/2016	<0.1015	0.0257 (J)	0.0252 (J)	0.0212 (J)					
3/1/2016					1.39	<0.1015	1.72	0.0462 (J)	1.79
3/2/2016									
4/19/2016	<0.1015	<0.1015	<0.1015	<0.1015		<0.1015			
4/20/2016					1.51		1.7	0.0719 (J)	2.01
6/6/2016		<0.1015		<0.1015					
6/7/2016	<0.1015		0.0202 (J)			<0.1015	1.57	0.0591 (J)	
6/8/2016					1.62				2.23
8/30/2016	<0.1015	<0.1015	<0.1015	<0.1015		<0.1015	1.67	0.0675 (J)	
8/31/2016					1.73			()	2.14
10/18/2016	<0.1015	0.022 (J)	<0.1015	<0.1015			1.4	0.0699 (J)	
10/19/2016		. ,			1.77	<0.1015		()	2.13
1/31/2017	<0.1015	<0.1015	<0.1015	<0.1015		<0.1015	1.46	0.0518 (J)	
2/1/2017					1.42			(0)	2.17
5/2/2017	<0.1015	<0.1015	<0.1015	<0.1015					
5/3/2017					1.52	<0.1015	1.45	0.0737 (J)	2.28
6/6/2017	<0.1015	<0.1015	<0.1015	<0.1015	1.02	-0.1010	1.40	0.0707 (0)	2.20
6/7/2017	-0.1010	-0.1010	-0.1010	-0.1010	1.52	<0.1015	1.41	0.0518 (J)	2.25
9/12/2017		<0.1015			1.52	10.1013	1.41	0.0010 (0)	2.23
9/13/2017	<0.1015	~ 0.1013	<0.1015	<0.1015					
9/14/2017	~0.1013		~ 0.1013	~ 0.1013	1.96	<0.1015	1.16	0.0825 (J)	2.41
	<0.101E	<0.101E	<0.101E		1.90	<0.1015	1.10	0.0625 (3)	2.41
5/1/2018	<0.1015	<0.1015	<0.1015	0.0000 (1)	0	-0.1015	1.10	0.0002 (1)	0.04
5/2/2018		-0.4045		0.0362 (J)	2	<0.1015	1.12	0.0603 (J)	2.34
11/26/2018	0.4045	<0.1015		0.44			1.01	0.0010 (1)	
11/27/2018	<0.1015			0.11		0.1015	1.31	0.0613 (J)	0.00
11/28/2018		.0.4045			2	<0.1015			2.23
5/28/2019		<0.1015							
5/29/2019	<0.1015		<0.1015	0.188		<0.1015	1.44	0.0946 (J)	
5/30/2019					2.11				2.45
9/30/2019					2.02		1.38		2.34
10/1/2019						<0.1015		0.103	
10/2/2019	<0.1015	<0.1015	<0.1015	0.097 (J)					
3/30/2020							1.12		
3/31/2020	<0.1015	<0.1015	<0.1015	0.157	2.12	<0.1015		0.0782 (J)	2.27
4/1/2020									
8/31/2020									
9/1/2020					2.02			0.115	
9/2/2020						<0.1015	1.26		2.05
9/8/2020		<0.1015							
9/9/2020	<0.1015		<0.1015	0.0999 (J)					
5/11/2021	<0.1015	<0.1015	<0.1015		1.99		0.971		
5/12/2021				0.0841 (J)					
5/17/2021						<0.1015			
5/18/2021									2.08
5/19/2021									
5/25/2021									
10/18/2021	<0.1015	<0.1015							
10/19/2021			<0.1015	0.0708 (J)					
10/26/2021							0.933		
10/27/2021					2.39				2.04
11/1/2021									
11/2/2021						<0.1015		0.0755 (J)	

	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-1 (bg)	BY-AP-MW-10	BY-AP-MW-6	BY-AP-MW-8	BY-AP-MW-5	BY-AP-MW-9
5/23/2022									
5/24/2022					2.34		1.12		2.01
5/25/2022						<0.1015		0.063 (J)	
5/31/2022	<0.1015	<0.1015	<0.1015	0.0567 (J)					

	BY-AP-MW-11	BY-AP-MW-7	BY-AP-MW-4	BY-AP-MW-3	BY-AP-MW-16	BY-AP-MW-15	BY-AP-MW-14	BY-AP-MW-13	BY-AP-MW-2
2/23/2016									
3/1/2016	0.0482 (J)	0.0546 (J)	<0.1015						
3/2/2016				<0.1015	1.47	0.0447 (J)	0.0395 (J)	0.0328 (J)	<0.1015
4/19/2016			<0.1015	<0.1015	1.53	0.0645 (J)			<0.1015
4/20/2016	0.059 (J)	0.0472 (J)					0.0549 (J)	0.0434 (J)	
6/6/2016									
6/7/2016		0.0417 (J)	<0.1015	<0.1015					
6/8/2016	0.0568 (J)	. ,			1.7	0.0592 (J)	0.0593 (J)	0.0391 (J)	<0.1015
8/30/2016	,		<0.1015			.,	0.0534 (J)	.,	
8/31/2016	0.0651 (J)	0.036 (J)		<0.1015	1.68	0.0632 (J)	. ,	0.0401 (J)	<0.1015
10/18/2016	. ,	• •				.,	0.0597 (J)	. ,	
10/19/2016	0.06 (J)	0.0386 (J)	<0.1015	<0.1015	1.53	0.0637 (J)		0.0427 (J)	<0.1015
1/31/2017	. ,	0.0343 (J)	<0.1015	<0.1015	1.51	0.0536 (J)	0.0479 (J)	0.034 (J)	<0.1015
2/1/2017	0.0638 (J)	. ,				` '	` '	,	
5/2/2017	()		<0.1015	<0.1015	1.64	0.0775 (J)	0.0587 (J)		<0.1015
5/3/2017	0.0655 (J)	0.037 (J)				(-)	(-)	0.0416 (J)	
6/6/2017	(-)		<0.1015	<0.1015	1.57	0.0535 (J)	0.0428 (J)	(0)	<0.1015
6/7/2017	0.0468 (J)	0.0227 (J)				(-,	(-,	0.0277 (J)	
9/12/2017	(-)		<0.1015	<0.1015					<0.1015
9/13/2017	0.0751 (J)		0.1010	0.1010	2.18	0.0937 (J)	0.0647 (J)	0.044 (J)	0.1010
9/14/2017		0.0471 (J)				(-)	(-)	(5)	
5/1/2018		0.0 . 7 . (0)	<0.1015	<0.1015	1.57	0.0683 (J)			<0.1015
5/2/2018	0.0545 (J)	0.0313 (J)	0.1010	0.1010		0.0000 (0)	0.0484 (J)	0.0393 (J)	0.1010
11/26/2018	0.00.0 (0)	0.00.10 (0)					0.0.0.0	0.0000 (0)	
11/27/2018			<0.1015	<0.1015	1.58	0.0715 (J)	0.0493 (J)		<0.1015
11/28/2018	0.0545 (J)	0.0311 (J)	0.1010	0.1010		0.07.10 (0)	0.0.00 (0)	0.0417 (J)	0.1010
5/28/2019	0.00.0 (0)	0.0011 (0)						0.0117 (0)	
5/29/2019	0.082 (J)	0.042 (J)	<0.1015	<0.1015	1.7	0.116	0.0682 (J)	0.0528 (J)	<0.1015
5/30/2019	(0)	(-)					(-)	(,)	
9/30/2019	0.103	0.0418 (J)							
10/1/2019		(5)	<0.1015	<0.1015	2.05	0.116	0.0701 (J)	0.0604 (J)	<0.1015
10/2/2019							(-,	(,,	
3/30/2020		0.0369 (J)							
3/31/2020	0.0815 (J)	(,,	<0.1015	<0.1015	1.74		0.0655 (J)	0.0505 (J)	<0.1015
4/1/2020	0.00.0 (0)		0.1010	0.1010		0.1	0.0000 (0)	0.0000 (0)	0.1010
8/31/2020									<0.1015
9/1/2020	0.104		<0.1015	<0.1015				0.0642 (J)	
9/2/2020		0.042 (J)			1.9	0.148	0.0789 (J)	(-)	
9/8/2020		(-)					(-)		
9/9/2020									
5/11/2021						0.109			
5/12/2021									
5/17/2021									
5/18/2021		0.037 (J)	<0.1015	<0.1015					<0.1015
5/19/2021	0.0856 (J)				1.74			0.0604 (J)	
5/25/2021	(-)						0.074 (J)	(,,	
10/18/2021							(-)		
10/19/2021									
10/26/2021						0.0953 (J)		0.0511 (J)	
10/27/2021		0.0427 (J)				\-/	0.0677 (J)	(~)	
11/1/2021		- \-/	<0.1015	<0.1015	2.18		(-)		<0.1015
11/2/2021	0.0691 (J)				-				
	(-)								

Page 4

Prediction Limit

	BY-AP-MW-11	BY-AP-MW-7	BY-AP-MW-4	BY-AP-MW-3	BY-AP-MW-16	BY-AP-MW-15	BY-AP-MW-14	BY-AP-MW-13	BY-AP-MW-2
5/23/2022	0.0558 (J)								
5/24/2022		0.0369 (J)						0.0457 (J)	<0.1015
5/25/2022			<0.1015	<0.1015	1.98	0.0826 (J)	0.0618 (J)		
5/31/2022									

			Plant Barry	Client: Southern Company	Data: Barry Ash Pond	
	BY-AP-MW-1	BY-AP-MW-12				
2/23/2016						
3/1/2016						
3/2/2016	2.03	0.0502 (J)				
4/19/2016	2.2					
4/20/2016		0.0672 (J)				
6/6/2016						
6/7/2016						
6/8/2016	1.61	0.0659 (J)				
8/30/2016						
8/31/2016	1.55	0.065 (J)				
10/18/2016						
10/19/2016	1.59	0.0721 (J)				
1/31/2017	1.84					
2/1/2017		0.06 (J)				
5/2/2017	1.73					
5/3/2017		0.0768 (J)				
6/6/2017	1.56					
6/7/2017		0.0625 (J)				
9/12/2017						
9/13/2017	1.87	0.0926 (J)				
9/14/2017						
5/1/2018	1.81					
5/2/2018		0.064 (J)				
11/26/2018						
11/27/2018						
11/28/2018	1.8	0.064 (J)				
5/28/2019						
5/29/2019	1.75	0.0952 (J)				
5/30/2019						
9/30/2019						
10/1/2019	1.91	0.0967 (J)				
10/2/2019	4.77					
3/30/2020	1.77	0.0050 (1)				
3/31/2020		0.0856 (J)				
4/1/2020						
8/31/2020 9/1/2020	2.11	0.115				
9/1/2020	2.11	0.110				
9/8/2020						
9/9/2020						
5/11/2021						
5/12/2021						
5/17/2021						
5/18/2021	1.99	0.0927 (J)				
5/19/2021		,				
5/25/2021						
10/18/2021						
10/19/2021						
10/26/2021						
10/27/2021						
11/1/2021	2.02	0.0769 (J)				
11/2/2021						

Constituent: Boron, total (mg/L) Analysis Run 7/20/2022 3:14 PM View: AllI Plant Barry Client: Southern Company Data: Barry Ash Pond

BY-AP-MW-1 BY-AP-MW-12 5/23/2022 0.0626 (J) 5/24/2022 2.08 5/25/2022

5/31/2022

		BY-AP-MW-8	BY-AP-MW-6	BY-AP-MW-10	BY-AP-MW-13	BY-AP-MW-3	BY-AP-MW-12	BY-AP-MW-14	BY-AP-MW-2	BY-AP-MW-15
2/2	23/2016									
3/1	1/2016	36.1	1.87	50.6						
3/2	2/2016				16.7	1.11	21	9.53	3.86	6.61
4/1	19/2016		1.69			1.01			3.22	5.97
4/2	20/2016	34.5		49.1	13.1		20.1	9.55		
6/6	6/2016									
6/7	7/2016	34.7	1.75			1.06				
6/8	8/2016			48.7	11.7		20.2	13.1	3.17	6.36
8/3	30/2016	34.1	1.77					12.1		
8/3	31/2016			57.9	11.3	0.978	19.9		3.07	6.28
10)/18/2016	33.2						11.4		
10	/19/2016		1.8	52.2	11.8	0.906	20.4		2.91	6.57
1/3	31/2017	32.3	1.98		12.5	1.04		10.8	2.94	6.77
2/1	1/2017			47.6			20.9			
5/2	2/2017					0.969		11.9	2.82	6.94
5/3	3/2017	34.1	1.97	51.3	12		20.9			
6/6	6/2017					0.902		12.2	2.79	6.88
6/7	7/2017	34.7	1.98	51.4	12.8		21.2			
9/1	12/2017					0.988			2.88	
9/1	13/2017				13.3		22.1	13.9		7.43
9/1	14/2017	34.4	2.14	54.9						
5/1	1/2018					1.07			2.82	7.42
5/2	2/2018	32.3	2.13	53.3	13.8		22.2	10.6		
8/2	28/2018			56.4		1.02			2.85	
8/2	29/2018	32.6	1.92		13.3		22.3	11.7		7.37
11.	/26/2018									
11.	/27/2018	32.5				0.999		10.8	2.8	7.58
11	/28/2018		1.91	54.2	15.2		22.1			
5/2	28/2019									
5/2	29/2019	31.9	1.72		12.8	1.09	21.4	11.2	2.82	7.22
5/3	30/2019			60.5						
9/3	30/2019	33		63.1						
10	/1/2019		1.92		13.4	1.08	23.1	11.4	2.94	6.9
10	/2/2019									
3/3	30/2020	32.2								
3/3	31/2020		1.68	63.6	13.2	1.1	22.4	9.04	2.95	
4/1	1/2020									7.32
8/3	31/2020								3	
9/1	1/2020			57.2	12.3	1.08	22.2			
9/2	2/2020	31.5	1.8					10.8		7.04
9/8	8/2020									
9/9	9/2020									
5/1	11/2021	33		62.7						6.98
5/1	12/2021									
5/1	17/2021		1.93							
5/1	18/2021					1.12	23.1		3.17	
5/1	19/2021				12.9					
5/2	25/2021							11.2		
10)/18/2021									
10)/19/2021									
10)/26/2021	33.5			12.3					6.46
10)/27/2021			64.2				11.4		

	BY-AP-MW-8	BY-AP-MW-6	BY-AP-MW-10	BY-AP-MW-13	BY-AP-MW-3	BY-AP-MW-12	BY-AP-MW-14	BY-AP-MW-2	BY-AP-MW-15
11/1/2021					1.09	21.8		3.13	
11/2/2021		1.97							
5/23/2022						20.6			
5/24/2022	31.5		63.9	19.2				2.45	
5/25/2022		1.62			1.29		11.4		6.41
5/31/2022									

			Plant Barry	Client: Southern Company	Data: Barry Ash Pond		
	BY-AP-MW-1	BY-AP-MW-16					
2/23/2016							
3/1/2016							
3/2/2016	46.5	14.6					
4/19/2016	49	13.3					
4/20/2016							
6/6/2016							
6/7/2016							
6/8/2016	33.5	13.2					
8/30/2016							
8/31/2016	34.2	11.8					
10/18/2016							
10/19/2016	35.1	12.9					
1/31/2017	38.5	13.5					
2/1/2017							
5/2/2017	35.1	13.5					
5/3/2017							
6/6/2017	32.4	13.6					
6/7/2017							
9/12/2017							
9/13/2017	40.5	11.8					
9/14/2017							
5/1/2018	39.7	14					
5/2/2018							
8/28/2018	37.2						
8/29/2018		12.1					
11/26/2018							
11/27/2018		13.3					
11/28/2018	35.8						
5/28/2019							
5/29/2019	33.4	13.4					
5/30/2019							
9/30/2019							
10/1/2019	36.7	11.7					
10/2/2019							
3/30/2020	33.7						
3/31/2020		14.2					
4/1/2020							
8/31/2020							
9/1/2020	40.5						
9/2/2020		13.1					
9/8/2020							
9/9/2020							
5/11/2021							
5/12/2021							
5/17/2021							
5/18/2021	39.5						
5/19/2021		14.2					
5/25/2021							
10/18/2021							
10/19/2021							
10/26/2021							
10/27/2021							

	BY-AP-MW-1	BY-AP-MW-16
11/1/2021	38.4	13.4
11/2/2021		
5/23/2022		
5/24/2022	43.9	
5/25/2022		13.9
5/31/2022		

	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-1 (bg)	BY-UP-MW-4 (bg)	BY-AP-MW-4	BY-AP-MW-5	BY-AP-MW-7	BY-AP-MW-8	BY-AP-MW-11
2/23/2016	3.99	3.68	3.59	3.5					
3/1/2016					7.74	19.7	11.2	24.5	21.7
3/2/2016									
4/19/2016	4.08	3.72	2.89	3.63	7.66				
4/20/2016						18.9	10.8	22.5	20.7
6/6/2016			3.12	3.6					
6/7/2016	4.28	3.66			11.3	18.5	10.8	21.6	
6/8/2016									20.4
8/30/2016	4.26	3.7	3.91	3.54	10.8	17.9		21.6	
8/31/2016							10.8		20.3
10/18/2016	4.26	3.77	3.9	3.68		18.2		20.2	
10/19/2016					11.1		10.8		20.3
3/20/2017	4.1	3.7	3.5	4.6					
3/21/2017					11				
3/22/2017						22	13	24	27
5/2/2017	5 (D)	4.6 (D)	3.5 (D)	3.9 (D)	12				
5/3/2017						22	14	25	27
6/6/2017	3.9 (D)	3.4 (D)	3.1 (D)	3.4 (D)	12				
6/7/2017						21	14	24	24
9/12/2017				4.3	11				
9/13/2017	4.3	3.9	4						26
9/14/2017						21	13	24	
5/1/2018	3.7	4.1		3.8	9.2				
5/2/2018			9.9			20	13	23	23
8/28/2018					10				
8/29/2018						21		25	25
11/26/2018				3.6					
11/27/2018	3.2	3.5	4.7		10	21		27	
11/28/2018							13		25
5/28/2019				3.6					
5/29/2019	2.93	3.58	5.48		8.53	19.7	13.3	27.4	27.8
5/30/2019									
9/30/2019							13.1	25.5	25
10/1/2019					7.35	19.8			
10/2/2019	2.75	3.64	3.65	3.5					
3/30/2020							13.3	22.6	
3/31/2020	2.72	3.47	3.17	3.34	9.54	19.8			24.1
4/1/2020									
8/31/2020									
9/1/2020					7.82	19.1			23.2
9/2/2020							12.9	22.2	
9/8/2020				3.29					
9/9/2020	2.32	3.47	2.92						
5/11/2021	2.16	3.42		3.33				21.9	
5/12/2021			2.18						
5/17/2021									
5/18/2021					9.53		14.2		
5/19/2021									23.1
5/25/2021									
10/18/2021		3.45		3.32					
10/19/2021	2.08		2.37						
10/26/2021								21.7	

	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-1 (bg)	BY-UP-MW-4 (bg)	BY-AP-MW-4	BY-AP-MW-5	BY-AP-MW-7	BY-AP-MW-8	BY-AP-MW-11
10/27/2021							15.3		
11/1/2021					7.99				
11/2/2021						21			25.1
5/23/2022									25.1
5/24/2022							13.2	25	
5/25/2022					16.1	20			
5/31/2022	2.17	3.39	1.93	3.31					

	BY-AP-MW-10	BY-AP-MW-9	BY-AP-MW-6	BY-AP-MW-2	BY-AP-MW-3	BY-AP-MW-15	BY-AP-MW-14	BY-AP-MW-13	BY-AP-MW-16
2/23/2016									
3/1/2016	19.6	20.4	5.77						
3/2/2016				6.08	8.04	20.9	36.6	47.3	16.6
4/19/2016			5.57	6.2	7.6	19.8			15.7
4/20/2016	18.8	22.7					35.5	40.5	
6/6/2016									
6/7/2016			5.52		7.7				
6/8/2016	18.6	25.3		6.2		24	43.8	37.2	15.1
8/30/2016			5.5				41.6		
8/31/2016	18.5	24.4		6.51	7.7	28		38.2	15.9
10/18/2016							39.5		
10/19/2016	18.7	23	5.55	6.85	7.73	21.3		39.4	15.3
3/20/2017									
3/21/2017				7.2	7.2	34			19
3/22/2017	21	26	6	7.2	7.2	· .	46	49	
5/2/2017	21	20	ŭ	8.3	8.6	33	42	40	19
5/3/2017	22	26	6.4	0.5	0.0	33	72	48	13
6/6/2017	22	20	0.4	8.5	8.3	35	44	40	19
6/7/2017	22	27	5.9	0.0	0.5	33	77	49	13
9/12/2017	22	21	5.9	8.6	8.5			49	
9/13/2017				8.0	0.5	36	43	42	21
9/13/2017	22	24	6.5			30	43	42	21
	22	24	0.5	7.0	7.0	40			10
5/1/2018	22	00		7.6	7.6	42	20	47	18
5/2/2018	23	22	5.5	0.5			39	47	
8/28/2018	25	21	5.4	8.5	8.2			40	00
8/29/2018			5.4			38	44	43	20
11/26/2018				0.0	0.4	40	40		00
11/27/2018	0.5	00		8.8	8.4	43	43	40	20
11/28/2018	25	23	6.2					43	
5/28/2019			0.15	0.01	0.01	47.0	50.4		00
5/29/2019	05.0	07.7	6.15	8.31	9.01	47.2	50.1	44	20
5/30/2019	25.9	27.7							
9/30/2019	25.7	21.7							
10/1/2019			5.99	8.19	8.05	56.3	44.8	39.6	20.3
10/2/2019									
3/30/2020									
3/31/2020	26.1	20.6	5.94	8.48	9.07	547	44.7	44.9	20.8
4/1/2020						54.7			
8/31/2020				8.3					
9/1/2020	25				8.97			39.1	
9/2/2020		18.5	5.94			47	47.2		20.8
9/8/2020									
9/9/2020									
5/11/2021	27.3					80			
5/12/2021									
5/17/2021			6.26						
5/18/2021		18.3		7.89	9.52				
5/19/2021								46.8	21.4
5/25/2021							52.1		
10/18/2021									
10/19/2021									
10/26/2021						85.4		38.4	

	BY-AP-MW-10	BY-AP-MW-9	BY-AP-MW-6	BY-AP-MW-2	BY-AP-MW-3	BY-AP-MW-15	BY-AP-MW-14	BY-AP-MW-13	BY-AP-MW-16
10/27/2021	27.2	19.1					42.9		
11/1/2021				8.16	9.76				22.3
11/2/2021			6.4						
5/23/2022									
5/24/2022	27.7	17.3		9.21				43.5	
5/25/2022			6.63		15.2	80.7	45.3		20
5/31/2022									

			Plant Barry	Client: Southern Company	Data: Barry
	BY-AP-MW-12	BY-AP-MW-1			
2/23/2016					
3/1/2016					
3/2/2016	22.2	2.18 (O)			
4/19/2016		9.01 (O)			
4/20/2016	21.7				
6/6/2016					
6/7/2016					
6/8/2016	22	21			
8/30/2016					
8/31/2016	22.3	21			
10/18/2016					
10/19/2016	20.8	21.4			
3/20/2017					
3/21/2017		25			
3/22/2017	23				
5/2/2017		26			
5/3/2017	25				
6/6/2017		27			
6/7/2017	23				
9/12/2017					
9/13/2017	23	24			
9/14/2017	20				
5/1/2018		25			
5/2/2018	21	20			
8/28/2018		25			
8/29/2018	23	20			
11/26/2018	20				
11/27/2018					
11/28/2018	23	26			
5/28/2019	20	20			
5/29/2019	24.1	27.6			
5/30/2019		27.0			
9/30/2019					
10/1/2019	26.1	24.6			
10/2/2019	20.1	20			
3/30/2020		24.9			
3/31/2020	23.9	20			
4/1/2020	20.0				
8/31/2020					
9/1/2020	23.4	25.7			
9/2/2020	20. 1	20.7			
9/8/2020					
9/9/2020					
5/11/2021					
5/12/2021					
5/17/2021					
5/18/2021	25.4	25.1			
5/19/2021	÷: -				
5/25/2021					
10/18/2021					
10/19/2021					
10/26/2021					

	BY-AP-MW-12	BY-AP-MW-1
10/27/2021		
11/1/2021	27.4	26.2
11/2/2021		
5/23/2022	26.2	
5/24/2022		28.7
5/25/2022		
5/31/2022		

	BY-UP-MW-2 (bg)	BY-UP-MW-1 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)	BY-AP-MW-10	BY-AP-MW-11	BY-AP-MW-4	BY-AP-MW-5	BY-AP-MW-6
2/23/2016	0.02 (J)	0.03 (J)	0.02 (J)	0.02 (J)					
3/1/2016					0.02 (J)	0.06 (J)	0.02 (J)	0.04 (J)	<0.125
3/2/2016									
4/19/2016	0.021 (J)	0.023 (J)	0.016 (J)	0.015 (J)			0.016 (J)		0.016 (J)
4/20/2016					0.034 (J)	0.073 (J)		0.043 (J)	
6/6/2016		0.062 (J)		0.05 (J)					
6/7/2016	0.06 (J)		0.052 (J)				0.047 (J)	0.075 (J)	0.048 (J)
6/8/2016					0.061 (J)	0.085 (J)			
8/30/2016	0.05 (J)	0.053 (J)	0.038 (J)	0.036 (J)			0.035 (J)	0.057 (J)	0.034 (J)
8/31/2016					0.04 (J)	0.064 (J)			
10/18/2016	0.04 (J)	0.042 (J)	0.03 (J)	0.025 (J)				0.049 (J)	
10/19/2016					0.03 (J)	0.05 (J)	0.025 (J)		0.023 (J)
3/20/2017	<0.125	<0.125	<0.125	<0.125					
3/21/2017							<0.125		
3/22/2017					<0.125	0.05 (J)		0.04 (J)	<0.125
5/2/2017	0.04 (JD)	0.04 (JD)	0.1 (D)	0.1 (D)			<0.125		
5/3/2017					0.04 (J)	0.06 (J)		0.05 (J)	<0.125
6/6/2017	0.04 (JD)	0.1 (D)	0.1 (D)	0.1 (D)			<0.125		
6/7/2017					0.04 (J)	0.06 (J)		0.05 (J)	<0.125
9/12/2017				<0.125			<0.125		
9/13/2017	0.043 (J)	0.04 (J)	<0.125			<0.125 (U*)			
9/14/2017					0.04 (J)			0.06 (J)	<0.125
1/22/2018									
1/23/2018	0.04 (J)	<0.125	<0.125	<0.125	<0.125	0.06 (J)			
1/24/2018							<0.125	0.05 (J)	<0.125
5/1/2018	0.04 (J)		<0.125	<0.125			<0.125		
5/2/2018		0.04 (J)			<0.125	0.06 (J)		0.05 (J)	<0.125
11/26/2018				<0.125					
11/27/2018	<0.125	<0.125	<0.125		.0.105	0.05 (1)	<0.125	<0.125	0.105
11/28/2018				-0.105	<0.125	0.05 (J)			<0.125
5/28/2019	-0.105	0.0500 (1)	-0.105	<0.125		0.0750 (1)	10 105	0.0002 (1)	-0.105
5/29/2019	<0.125	0.0502 (J)	<0.125		0.0572 (1)	0.0759 (J)	<0.125	0.0923 (J)	<0.125
5/30/2019					0.0573 (J)	0.0700 (1)			
9/30/2019 10/1/2019					<0.125	0.0733 (J)	<0.125	0.0557 (J)	<0.125
10/2/2019	<0.125	<0.125	<0.125	<0.125			V 0.125	0.0557 (3)	V 0.125
3/30/2020	-0.123	-0.123	-0.123	-0.123					
3/31/2020	<0.125	<0.125	<0.125	<0.125	<0.125	0.078 (J)	<0.125	0.0735 (J)	<0.125
4/1/2020	-0.120	-0.120	-0.120	0.120	-0.120	0.070 (0)	-0.120	0.0700 (0)	-0.120
8/31/2020									
9/1/2020					0.0794 (J)	0.0841 (J)	<0.125	0.0921 (J)	
9/2/2020					0.0701(0)	0.0011 (0)	0.120	0.0021 (0)	<0.125
9/8/2020				<0.125					
9/9/2020	<0.125	<0.125	<0.125						
5/11/2021	<0.125	-	<0.125	<0.125	0.105				
5/12/2021		<0.125							
5/17/2021									<0.125
5/18/2021							<0.125		
5/19/2021						0.0994 (J)			
5/25/2021						-			
10/18/2021			<0.125	<0.125					
10/19/2021	<0.125	<0.125							

	BY-UP-MW-2 (bg)	BY-UP-MW-1 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-4 (bg)	BY-AP-MW-10	BY-AP-MW-11	BY-AP-MW-4	BY-AP-MW-5	BY-AP-MW-6
10/26/2021									
10/27/2021					<0.125				
11/1/2021							<0.125		
11/2/2021						0.101		0.0964 (J)	<0.125
5/23/2022						0.0709 (J)			
5/24/2022					<0.125 (D)				
5/25/2022							<0.125	<0.125	<0.125
5/31/2022	<0.125	<0.125	<0.125	<0.125					

	BY-AP-MW-7	BY-AP-MW-8	BY-AP-MW-9	BY-AP-MW-12	BY-AP-MW-13	BY-AP-MW-15	BY-AP-MW-3	BY-AP-MW-16	BY-AP-MW-14
2/23/2016									
3/1/2016	0.06 (J)	0.03 (J)	0.04 (J)						
3/2/2016				0.04 (J)	0.05 (J)	0.18 (J)	0.01 (J)	0.04 (J)	0.07 (J)
4/19/2016						0.21 (J)	0.014 (J)	0.05 (J)	
4/20/2016	0.078 (J)	0.043 (J)	0.052 (J)	0.059 (J)	0.064 (J)				0.076 (J)
6/6/2016									
6/7/2016	0.101 (J)	0.069 (J)					0.049 (J)		
6/8/2016	. ,	. ,	0.077 (J)	0.08 (J)	0.082 (J)	0.223 (J)	. ,	0.073 (J)	0.105 (J)
8/30/2016		0.052 (J)	. ,	,	. ,	. ,		. ,	0.083 (J)
8/31/2016	0.086 (J)	()	0.056 (J)	0.059 (J)	0.062 (J)	0.196 (J)	0.034 (J)	0.051 (J)	. ,
10/18/2016	. ,	0.042 (J)	. ,	.,	. ,	, ,	. ,	. ,	0.067 (J)
10/19/2016	0.075 (J)	()	0.045 (J)	0.045 (J)	0.049 (J)	0.166 (J)	0.023 (J)	<0.125	()
3/20/2017	. ,		. ,	. ,	. ,	. ,	. ,		
3/21/2017						0.18	<0.125	0.04 (J)	
3/22/2017	0.06 (J)	<0.125	0.05 (J)	0.04 (J)	0.05 (J)			(-)	0.06 (J)
5/2/2017	(1)		(-)	(-)		0.18	<0.125	0.05 (J)	0.08 (J)
5/3/2017	0.08 (J)	0.05 (J)	0.06 (J)	0.06 (J)	0.06 (J)		51125	(-)	(-)
6/6/2017	0.00 (0)	0.00 (0)	0.00 (0)	0.00 (0)	0.00 (0)	0.18	<0.125	0.053 (J)	0.077 (J)
6/7/2017	0.08 (J)	0.05 (J)	0.06 (J)	0.06 (J)	0.07 (J)	00	0.120	0.000 (0)	0.077 (0)
9/12/2017	0.00 (0)	0.00 (0)	0.00 (0)	0.00 (0)	0.07 (0)		<0.125		
9/13/2017				<0.125 (U*)	<0.125 (U*)	<0.125 (U*)	-0.120	<0.125 (U*)	<0.125 (U*)
9/14/2017	0.07 (J)	0.05 (J)	0.07 (J)	-0.120 (0)	-0.120 (0)	-0.120 (0)		10.120 (0)	-0.120 (0)
1/22/2018	0.07 (0)	0.03 (0)	0.07 (0)		0.06 (J)	0.19			
1/23/2018			0.06 (J)	0.05 (J)	0.00 (3)	0.19		0.05 (J)	0.08 (J)
1/24/2018	0.09 (J)	0.04 (J)	0.00 (0)	0.03 (3)			<0.125	0.05 (5)	0.00 (3)
5/1/2018	0.03 (0)	0.04 (0)				0.19	<0.125	0.05 (J)	
5/2/2018	0.08 (J)	0.04 (J)	0.05 (J)	0.06 (J)	0.07 (J)	0.19	~0.123	0.03 (3)	0.08 (J)
11/26/2018	0.00 (0)	0.04 (0)	0.03 (0)	0.00 (0)	0.07 (3)				0.00 (3)
11/27/2018		<0.125				0.18	<0.125	<0.125	0.06 (J)
11/28/2018	0.07 (J)	~ 0.125	0.04 (J)	0.04 (J)	0.05 (J)	0.16	~ 0.123	~0.123	0.00 (3)
5/28/2019	0.07 (3)		0.04 (3)	0.04 (3)	0.03 (3)				
5/29/2019	0.0937 (J)	0.0958 (J)		0.0677 (J)	0.0679 (J)	0.168	<0.125	0.0683 (J)	0.0781 (J)
5/30/2019	0.0557 (0)	0.0330 (3)	0.0763 (J)	0.0077 (0)	0.0073 (0)	0.100	-0.125	0.0003 (3)	0.0701 (0)
9/30/2019	0.0925 (J)	0.0559 (J)	0.0703 (J) 0.0679 (J)						
10/1/2019	0.0923 (3)	0.0559 (5)	0.0079 (3)	0.0682 (J)	0.0703 (J)	0.185	<0.125	0.0774 (J)	0.0885 (J)
10/1/2019				0.0002 (0)	0.0703 (0)	0.105	-0.125	0.0774 (0)	0.0003 (0)
3/30/2020	0.0933 (J)	0.0701 (J)							
3/31/2020	0.0933 (3)	0.0701 (3)	0.0655 (J)	0.0755 (J)	0.0665 (J)		<0.125	0.0602 (J)	0.0867 (J)
4/1/2020			0.0033 (0)	0.0733 (0)	0.0003 (0)	0.187	10.125	0.0002 (0)	0.0007 (0)
8/31/2020						0.107			
9/1/2020				0.0845 (J)	0.0757 (J)		<0.125		
9/2/2020	0.109	<0.125	0.0804 (J)	0.0043 (3)	0.0737 (3)	0.18	~ 0.125	<0.125	0.0957 (J)
9/8/2020	0.103	V. 123	0.0004 (0)			0.10		-0.125	0.0337 (0)
9/9/2020									
5/11/2021		0.094 (J)				0.214			
		0.034 (3)				0.214			
5/12/2021									
5/17/2021	0.11		0.0700 (1)	0.061471			<0.125		
5/18/2021 5/19/2021	0.11		0.0709 (J)	0.0614 (J)	0.0748 (J)		~U. 1∠U	0.0793 (J)	
					0.0740 (3)			0.0793 (3)	0.0057 (1)
5/25/2021									0.0957 (J)
10/18/2021									
10/19/2021									

	BY-AP-MW-7	BY-AP-MW-8	BY-AP-MW-9	BY-AP-MW-12	BY-AP-MW-13	BY-AP-MW-15	BY-AP-MW-3	BY-AP-MW-16	BY-AP-MW-14
10/26/2021		<0.125			0.0641 (J)	0.171			
10/27/2021	0.0823 (J)		0.0803 (J)						0.0651 (J)
11/1/2021				0.0928 (J)			<0.125	0.0887 (J)	
11/2/2021									
5/23/2022				0.0873 (J)					
5/24/2022	0.0724 (J)	0.0713 (J)	<0.125		0.0769 (J)				
5/25/2022						0.214	<0.125	<0.125	0.0733 (J)
5/31/2022									

			Flailt Daily	Client. Southern Company	Data. Daily Asii Foliu		
	BY-AP-MW-1	BY-AP-MW-2					
2/23/2016							
3/1/2016							
3/2/2016	0.03 (J)	0.04 (J)					
4/19/2016	0.052 (J)	0.038 (J)					
4/20/2016							
6/6/2016							
6/7/2016							
6/8/2016	0.069 (J)	0.067 (J)					
8/30/2016							
8/31/2016	0.043 (J)	0.05 (J)					
10/18/2016							
10/19/2016	<0.125	<0.125					
3/20/2017							
3/21/2017	0.04 (J)	<0.125					
3/22/2017							
5/2/2017	0.05 (J)	0.04 (J)					
5/3/2017	()	()					
6/6/2017	0.049 (J)	0.04 (J)					
6/7/2017	(-,	(.,					
9/12/2017		0.037 (J)					
9/13/2017	<0.125 (U*)	(-)					
9/14/2017	,						
1/22/2018							
1/23/2018							
1/24/2018	0.05 (J)	<0.125					
5/1/2018	0.05 (J)	<0.125					
5/2/2018	(5)						
11/26/2018							
11/27/2018		<0.125					
11/28/2018	<0.125						
5/28/2019							
5/29/2019	0.0858 (J)	<0.125					
5/30/2019	()						
9/30/2019							
10/1/2019	0.0744 (J)	<0.125					
10/2/2019							
3/30/2020	0.0726 (J)						
3/31/2020		<0.125					
4/1/2020							
8/31/2020		<0.125					
9/1/2020	0.194						
9/2/2020							
9/8/2020							
9/9/2020							
5/11/2021							
5/12/2021							
5/17/2021							
5/18/2021	0.0884 (J)	<0.125					
5/19/2021	. ,						
5/25/2021							
10/18/2021							
10/19/2021							

	BY-AP-MW-1	BY-AP-MW-2
10/26/2021		
10/27/2021		
11/1/2021	0.181	<0.125
11/2/2021		
5/23/2022		
5/24/2022	0.0801 (J)	<0.125
5/25/2022		
5/31/2022		

	BY-UP-MW-4 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-1 (bg)	BY-AP-MW-5	BY-AP-MW-11	BY-AP-MW-7	BY-AP-MW-9	BY-AP-MW-4
2/23/2016	<25	30.7	40	26.7					
3/1/2016					273	395	129	314	27.3
3/2/2016									
4/19/2016	<25	<25	32	<25					38
4/20/2016					269	376	128	338	
6/6/2016	28.7			32.7					
6/7/2016		35.3	38.7		272		140		48.7
6/8/2016						324		288	
8/30/2016	25.3	27.3	31.3	33.3	244				32.7
8/31/2016						367	112	334	
10/18/2016	<25	<25	26.7	27.3	238				
10/19/2016						367	134	333	36
1/31/2017	26	32.7	30	32	266		134		40.7
2/1/2017						391		330	
5/2/2017	<25	30.7	30.7	31.3					30.7
5/3/2017					259	373	127	338	
6/6/2017	42.7	34.7	32.7	35.3					41.3
6/7/2017					255	367	134	300	
9/12/2017	26.7								34.7
9/13/2017		39.3	38	36.7		378			
9/14/2017					276		141	350	
5/1/2018	34.7	42	35.3						39.3
5/2/2018				34	247	330	133	333	
8/28/2018								324	26
8/29/2018					263	352			
11/26/2018	32.7								
11/27/2018		31.3	36	50.7	248				32
11/28/2018						357	138	330	
5/28/2019	31.3								
5/29/2019		40	37.3	58	259	367	132		39.3
5/30/2019								315	
9/30/2019						399	137	319	
10/1/2019					243				32
10/2/2019	36	41.3	36.7	46					
3/30/2020							135		
3/31/2020	36.7	40	39.3	53.3	243	393		330	42.7
4/1/2020									
8/31/2020									
9/1/2020					253	399			36
9/2/2020							129	301	
9/8/2020	39.3								
9/9/2020		40.7	42.7	42					
5/11/2021	46.7	35.3	44	-					
5/12/2021				40.7					
5/17/2021									
5/18/2021							175	314	47.3
5/19/2021						422			:::: :
5/25/2021									
10/18/2021	36		36						
10/19/2021		36	-0	40					
10/19/2021									
10/27/2021							123	302	
. 5/2//2021							.20		

	BY-UP-MW-4 (bg)	BY-UP-MW-2 (bg)	BY-UP-MW-3 (bg)	BY-UP-MW-1 (bg)	BY-AP-MW-5	BY-AP-MW-11	BY-AP-MW-7	BY-AP-MW-9	BY-AP-MW-4
11/1/2021									32
11/2/2021					297	390			
5/23/2022						404			
5/24/2022							148	268	
5/25/2022					252				48.7
5/31/2022	36.7	30.7	35.3	32					

	BY-AP-MW-8	BY-AP-MW-6	BY-AP-MW-10	BY-AP-MW-13	BY-AP-MW-3	BY-AP-MW-12	BY-AP-MW-14	BY-AP-MW-2	BY-AP-MW-15
2/23/2016									
3/1/2016	309	45.3	326						
3/2/2016				319	27.3	351	266	42	182
4/19/2016		46			33.3			51.3	151
4/20/2016	324		366	305		353	311		
6/6/2016									
6/7/2016	314	46			44				
6/8/2016	0		314	287		330	353	46.7	168
8/30/2016	308	30	014	207		000	328	40.7	100
8/31/2016	300	30	368	295	29.3	354	320	32.7	188
10/18/2016	295		000	200	20.0	004	310	02.7	100
10/19/2016	233	37.3	381	305	29.3	354	310	37.3	180
1/31/2017	303	43.3	301	325	36.7	334	312	47.3	166
2/1/2017	303	43.3	342	323	30.7	360	312	47.5	100
			342		20	300	200	4.4	100
5/2/2017	200	44.7	200	200	28	244	300	44	183
5/3/2017	300	44.7	369	306	20.7	341	225	40	107
6/6/2017					36.7		335	48	187
6/7/2017	284	45.3	340	320		337			
9/12/2017					35.3			40.7	
9/13/2017				332		359	339		202
9/14/2017	325	48.7	391						
5/1/2018					34.7			42.7	197
5/2/2018	306	44	343	320		310	301		
8/28/2018			375		34			28	
8/29/2018	287	50		312		307	318		192
11/26/2018									
11/27/2018	303				41.3		295	48	190
11/28/2018		50.7	378	304		336			
5/28/2019									
5/29/2019	291	48.7		307	40	321	318	47.3	198
5/30/2019			377						
9/30/2019	293		361						
10/1/2019		38		290	36.7	344	317	44.7	236
10/2/2019									
3/30/2020	310								
3/31/2020		42	387	290	37.3	331	317	42	
4/1/2020									231
8/31/2020								45.3	
9/1/2020			392	285	39.3	356			
9/2/2020	298	37.3					327		208
9/8/2020									
9/9/2020									
5/11/2021	318		391						279
5/12/2021									
5/17/2021		46.7							
5/18/2021		-			38	332		48.7	
5/19/2021				300					
5/25/2021				-			318		
10/18/2021							0.10		
10/19/2021									
10/19/2021	332			280					269
10/26/2021	JJZ		373	200			327		203
10/2//2021			3/3				J21		

	BY-AP-MW-8	BY-AP-MW-6	BY-AP-MW-10	BY-AP-MW-13	BY-AP-MW-3	BY-AP-MW-12	BY-AP-MW-14	BY-AP-MW-2	BY-AP-MW-15
11/1/2021					35.3	349		52	
11/2/2021		38							
5/23/2022						345			
5/24/2022	303		398	257				40.7	
5/25/2022		40.7			50.7		328		255
5/31/2022									

			Plant Barry	Client: Southern Company	Data: Barry Ash Pond		
	BY-AP-MW-1	BY-AP-MW-16					
2/23/2016							
3/1/2016							
3/2/2016	426	263					
4/19/2016	442	259					
4/20/2016							
6/6/2016							
6/7/2016							
6/8/2016	461	285					
8/30/2016							
8/31/2016	456	279					
10/18/2016							
10/19/2016	444	264					
1/31/2017	422	270					
2/1/2017							
5/2/2017	442	259					
5/3/2017							
6/6/2017	433	278					
6/7/2017							
9/12/2017							
9/13/2017	456	333					
9/14/2017							
5/1/2018	416	274					
5/2/2018							
8/28/2018	420						
8/29/2018		283					
11/26/2018							
11/27/2018		250					
11/28/2018	408						
5/28/2019							
5/29/2019	403	264					
5/30/2019							
9/30/2019							
10/1/2019	430	295					
10/2/2019							
3/30/2020	419						
3/31/2020		276					
4/1/2020							
8/31/2020							
9/1/2020	454						
9/2/2020		279					
9/8/2020							
9/9/2020							
5/11/2021							
5/12/2021							
5/17/2021							
5/18/2021	450						
5/19/2021		274					
5/25/2021							
10/18/2021							
10/19/2021							
10/26/2021							
10/27/2021							

	BY-AP-MW-1	BY-AP-MW-16
11/1/2021	480	324
11/2/2021		
5/23/2022		
5/24/2022	464	
5/25/2022		299
5/31/2022		

FIGURE F.

Trend Test - Significant Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:26 PM

Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	Xform	<u>Alpha</u>	Method
Boron, total (mg/L)	BY-AP-MW-10	0.1311	110	68	Yes	18	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-AP-MW-16	0.0646	84	68	Yes	18	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-AP-MW-8	-0.1071	-112	-68	Yes	18	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-10	2.463	117	74	Yes	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-12	0.4261	87	74	Yes	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-7	0.4635	133	68	Yes	18	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-8	-0.4562	-88	-74	Yes	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-UP-MW-3 (bg)	0.07505	86	68	Yes	18	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-UP-MW-4 (bg)	0.1262	111	68	Yes	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-1	0.8122	65	63	Yes	17	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-10	1.596	139	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-12	0.6575	105	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-14	1.34	83	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-15	9.506	151	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-16	0.8393	115	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-3	0.359	107	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-7	0.4288	75	68	Yes	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-UP-MW-2 (bg)	-0.3942	-104	-68	Yes	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-UP-MW-3 (bg)	-0.04984	-69	-68	Yes	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-UP-MW-4 (bg)	-0.05925	-69	-68	Yes	18	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	BY-UP-MW-1 (bg)	0.01277	80	74	Yes	19	47.37	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	BY-UP-MW-2 (bg)	0.01673	85	74	Yes	19	47.37	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	BY-UP-MW-3 (bg)	0.01205	92	74	Yes	19	63.16	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	BY-UP-MW-4 (bg)	0.01076	92	74	Yes	19	63.16	n/a	n/a	0.01	NP
pH, field (SU)	BY-AP-MW-13	-0.0481	-128	-87	Yes	21	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-AP-MW-2	-0.09486	-137	-87	Yes	21	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-UP-MW-2 (bg)	-0.07015	-123	-81	Yes	20	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-UP-MW-3 (bg)	-0.07433	-113	-81	Yes	20	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-UP-MW-4 (bg)	-0.05992	-98	-81	Yes	20	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-1	2.168	106	74	Yes	19	31.58	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-11	5.258	114	74	Yes	19	31.58	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-12	2.096	77	68	Yes	18	50	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-14	7.276	79	68	Yes	18	50	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-8	2.306	104	74	Yes	19	52.63	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-10	6.544	88	74	Yes	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-15	15.07	125	74	Yes	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-UP-MW-1 (bg)	3.147	72	68	Yes	18	5.556	n/a	n/a	0.01	NP
TDS (mg/L)	BY-UP-MW-4 (bg)	3.695	95	68	Yes	18	22.22	n/a	n/a	0.01	NP

Trend Test - All Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:26 PM

Constituent	Well	Slope	Calc.	Critical	Sig.	N	%NDs	Normality	<u>Xform</u>	Alpha	Method
Boron, total (mg/L)	BY-AP-MW-1	0.05988	45	68	No	18	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-AP-MW-10	0.1311	110	68	Yes	18	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-AP-MW-16	0.0646	84	68	Yes	18	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-AP-MW-8	-0.1071	-112	-68	Yes	18	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-AP-MW-9	0.01049	10	68	No	18	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-UP-MW-1 (bg)	0	-19	-68	No	18	44.44	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-UP-MW-2 (bg)	0	27	63	No	17	88.24	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-UP-MW-3 (bg)	0	0	68	No	18	100	n/a	n/a	0.01	NP
Boron, total (mg/L)	BY-UP-MW-4 (bg)	0	25	68	No	18	88.89	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-1	0.3773	13	74	No	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-10	2.463	117	74 -74	Yes	19	0	n/a	n/a	0.01	NP NP
Calcium, total (mg/L) Calcium, total (mg/L)	BY-AP-MW-11 BY-AP-MW-12	-0.333 0.4261	-43 87	74	No Yes	19 19	0 0	n/a n/a	n/a	0.01 0.01	NP
Calcium, total (mg/L) Calcium, total (mg/L)	BY-AP-MW-13	0.1429	36	7 4 74	No	19	0	n/a	n/a n/a	0.01	NP NP
Calcium, total (mg/L)	BY-AP-MW-14	0.1423	-7	-74	No	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-15	0.1185	41	74	No	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-16	0.06036	18	74	No	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-2	-0.05034	-36	-74	No	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-5	0	4	68	No	18	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-7	0.4635	133	68	Yes	18	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-8	-0.4562	-88	-74	Yes	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-AP-MW-9	0.09472	21	74	No	19	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-UP-MW-1 (bg)	0.02597	19	68	No	18	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-UP-MW-2 (bg)	0.06598	57	68	No	18	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-UP-MW-3 (bg)	0.07505	86	68	Yes	18	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	BY-UP-MW-4 (bg)	0.1262	111	68	Yes	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-1	0.8122	65	63	Yes	17	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-10	1.596	139	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-11	0.5172	43	74	No	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-12 BY-AP-MW-13	0.6575 -0.07749	105	74 -74	Yes	19	0	n/a	n/a	0.01	NP NP
Chloride, Total (mg/L) Chloride, Total (mg/L)	BY-AP-MW-14	-0.07749 1.34	-5 83	-74 74	No Yes	19 19	0 0	n/a n/a	n/a n/a	0.01 0.01	NP NP
Chloride, Total (mg/L)	BY-AP-MW-15	9.506	151	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-16	0.8393	115	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-3	0.359	107	74	Yes	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-4	-0.3427	-26	-74	No	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-5	0.02448	15	68	No	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-7	0.4288	75	68	Yes	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-8	0.08022	18	74	No	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-AP-MW-9	-1.025	-69	-74	No	19	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-UP-MW-1 (bg)	-0.1668	-34	-68	No	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-UP-MW-2 (bg)	-0.3942	-104	-68	Yes	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-UP-MW-3 (bg)	-0.04984	-69	-68	Yes	18	0	n/a	n/a	0.01	NP
Chloride, Total (mg/L)	BY-UP-MW-4 (bg)	-0.05925	-69	-68	Yes	18	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	BY-AP-MW-15	0	0	74	No	19	5.263	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	BY-UP-MW-1 (bg)	0.01277	80	74		19	47.37	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	BY-UP-MW-2 (bg)	0.01673	85	74	Yes Yes	19 19	47.37	n/a	n/a	0.01	NP NP
Fluoride, total (mg/L) Fluoride, total (mg/L)	BY-UP-MW-3 (bg) BY-UP-MW-4 (bg)	0.01205 0.01076	92 92	74 74	Yes	19	63.16 63.16	n/a n/a	n/a n/a	0.01 0.01	NP
pH, field (SU)	BY-AP-MW-1	0.01076	0	87	No	21	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-AP-MW-10	-0.01552	-32	-87	No	21	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-AP-MW-13	-0.0481	-128	-87	Yes	21	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-AP-MW-2	-0.09486	-137	-87	Yes	21	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-AP-MW-6	-0.04963	-83	-87	No	21	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-AP-MW-8	-0.01141	-56	-87	No	21	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-UP-MW-1 (bg)	-0.004287	-14	-81	No	20	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-UP-MW-2 (bg)	-0.07015	-123	-81	Yes	20	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-UP-MW-3 (bg)	-0.07433	-113	-81	Yes	20	0	n/a	n/a	0.01	NP
pH, field (SU)	BY-UP-MW-4 (bg)	-0.05992	-98	-81	Yes	20	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-1	2.168	106	74	Yes	19	31.58	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-10	0.812	67	74	No	19	47.37	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-11	5.258	114	74	Yes	19	31.58	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-AP-MW-12	2.096	77 67	68	Yes	18	50 27 79	n/a	n/a	0.01	NP ND
Sulfate as SO4 (mg/L)	BY-AP-MW-13	3.002	67 70	68	No	18	27.78	n/a	n/a	0.01	NP ND
Sulfate as SO4 (mg/L) Sulfate as SO4 (mg/L)	BY-AP-MW-14 BY-AP-MW-7	7.276 0.7261	79 62	68 68	Yes No	18 18	50 33.33	n/a n/a	n/a n/a	0.01 0.01	NP NP
Sulfate as SO4 (mg/L)	BY-AP-MW-8	2.306	104	74	Yes	19		n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-UP-MW-1 (bg)	1.548	45	68	No	18	0	n/a	n/a	0.01	NP
· (···••-/	(~3)						-				

Trend Test - All Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:26 PM

Constituent	Well	Slope	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Sulfate as SO4 (mg/L)	BY-UP-MW-2 (bg)	0.0231	3	63	No	17	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-UP-MW-3 (bg)	-0.07308	-27	-68	No	18	0	n/a	n/a	0.01	NP
Sulfate as SO4 (mg/L)	BY-UP-MW-4 (bg)	-0.02454	-6	-68	No	18	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-1	0	1	74	No	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-10	6.544	88	74	Yes	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-11	5.887	54	74	No	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-12	-1.313	-20	-74	No	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-13	-5.166	-64	-74	No	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-14	2.028	33	74	No	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-15	15.07	125	74	Yes	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-16	3.704	49	74	No	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-5	-2.941	-31	-68	No	18	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-7	1.47	31	68	No	18	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-8	-0.7384	-8	-74	No	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-AP-MW-9	-5.014	-59	-74	No	19	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-UP-MW-1 (bg)	3.147	72	68	Yes	18	5.556	n/a	n/a	0.01	NP
TDS (mg/L)	BY-UP-MW-2 (bg)	1.703	57	68	No	18	11.11	n/a	n/a	0.01	NP
TDS (mg/L)	BY-UP-MW-3 (bg)	1.36	45	68	No	18	0	n/a	n/a	0.01	NP
TDS (mg/L)	BY-UP-MW-4 (bg)	3.695	95	68	Yes	18	22.22	n/a	n/a	0.01	NP

Sanitas™ v.9.6.35 . UG

Constituent: Boron, total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Boron, total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Boron, total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Boron, total Analysis Run 7/20/2022 3:23 PM View: Trend
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Boron, total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Boron, total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Boron, total Analysis Run 7/20/2022 3:23 PM View: Trend
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Boron, total Analysis Run 7/20/2022 3:23 PM View: Trend
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Sanitas™ v.9.6.35 . UG

Constituent: Boron, total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Calcium, total Analysis Run 7/20/2022 3:23 PM View: Trend

Plant Barry Client: Southern Company Data: Barry Ash Pond

Sen's Slope Estimator

BY-AP-MW-1

Slope = 0.3773

units per year.

Mann-Kendall

Trend not significant at 99% confidence level

(α = 0.005 per tail).

statistic = 13 critical = 74

50

40

30

20

10

10

3/1/16

5/29/17

3/2/16

5/30/17

8/28/18

11/26/19

Constituent: Calcium, total Analysis Run 7/20/2022 3:23 PM View: Trend

2/23/21

5/24/22

mg/L

Constituent: Calcium, total Analysis Run 7/20/2022 3:23 PM View: Trend
Plant Barry Client: Southern Company Data: Barry Ash Pond

11/25/19

2/22/21

5/23/22

8/27/18

Constituent: Calcium, total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Sen's Slope Estimator BY-AP-MW-14 20 Slope = 0 units per year. Mann-Kendall 16 statistic = -7 critical = -74 Trend not sig-nificant at 99% confidence level (α = 0.005 per tail). 8 3/2/16 5/31/17 8/29/18 11/27/19 2/24/21 5/25/22

Sanitas™ v.9.6.35 . UG

Constituent: Calcium, total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Calcium, total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Calcium, total Analysis Run 7/20/2022 3:23 PM View: Trend
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Calcium, total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Calcium, total Analysis Run 7/20/2022 3:23 PM View: Trend
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Calcium, total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Calcium, total Analysis Run 7/20/2022 3:23 PM View: Trend
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Calcium, total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Calcium, total Analysis Run 7/20/2022 3:23 PM View: Trend
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Calcium, total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Calcium, total Analysis Run 7/20/2022 3:23 PM View: Trend
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Calcium, total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chloride, Total Analysis Run 7/20/2022 3:23 PM View: Trend
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Calcium, total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chloride, Total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Sanitas™ v.9.6.35 . UG

Constituent: Chloride, Total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chloride, Total Analysis Run 7/20/2022 3:23 PM View: Trend
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chloride, Total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chloride, Total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Sanitas™ v.9.6.35 . UG

Constituent: Chloride, Total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chloride, Total Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chloride, Total Analysis Run 7/20/2022 3:23 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

mg/L

Constituent: Chloride, Total Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chloride, Total Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chloride, Total Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chloride, Total Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

mg/L

Constituent: Chloride, Total Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chloride, Total Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chloride, Total Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chloride, Total Analysis Run 7/20/2022 3:24 PM View: Trend
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Chloride, Total Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values

Constituent: Fluoride, total Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

11/27/19

2/24/21

8/29/18

5/31/17

Constituent: Fluoride, total Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Fluoride, total Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Fluoride, total Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Fluoride, total Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Sen's Slope Estimator BY-AP-MW-10 n = 21 Slope = -0.01552 units per year. Mann-Kendall 5.6 critical = -87 Trend not sig-nificant at 99% confidence level 4.2 (α = 0.005 per tail). S 2.8 1.4 3/1/16 5/30/17 8/28/18 11/26/19 2/23/21 5/24/22

Constituent: pH, field Analysis Run 7/20/2022 3:24 PM View: Trend

Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: pH, field Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: pH, field Analysis Run 7/20/2022 3:24 PM View: Trend
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Sanitas™ v.9.6.35 . UG

Constituent: pH, field Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Sen's Slope Estimator BY-AP-MW-8 n = 21 Slope = -0.01141 units per year. Mann-Kendall 5.6 statistic = -56 critical = -87 Trend not sig-nificant at 99% confidence level 4.2 (α = 0.005 per tail). S 2.8 1.4 3/1/16 5/30/17 8/28/18 11/26/19 2/23/21 5/24/22

Constituent: pH, field Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: pH, field Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: pH, field Analysis Run 7/20/2022 3:24 PM View: Trend
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: pH, field Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: pH, field Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

BY-UP-MW-3 (bg) n = 20 Slope = -0.07433 units per year. Mann-Kendall statistic = -113 critical = -81 Decreasing trend significant at 93% confidence level (a = 0.005 per tail).

Sen's Slope Estimator

Constituent: pH, field Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

11/27/19

2/27/21

5/31/22

8/26/18

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values.

4.8

3.6

2.4

1.2

2/23/16

5/25/17

SU

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:24 PM View: Trend
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values.

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values.

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

BY-AP-MW-7 Slope = 0.7261 units per year. Mann-Kendall 6.4 statistic = 62 critical = 68 Trend not sig-nificant at 99% confidence level 4.8 $(\alpha = 0.005 per$ mg/L 3.2 1.6 n 2/23/21 5/24/22 3/1/16 5/30/17 8/28/18 11/26/19

Sen's Slope Estimator

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values.

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:24 PM View: Trend
Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: Sulfate as SO4 Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: TDS Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: TDS Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: TDS Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: TDS Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: TDS Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: TDS Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: TDS Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: TDS Analysis Run 7/20/2022 3:24 PM View: Trend

Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: TDS Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: TDS Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Sen's Slope Estimator

Constituent: TDS Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values.

mg/L

Constituent: TDS Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values.

Constituent: TDS Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG Hollow symbols indicate censored values.

Constituent: TDS Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

Constituent: TDS Analysis Run 7/20/2022 3:24 PM View: Trend Plant Barry Client: Southern Company Data: Barry Ash Pond

FIGURE G.

Upper Tolerance Limits - Summary Table

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 1/19/2022, 3:44 PM

Constituent	Well	Upper Lim.	<u>Date</u>	Observ	Sig. Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	n/a	0.00102	n/a	n/a	n/a 68	n/a	n/a	92.65	n/a	n/a	0.03056	NP Inter
Arsenic (mg/L)	n/a	0.0017	n/a	n/a	n/a 68	n/a	n/a	88.24	n/a	n/a	0.03056	NP Inter
Barium (mg/L)	n/a	0.183	n/a	n/a	n/a 68	n/a	n/a	0	n/a	n/a	0.03056	NP Inter
Beryllium (mg/L)	n/a	0.00102	n/a	n/a	n/a 66	n/a	n/a	93.94	n/a	n/a	0.03387	NP Inter
Cadmium (mg/L)	n/a	0.0002	n/a	n/a	n/a 68	n/a	n/a	98.53	n/a	n/a	0.03056	NP Inter
Chromium (mg/L)	n/a	0.01	n/a	n/a	n/a 68	n/a	n/a	83.82	n/a	n/a	0.03056	NP Inter
Cobalt (mg/L)	n/a	0.0157	n/a	n/a	n/a 67	n/a	n/a	58.21	n/a	n/a	0.03217	NP Inter
Combined Radium 226 + 228 (pCi/L)	n/a	3	n/a	n/a	n/a 60	n/a	n/a	0	n/a	n/a	0.04607	NP Inter
Fluoride, total (mg/L)	n/a	0.1	n/a	n/a	n/a 72	n/a	n/a	52.78	n/a	n/a	0.02489	NP Inter
Lead (mg/L)	n/a	0.00126	n/a	n/a	n/a 68	n/a	n/a	89.71	n/a	n/a	0.03056	NP Inter
Lithium (mg/L)	n/a	0.02	n/a	n/a	n/a 68	n/a	n/a	100	n/a	n/a	0.03056	NP Inter
Mercury (mg/L)	n/a	0.0005	n/a	n/a	n/a 68	n/a	n/a	100	n/a	n/a	0.03056	NP Inter
Molybdenum (mg/L)	n/a	0.0002	n/a	n/a	n/a 68	n/a	n/a	100	n/a	n/a	0.03056	NP Inter
Selenium (mg/L)	n/a	0.00102	n/a	n/a	n/a 68	n/a	n/a	98.53	n/a	n/a	0.03056	NP Inter
Thallium (mg/L)	n/a	0.0002	n/a	n/a	n/a 68	n/a	n/a	100	n/a	n/a	0.03056	NP Inter

FIGURE H.

BARRY ASH POND GWPS							
Analyte	Units	Background	GWPS				
Antimony	mg/L	0.00102	0.006				
Arsenic	mg/L	0.0017	0.01				
Barium	mg/L	0.183	2				
Beryllium	mg/L	0.00102	0.004				
Cadmium	mg/L	0.0002	0.005				
Chromium	mg/L	0.01	0.1				
Cobalt	mg/L	0.0157	0.0157				
Combined Radium-226/228	pCi/L	3	5				
Fluoride	mg/L	0.1	4				
Lead	mg/L	0.00126	0.015				
Lithium	mg/L	0.02	0.04				
Mercury	mg/L	0.0005	0.002				
Molybdenum	mg/L	0.0002	0.1				
Selenium	mg/L	0.00102	0.05				
Thallium	mg/L	0.0002	0.002				

Notes:

- 1. mg/L Milligrams per liter
- 2. pCi/L Picocuries per liter
- 3. The background limits were used as the groundwater protection standard (GWPS) when appropriate under 40 CFR §257.95(h), ADEM Rule 335-13-15-.06(h), and the ADEM Variance.
- 4. GWPS established during second semi-annual sampling event in 2021.

FIGURE I.

Confidence Interval Summary Table - Significant Results

	Plant	Barry Client: 5	Southern Compa	ny Data: Ba	rry Ash	Pond	Printed 7/2	20/2022, 3:37 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	N	%NDs	Transform	<u>Alpha</u>	Method
Arsenic (mg/L)	BY-AP-MW-1	0.07688	0.05769	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-10	0.07651	0.06677	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-11	0.01648	0.01374	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-12	0.0246	0.0215	0.01	Yes	8	0	No	0.004	NP (normality)
Arsenic (mg/L)	BY-AP-MW-13	0.01495	0.01312	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-14	0.0182	0.01473	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-15	0.01954	0.01573	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-16	0.01434	0.01096	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-5	0.03536	0.02914	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-7	0.02326	0.01926	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-8	0.06545	0.05105	0.01	Yes	8	0	No	0.01	Param.
Arsenic (mg/L)	BY-AP-MW-9	0.04498	0.03737	0.01	Yes	8	0	No	0.01	Param.
Cobalt (mg/L)	BY-AP-MW-15	0.037	0.03248	0.0157	Yes	8	0	No	0.01	Param.
Cobalt (mg/L)	BY-AP-MW-7	0.02135	0.01752	0.0157	Yes	8	0	No	0.01	Param.

Confidence Interval Summary Table - All Results

Plant Barry Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:37 PM Constituent <u>Well</u> %NDs Transform <u>Alpha</u> Method Lower Lim. Compliance Sig BY-AP-MW-1 8 0.01 Arsenic (ma/L) 0.07688 0.05769 0.01 Yes 0 No Param. Arsenic (mg/L) BY-AP-MW-10 0.07651 0.06677 0.01 Yes 8 No 0.01 Param. Arsenic (mg/L) BY-AP-MW-11 0.01648 0.01374 0.01 Yes 8 0 No 0.01 Param. 8 BY-AP-MW-12 0.0215 0 0.004 Arsenic (mg/L) 0.0246 0.01 Yes No NP (normality) BY-AP-MW-13 0.01495 0.01312 8 0 0.01 Arsenic (mg/L) 0.01 Yes No Param. BY-AP-MW-14 0.01473 0.01 Yes 8 0.01 Arsenic (mg/L) 0.0182 0 No Param. 8 Arsenic (ma/L) BY-AP-MW-15 0.01954 0.01573 0.01 Yes 0 No 0.01 Param. Arsenic (mg/L) BY-AP-MW-16 0.01434 0.01096 0.01 Yes 8 No 0.01 Param. BY-AP-MW-2 0.001765 0.00125 0.01 No 8 0 No 0.01 Param. Arsenic (mg/L) 8 75 0.004 Arsenic (mg/L) BY-AP-MW-4 0.0002 0.0001 0.01 Nο No NP (NDs) Arsenic (mg/L) BY-AP-MW-5 0.03536 0.02914 0.01 Yes 8 0 No 0.01 Param. NP (NDs) BY-AP-MW-6 0.000103 0.0001 0.01 No 8 75 No 0.004 Arsenic (mg/L) Arsenic (mg/L) BY-AP-MW-7 0.02326 0.01926 0.01 Yes 8 0 No 0.01 Param. BY-AP-MW-8 0.06545 0.05105 Arsenic (mg/L) 0.01 Yes 8 0.01 Param. No Arsenic (mg/L) BY-AP-MW-9 0.04498 0.03737 0.01 Yes 8 0 Nο 0.01 Param. 8 0 Barium (mg/L) BY-AP-MW-1 0.3384 0.2783 2 No No 0.01 Param. BY-AP-MW-10 0.07502 0.06196 2 8 0 0.01 No No Barium (mg/L) Param. BY-AP-MW-11 0.06777 2 8 0 0.01 Barium (mg/L) 0.09918 No No Barium (mg/L) BY-AP-MW-12 0.08641 0.07752 2 Nο 8 0 Nο 0.01 Param Barium (mg/L) BY-AP-MW-13 0.07647 0.06744 2 No 8 0 In(x) 0.01 Param. BY-AP-MW-14 0.07075 0.0594 2 8 0 0.01 Barium (mg/L) No No Param. 2 8 0 Barium (mg/L) BY-AP-MW-15 0.08085 0.05845 Nο No 0.01 Param. BY-AP-MW-16 0.08087 2 8 0 0.1005 No No 0.01 Param. Barium (mg/L) Barium (mg/L) BY-AP-MW-2 0.02663 0.02375 2 No 8 0 0.01 Barium (mg/L) BY-AP-MW-3 0.04373 0.03406 2 No 8 0 sart(x) 0.01 Param. BY-AP-MW-4 0.03257 0.01483 8 0.01 Param. Barium (mg/L) No No Barium (mg/L) BY-AP-MW-5 0.1575 0.1412 2 No 8 0 No 0.01 Param. Barium (mg/L) BY-AP-MW-6 0.02913 0.02379 2 No 8 0 No 0.01 Param. BY-AP-MW-7 0.07229 0.06041 2 8 0 0.01 No No Barium (mg/L) Param. BY-AP-MW-8 0.1367 2 8 0.01 Barium (mg/L) 0.1473 No 0 No Barium (mg/L) BY-AP-MW-9 0.1232 0.1143 Nο 8 0 Nο 0.01 Param Bervllium (ma/L) BY-AP-MW-4 0.00102 0.00065 0.004 No 8 75 No 0.004 NP (NDs) BY-AP-MW-6 0.00007 Cadmium (mg/L) 0.00031 0.005 No 8 75 0.004 NP (NDs) Chromium (mg/L) BY-AP-MW-1 0.00415 0.00223 0.1 Nο 8 0 No 0.004 NP (normality) 0.00052 8 62.5 BY-AP-MW-10 0.00102 0.1 No 0.004 NP (NDs) Chromium (mg/L) No 0.002066 Chromium (mg/L) BY-AP-MW-11 0.003956 0.1 No 8 0 No 0.01 Chromium (mg/L) BY-AP-MW-12 0.0056 0.00325 0.1 No 8 0 No 0.004 NP (normality) Chromium (mg/L) BY-AP-MW-13 0.006678 0.01 Param. 0.008713 0.1 8 0 In(x) No Chromium (mg/L) BY-AP-MW-14 0.005123 0.003732 No 8 No 0.01 Param. Chromium (mg/L) BY-AP-MW-15 0.00102 0.00049 0.1 Nο 8 62.5 Nο 0.004 NP (NDs) 0.00102 8 62.5 Chromium (mg/L) BY-AP-MW-16 0.0018 0.1 No No 0.004 NP (NDs) 0.00029 Chromium (mg/L) BY-AP-MW-2 0.00102 0.1 No 8 75 No 0.004 NP (NDs) Chromium (mg/L) BY-AP-MW-3 0.00104 0.000919 0.1 No 8 62.5 Nο 0.004 NP (NDs) 0.00026 Chromium (ma/L) BY-AP-MW-4 0.00102 0.1 No 8 62.5 No 0.004 NP (NDs) BY-AP-MW-5 0.00101 Chromium (mg/L) 0.00103 0.1 No 8 75 0.004 NP (NDs) Chromium (mg/L) NP (NDs) BY-AP-MW-6 0.00102 0.00023 0.1 No 8 62.5 No 0.004 BY-AP-MW-7 0.00058 0.1 8 62.5 0.004 NP (NDs) Chromium (mg/L) 0.00709 No No 0.00102 Chromium (mg/L) BY-AP-MW-8 No 8 62.5 0.004 Chromium (mg/L) BY-AP-MW-9 0.00102 0.0007 0.1 Nο 8 62.5 Nο 0.004 NP (NDs) 0.00091 NP (NDs) Cobalt (mg/L) BY-AP-MW-1 0.005 0.0157 8 62.5 0.004 No No Cobalt (mg/L) BY-AP-MW-10 0.005 0.00054 0.0157 No 8 62.5 No 0.004 NP (NDs) Cobalt (mg/L) BY-AP-MW-11 0.005 0.00118 0.0157 No 8 62.5 Nο 0.004 NP (NDs) 0.00292 8 Cobalt (mg/L) BY-AP-MW-12 0.003937 0.0157 Nο 0 No 0.01 Param. Cobalt (mg/L) BY-AP-MW-13 0.005 0.00113 0.0157 No 8 62.5 No 0.004 NP (NDs) Cobalt (mg/L) BY-AP-MW-14 0.005 0.00124 0.0157 Nο 8 62.5 No 0.004 NP (NDs) Cobalt (mg/L) BY-AP-MW-15 0.037 0.03248 0.0157 Yes 8 0 0.01 Param. No Cobalt (mg/L) BY-AP-MW-16 0.02062 0.01343 0.0157 No 8 0.01 Param. Cobalt (mg/L) BY-AP-MW-2 0.007575 0.006423 0.0157 No 8 0 x^2 0.01 Param. 8 Cobalt (mg/L) BY-AP-MW-3 0.005 0.00016 0.0157 No 62.5 No 0.004 NP (NDs) Cobalt (mg/L) BY-AP-MW-4 0.0205 0.00363 0.0157 No 8 12.5 No 0.004 NP (normality) Cobalt (mg/L) BY-AP-MW-5 0.005 0.00184 0.0157 Nο 8 75 No 0.004 NP (NDs) NP (NDs) Cobalt (mg/L) BY-AP-MW-6 0.005 0.0006 0.0157 No 8 62.5 No 0.004 BY-AP-MW-7 0.02135 0.01752 0.0157 8 Cobalt (mg/L) Yes No 0.01 Param. Cobalt (mg/L) BY-AP-MW-8 0.005 0.00067 0.0157 8 62.5 No 0.004 NP (NDs) No 0.00069 8 62.5 Cobalt (mg/L) BY-AP-MW-9 0.005 0.0157 No No 0.004 NP (NDs) Combined Radium 226 + 228 (pCi/L) BY-AP-MW-1 2.783 1.67 5 No 8 0 No 0.01 Param. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-10 0.3915 5 8 0 0.01 1.332 No No Combined Radium 226 + 228 (pCi/L) BY-AP-MW-11 0.8362 0.3081 8 0.01 No 0 sqrt(x) Param.

Confidence Interval Summary Table - All Results

Client: Southern Company Data: Barry Ash Pond Printed 7/20/2022, 3:37 PM Plant Barry Constituent <u>Well</u> Lower Lim. Sig. %NDs Transform <u>Alpha</u> Method Upper Lim. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-12 0.8804 8 0.01 1.76 5 No 0 No Param. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-13 0.5961 1.375 5 No 8 0 No 0.01 Param. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-14 1.124 0.476 5 No 8 0 No 0.01 Param. Combined Radium 226 + 228 (pCi/L) 0.3816 5 8 BY-AP-MW-15 0 0.01 1.443 No No Param. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-16 1.569 0.285 5 No 8 0 sqrt(x) 0.01 Combined Radium 226 + 228 (pCi/L) BY-AP-MW-2 0.9189 0.3196 5 Nο 8 0 No 0.01 Param Combined Radium 226 + 228 (pCi/L) BY-AP-MW-3 0.3065 5 No 8 0 No 0.01 Param. 1.8 Combined Radium 226 + 228 (pCi/L) BY-AP-MW-4 0.9614 0.3385 No 8 0.01 Param. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-5 2.221 0.9224 5 No 8 0 No 0.01 Param. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-6 -0.03787 5 Nο 8 0 1.312 No 0.01 Param. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-7 1.116 0.294 5 No 8 0 No 0.01 Param. Combined Radium 226 + 228 (pCi/L) BY-AP-MW-8 1.054 0.4141 5 No 8 0 In(x) 0.01 Param BY-AP-MW-9 x^(1/3) Combined Radium 226 + 228 (pCi/L) 1.478 0.636 5 No 8 0.01 Param. Fluoride, total (mg/L) BY-AP-MW-1 0.194 0.0625 No No 0.004 NP (normality) Fluoride, total (mg/L) BY-AP-MW-10 0.105 0.0573 4 No 8 62.5 No 0.004 NP (NDs) 0.06172 8 Fluoride, total (mg/L) BY-AP-MW-11 4 No 0 0.01 0.09643 No Param. Fluoride, total (mg/L) BY-AP-MW-12 0.09011 0.05424 4 No 8 0 0.01 No Fluoride, total (mg/L) BY-AP-MW-13 0.07751 0.05904 4 No 8 0 No 0.01 0.06606 8 Fluoride, total (mg/L) BY-AP-MW-14 0.09472 4 Nο Ω Nο 0.01 Param Fluoride, total (mg/L) BY-AP-MW-15 0.2059 0.1691 No 8 sqrt(x) 0.01 Param. Fluoride, total (mg/L) BY-AP-MW-16 0.08512 0.06444 No 8 37.5 0.01 Param. No 0.05716 4 8 25 Fluoride, total (mg/L) BY-AP-MW-5 0.09618 Nο No 0.01 Param. BY-AP-MW-7 0.07458 4 8 0 0.01 Fluoride, total (mg/L) 0.1062 No No Param. Fluoride, total (mg/L) BY-AP-MW-8 0.09399 0.06127 4 No 8 37.5 0.01 Param. Fluoride, total (mg/L) BY-AP-MW-9 0.08187 0.05408 No 8 12.5 No 0.01 Param. Lead (mg/L) BY-AP-MW-11 0.0002 0.00009 0.015 8 62.5 No 0.004 NP (NDs) No Lead (mg/L) BY-AP-MW-12 0.000326 0.00018 0.015 No 8 62.5 No 0.004 NP (NDs) Lead (mg/L) BY-AP-MW-13 0.0002 0.00015 0.015 No 8 87.5 No 0.004 NP (NDs) BY-AP-MW-14 0.0002 0.0000764 0.015 8 62.5 0.004 NP (NDs) Lead (mg/L) No No BY-AP-MW-16 0.000191 0.015 8 87.5 0.004 NP (NDs) Lead (mg/L) 0.0002 No Lead (mg/L) BY-AP-MW-4 0.0002 0.00007 0.015 Nο 8 62.5 Nο 0.004 NP (NDs) Lead (mg/L) BY-AP-MW-6 0.006786 0.0006176 0.015 No 8 12.5 sart(x) 0.01 Param. BY-AP-MW-9 0.0002 0.015 0.004 NP (NDs) Lead (mg/L) 0.00108 8 87.5 Lithium (mg/L) BY-AP-MW-11 0.02902 0.00914 0.04 No 8 25 No 0.01 Param. BY-AP-MW-15 0.01029 8 12.5 Lithium (mg/L) 0.02368 0.04 No No 0.01 Param. BY-AP-MW-7 0.0102 75 0.004 NP (NDs) Lithium (mg/L) 0.0882 0.04 No 8 No Molybdenum (mg/L) BY-AP-MW-1 0.0002 0.00008 0.1 No 8 75 No 0.004 NP (NDs) NP (NDs) BY-AP-MW-11 0.0002 8 62.5 0.004 Molybdenum (mg/L) 0.00652 0.1 No No Molybdenum (mg/L) BY-AP-MW-12 0.0002 No 62.5 0.004 NP (NDs) Molybdenum (mg/L) BY-AP-MW-13 0.00356 0.0002 0.1 Nο 8 62.5 Nο 0.004 NP (NDs) BY-AP-MW-14 0.0002 8 62.5 0.004 NP (NDs) Molvbdenum (ma/L) 0.000701 0.1 No No BY-AP-MW-15 0.0002 8 0.004 Molybdenum (mg/L) 0.00209 0.1 No 50 No NP (normality) Molybdenum (mg/L) BY-AP-MW-16 0.0002 0.000136 0.1 Nο 8 87.5 Nο 0.004 NP (NDs) BY-AP-MW-5 0.00011 NP (NDs) Molvbdenum (ma/L) 0.0002 0.1 No 8 75 No 0.004 BY-AP-MW-6 0.00011 Molybdenum (mg/L) 0.00033 8 62.5 0.004 NP (NDs) Molybdenum (mg/L) BY-AP-MW-7 0.000214 0.00018 0.1 No 8 62.5 No 0.004 NP (NDs) 0.00019 8 Molybdenum (mg/L) BY-AP-MW-8 0.000321 0.1 No 62.5 No 0.004 NP (NDs) BY-AP-MW-9 0.0002 8 Molybdenum (mg/L) 0.00024 No 62.5 No 0.004 NP (NDs) Selenium (mg/L) BY-AP-MW-13 0.00102 0.00056 0.05 No 8 87.5 Nο 0.004 NP (NDs)

Parametric and Non-Parametric (NP) Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic Analysis Run 7/20/2022 3:35 PM View: AIV
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic Analysis Run 7/20/2022 3:35 PM View: AIV
Plant Barry Client: Southern Company Data: Barry Ash Pond

Parametric Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic Analysis Run 7/20/2022 3:35 PM View: AIV Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Parametric Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium Analysis Run 7/20/2022 3:35 PM View: AIV
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium Analysis Run 7/20/2022 3:35 PM View: AIV
Plant Barry Client: Southern Company Data: Barry Ash Pond

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium Analysis Run 7/20/2022 3:35 PM View: AIV
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Sanitas™ v.9.6.35 . UG

Constituent: Beryllium Analysis Run 7/20/2022 3:35 PM View: AIV
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Chromium Analysis Run 7/20/2022 3:35 PM View: AIV
Plant Barry Client: Southern Company Data: Barry Ash Pond

Non-Parametric Confidence Interval

Constituent: Cadmium Analysis Run 7/20/2022 3:35 PM View: AIV Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Chromium Analysis Run 7/20/2022 3:35 PM View: AIV Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Cobalt Analysis Run 7/20/2022 3:35 PM View: AIV Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded.

Constituent: Chromium Analysis Run 7/20/2022 3:35 PM View: AIV Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Cobalt Analysis Run 7/20/2022 3:35 PM View: AIV Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Cobalt Analysis Run 7/20/2022 3:35 PM View: AIV Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Combined Radium 226 + 228 Analysis Run 7/20/2022 3:35 PM View: AIV
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Fluoride, total Analysis Run 7/20/2022 3:35 PM View: AIV
Plant Barry Client: Southern Company Data: Barry Ash Pond

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Combined Radium 226 + 228 Analysis Run 7/20/2022 3:35 PM View: AIV
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Fluoride, total Analysis Run 7/20/2022 3:35 PM View: AIV
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Lead Analysis Run 7/20/2022 3:35 PM View: AIV
Plant Barry Client: Southern Company Data: Barry Ash Pond

Non-Parametric Confidence Interval

Compliance Limit is not exceeded.

Constituent: Lead Analysis Run 7/20/2022 3:35 PM View: AIV
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Lithium Analysis Run 7/20/2022 3:35 PM View: AIV Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Non-Parametric Confidence Interval

Constituent: Molybdenum Analysis Run 7/20/2022 3:35 PM View: AIV
Plant Barry Client: Southern Company Data: Barry Ash Pond

Non-Parametric Confidence Interval Compliance Limit is not exceeded.

Constituent: Molybdenum Analysis Run 7/20/2022 3:35 PM View: AIV
Plant Barry Client: Southern Company Data: Barry Ash Pond

Sanitas™ v.9.6.35 . UG

Non-Parametric Confidence Interval Compliance Limit is not exceeded.

Sanitas™ v.9.6.35 . UG

mg/L

Non-Parametric Confidence Interval

Confidence Interval

Constituent: Arsenic (mg/L) Analysis Run 7/20/2022 3:37 PM View: AIV Plant Barry Client: Southern Company Data: Barry Ash Pond

	BY-AP-MW-1	BY-AP-MW-10	BY-AP-MW-11	BY-AP-MW-1
11/28/2018	0.0677		0.014	0.0216
5/29/2019	0.0555		0.0132	0.0215
5/30/2019		0.0671		
7/31/2019		0.0649		
9/30/2019		0.0704	0.0145	
10/1/2019	0.0635			0.0221
3/30/2020	0.0557			
3/31/2020		0.0702	0.0158	0.0246
9/1/2020	0.0811	0.0763	0.0165	0.0246
5/11/2021		0.0762		
5/18/2021	0.0687			0.0237
5/19/2021			0.0166	
10/27/2021		0.0705		
11/1/2021	0.0694			0.0245
11/2/2021			0.0161	
5/23/2022			0.0142	0.0245
5/24/2022	0.0767	0.0775		
Mean	0.06729	0.07164	0.01511	0.02339
Std. Dev.	0.009052	0.004595	0.001292	0.001411
Upper Lim.	0.07688	0.07651	0.01648	0.0246
Lower Lim.	0.05769	0.06677	0.01374	0.0215

	BY-AP-MW-13	BY-AP-MW-14	BY-AP-MW-15	BY-AP-MW-16
11/27/2018		0.0145	0.0158	0.0108
11/28/2018	0.0141			
5/29/2019	0.0138	0.014	0.0148	0.0106
10/1/2019	0.0144	0.0152	0.017	0.0138
3/31/2020	0.0154	0.0177		0.012
4/1/2020			0.0183	
9/1/2020	0.0148			
9/2/2020		0.0174	0.0206	0.0137
5/11/2021			0.0184	
5/19/2021	0.014			0.0118
5/25/2021		0.0172		
10/26/2021	0.013		0.0186	
10/27/2021		0.0174		
11/1/2021				0.0151
5/24/2022	0.0128			
5/25/2022		0.0183	0.0176	0.0134
Mean	0.01404	0.01646	0.01764	0.01265
Std. Dev.	0.0008651	0.001635	0.001795	0.001593
Upper Lim.	0.01495	0.0182	0.01954	0.01434
Lower Lim.	0.01312	0.01473	0.01573	0.01096

	BY-AP-MW-2	BY-AP-MW-4	BY-AP-MW-5	BY-AP-MW-6
5/2/2018			0.0315	
11/27/2018	0.00144 (J)	<0.0002	0.0283	
11/28/2018				<0.0002
5/29/2019	0.00132 (J)	<0.0002	0.0301	<0.0002
10/1/2019	0.0014 (J)	<0.0002	0.0307	<0.0002
3/31/2020	0.00149 (J)	<0.0002	0.0329	<0.0002
8/31/2020	0.00176 (J)			
9/1/2020		<0.0002	0.0372	
9/2/2020				<0.0002
5/17/2021				0.000103 (J)
5/18/2021	0.00159	0.000125 (J)		
11/1/2021	0.00191	0.0002		
11/2/2021			0.0357	0.0001 (J)
5/24/2022	0.00115			
5/25/2022		<0.0002	0.0316	<0.0002
Mean	0.001508	0.0001156	0.03225	0.0001004
Std. Dev.	0.0002426	3.52E-05	0.002938	1.061E-06
Upper Lim.	0.001765	0.0002	0.03536	0.000103
Lower Lim.	0.00125	0.0001	0.02914	0.0001

	BY-AP-MW-7	BY-AP-MW-8	BY-AP-MW-9
11/27/2018		0.0536	
11/28/2018	0.0209		0.0422
5/29/2019	0.0178	0.0482	
5/30/2019			0.0349
9/30/2019	0.0217	0.0514	0.0391
3/30/2020	0.0215	0.0589	
3/31/2020			0.0393
9/2/2020	0.0234	0.0629	0.0432
5/11/2021		0.0659	
5/18/2021	0.0215		0.0435
10/26/2021		0.0668	
10/27/2021	0.0236		0.0468
5/24/2022	0.0197	0.0583	0.0404
Mean	0.02126	0.05825	0.04118
Std. Dev.	0.001886	0.006795	0.003586
Upper Lim.	0.02326	0.06545	0.04498
Lower Lim.	0.01926	0.05105	0.03737

	BY-AP-MW-1	BY-AP-MW-10	BY-AP-MW-11	BY-AP-MW-12
11/28/2018	0.271	0.066	0.0796	0.0788
5/29/2019	0.29		0.0653	0.0769
5/30/2019		0.063		
9/30/2019		0.0669	0.0759	
10/1/2019	0.293			0.0795
3/30/2020	0.279			
3/31/2020		0.0727	0.0842	0.0851
9/1/2020	0.33	0.078	0.0923	0.0827
5/11/2021		0.0757		
5/18/2021	0.339			0.0902
5/19/2021			0.112	
10/27/2021		0.0638		
11/1/2021	0.322			0.0823
11/2/2021			0.0894	
5/23/2022			0.0691	0.0802
5/24/2022	0.343	0.0618		
Mean	0.3084	0.06849	0.08348	0.08196
Std. Dev.	0.02834	0.006162	0.01482	0.004195
Upper Lim.	0.3384	0.07502	0.09918	0.08641
Lower Lim.	0.2783	0.06196	0.06777	0.07752

	BY-AP-MW-13	BY-AP-MW-14	BY-AP-MW-15	BY-AP-MW-16
11/27/2018		0.0589	0.0557	0.0792
11/28/2018	0.0697			
5/29/2019	0.0704	0.0617	0.0562	0.081
10/1/2019	0.0696	0.0605	0.0628	0.0803
3/31/2020	0.0728	0.0619		0.091
4/1/2020			0.0697	
9/1/2020	0.0722			
9/2/2020		0.0687	0.0736	0.0954
5/11/2021			0.0762	
5/19/2021	0.0817			0.102
5/25/2021		0.0745		
10/26/2021	0.0667		0.0784	
10/27/2021		0.0651		
11/1/2021				0.0988
5/24/2022	0.0723			
5/25/2022		0.0693	0.0846	0.0977
Mean	0.07193	0.06508	0.06965	0.09068
Std. Dev.	0.004416	0.00535	0.01056	0.00925
Upper Lim.	0.07647	0.07075	0.08085	0.1005
Lower Lim.	0.06744	0.0594	0.05845	0.08087

	BY-AP-MW-2	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
5/2/2018				0.154
11/27/2018	0.0249	0.0339	0.0321	0.139
5/29/2019	0.0232	0.037	0.0203	0.146
10/1/2019	0.0241	0.0356	0.0207	0.138
3/31/2020	0.0264	0.0393	0.0193	0.15
8/31/2020	0.0275			
9/1/2020		0.038	0.0131	0.154
5/18/2021	0.0259	0.0406	0.0225	
11/1/2021	0.0247	0.0371	0.0217	
11/2/2021				0.159
5/24/2022	0.0248			
5/25/2022		0.0494	0.0399	0.155
Mean	0.02519	0.03886	0.0237	0.1494
Std. Dev.	0.001359	0.004733	0.008373	0.007708
Upper Lim.	0.02663	0.04373	0.03257	0.1575
Lower Lim.	0.02375	0.03406	0.01483	0.1412

	BY-AP-MW-6	BY-AP-MW-7	BY-AP-MW-8	BY-AP-MW-9
11/27/2018			0.143	
11/28/2018	0.0231	0.0654		0.119
5/29/2019	0.0244	0.059	0.138	
5/30/2019				0.112
9/30/2019		0.0648	0.138	0.117
10/1/2019	0.0257			
3/30/2020		0.059	0.141	
3/31/2020	0.0244			0.119
9/2/2020	0.0282	0.0745	0.151	0.124
5/11/2021			0.147	
5/17/2021	0.0305			
5/18/2021		0.07		0.125
10/26/2021			0.136	
10/27/2021		0.0664		0.117
11/2/2021	0.0286			
5/24/2022		0.0717	0.142	0.117
5/25/2022	0.0268			
Mean	0.02646	0.06635	0.142	0.1188
Std. Dev.	0.002518	0.005603	0.005014	0.004166
Upper Lim.	0.02913	0.07229	0.1473	0.1232
Lower Lim.	0.02379	0.06041	0.1367	0.1143

	BY-AP-MW-4
11/27/2018	0.00071 (J)
5/29/2019	<0.00102
10/1/2019	<0.00102
3/31/2020	<0.00102
9/1/2020	<0.00102
5/18/2021	<0.00102
11/1/2021	<0.00102
5/25/2022	0.00065 (J)
Mean	0.000935
Std. Dev.	0.0001582
Upper Lim.	0.00102
Lower Lim.	0.00065

	BY-AP-MW-6
11/28/2018	<0.000203
5/29/2019	<0.000203
10/1/2019	<0.000203
3/31/2020	<0.000203
9/2/2020	<0.000203
5/17/2021	<0.000203
11/2/2021	7E-05 (J)
5/25/2022	0.00031
Mean	0.0001998
Std. Dev.	6.442E-05
Upper Lim.	0.00031
Lower Lim.	7E-05

	BY-AP-MW-1	BY-AP-MW-10	BY-AP-MW-11	BY-AP-MW-12
11/28/2018	0.0036 (J)	<0.00102	0.0023 (J)	0.00353 (J)
5/29/2019	0.00223 (J)		0.00211 (J)	0.00333 (J)
5/30/2019		<0.00102		
9/30/2019		<0.00102	0.00228 (J)	
10/1/2019	0.00236 (J)			0.00325 (J)
3/30/2020	0.00415 (J)			
3/31/2020		<0.00102	0.00358 (J)	0.0056 (J)
9/1/2020	0.00242 (J)	<0.00102	0.00259 (J)	0.00332 (J)
5/11/2021		0.000685 (J)		
5/18/2021	0.00294			0.00377
5/19/2021			0.00301	
10/27/2021		0.00072 (J)		
11/1/2021	0.00244			0.00423
11/2/2021			0.00348	
5/23/2022			0.00474	0.00374
5/24/2022	0.00238	0.00052 (J)		
Mean	0.002815	0.0008781	0.003011	0.003846
Std. Dev.	0.000702	0.000204	0.0008914	0.0007782
Upper Lim.	0.00415	0.00102	0.003956	0.0056
Lower Lim.	0.00223	0.00052	0.002066	0.00325

	BY-AP-MW-13	BY-AP-MW-14	BY-AP-MW-15	BY-AP-MW-16
11/27/2018		0.00523 (J)	<0.00102	<0.00102
11/28/2018	0.0068 (J)			
5/29/2019	0.00727 (J)	0.00455 (J)	<0.00102	<0.00102
10/1/2019	0.00764 (J)	0.00508 (J)	<0.00102	<0.00102
3/31/2020	0.00955 (J)	0.00463 (J)		<0.00102
4/1/2020			<0.00102	
9/1/2020	0.00888 (J)			
9/2/2020		0.00482 (J)	<0.00102	<0.00102
5/11/2021			0.000581 (J)	
5/19/2021	0.00692			0.00162
5/25/2021		0.00365		
10/26/2021	0.00755		0.00052 (J)	
10/27/2021		0.00401		
11/1/2021				0.0018
5/24/2022	0.00685			
5/25/2022		0.00345	0.00049 (J)	0.00135
Mean	0.007683	0.004428	0.0008364	0.001234
Std. Dev.	0.001012	0.0006562	0.0002546	0.0003189
Upper Lim.	0.008713	0.005123	0.00102	0.0018
Lower Lim.	0.006678	0.003732	0.00049	0.00102

	BY-AP-MW-2	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
5/2/2018				<0.00102
11/27/2018	<0.00102	<0.00102	<0.00102	<0.00102
5/29/2019	<0.00102	<0.00102	<0.00102	<0.00102
10/1/2019	<0.00102	<0.00102	<0.00102	<0.00102
3/31/2020	<0.00102	<0.00102	<0.00102	<0.00102
8/31/2020	<0.00102			
9/1/2020		<0.00102	<0.00102	<0.00102
5/18/2021	0.000394 (J)	0.000919 (J)	0.000544 (J)	
11/1/2021	0.00029 (J)	0.00093 (J)	0.00067 (J)	
11/2/2021				0.00101 (J)
5/24/2022	<0.00102			
5/25/2022		0.00104	0.00026 (J)	0.00103
Mean	0.0008505	0.0009986	0.0008217	0.00102
Std. Dev.	0.0003151	4.636E-05	0.0002957	5.345E-06
Upper Lim.	0.00102	0.00104	0.00102	0.00103
Lower Lim.	0.00029	0.000919	0.00026	0.00101
	11/27/2018 5/29/2019 10/1/2019 3/31/2020 8/31/2020 9/1/2020 5/18/2021 11/1/2021 11/2/2021 5/24/2022 Mean Std. Dev. Upper Lim.	5/2/2018 11/27/2018 < 0.00102 5/29/2019 < 0.00102 10/1/2019 3/31/2020 < 0.00102 8/31/2020 < 0.00102 8/31/2020 5/18/2021 0.000394 (J) 11/1/2021 11/2/2021 5/24/2022 Mean 0.0008505 Std. Dev. 0.00102 5/2/2021 Upper Lim. 0.000102	5/2/2018 11/27/2018 <0.00102	5/2/2018 11/27/2018 <0.00102

	BY-AP-MW-6	BY-AP-MW-7	BY-AP-MW-8	BY-AP-MW-9
11/27/2018			<0.00102	
11/28/2018	<0.00102	<0.00102		<0.00102
5/29/2019	<0.00102	<0.00102	<0.00102	
5/30/2019				<0.00102
9/30/2019		<0.00102	<0.00102	<0.00102
10/1/2019	<0.00102			
3/30/2020		<0.00102	<0.00102	
3/31/2020	<0.00102			<0.00102
9/2/2020	<0.00102	<0.00102	<0.00102	<0.00102
5/11/2021			0.00156	
5/17/2021	0.000313 (J)			
5/18/2021		0.00709		0.00078 (J)
10/26/2021			0.00165	
10/27/2021		0.00309		0.00087 (J)
11/2/2021	0.00023 (J)			
5/24/2022		0.00058 (J)	0.00128	0.0007 (J)
5/25/2022	0.00029 (J)			
Mean	0.0007416	0.001982	0.001199	0.0009312
Std. Dev.	0.0003849	0.002201	0.0002674	0.0001307
Upper Lim.	0.00102	0.00709	0.00165	0.00102
Lower Lim.	0.00023	0.00058	0.00102	0.0007

	BY-AP-MW-1	BY-AP-MW-10	BY-AP-MW-11	BY-AP-MW-12
11/28/2018	<0.005	<0.005	<0.005	0.00274 (J)
5/29/2019	<0.005		<0.005	0.00358 (J)
5/30/2019		<0.005		
9/30/2019		<0.005	<0.005	
10/1/2019	<0.005			0.00303 (J)
3/30/2020	<0.005			
3/31/2020		<0.005	<0.005	0.00364 (J)
9/1/2020	<0.005	<0.005	<0.005	0.0031 (J)
5/11/2021		0.000636		
5/18/2021	0.000996			0.00336
5/19/2021			0.00257	
10/27/2021		0.00065		
11/1/2021	0.00091			0.0037
11/2/2021			0.00118	
5/23/2022			0.00118	0.00428
5/24/2022	0.00091	0.00054		
Mean	0.003477	0.003353	0.003741	0.003429
Std. Dev.	0.002102	0.002273	0.001789	0.0004799
Upper Lim.	0.005	0.005	0.005	0.003937
Lower Lim.	0.00091	0.00054	0.00118	0.00292

	BY-AP-MW-13	BY-AP-MW-14	BY-AP-MW-15	BY-AP-MW-16
11/27/2018		<0.005	0.0311	0.0182
11/28/2018	<0.005			
5/29/2019	<0.005	<0.005	0.0343	0.0206
10/1/2019	<0.005	<0.005	0.0336	0.0107
3/31/2020	<0.005	<0.005		0.0199
4/1/2020			0.0344	
9/1/2020	<0.005			
9/2/2020		<0.005	0.0385	0.0192
5/11/2021			0.0349	
5/19/2021	0.00113			0.0182
5/25/2021		0.00124		
10/26/2021	0.00122		0.0347	
10/27/2021		0.00125		
11/1/2021				0.0139
5/24/2022	0.00189			
5/25/2022		0.00125	0.0364	0.0155
Mean	0.003655	0.003592	0.03474	0.01703
Std. Dev.	0.001869	0.001943	0.002131	0.003394
Upper Lim.	0.005	0.005	0.037	0.02062
Lower Lim.	0.00113	0.00124	0.03248	0.01343

	BY-AP-MW-2	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
5/1/2018			0.0126 (O)	
5/2/2018				<0.005
11/27/2018	0.0066	<0.005	0.00363 (J)	<0.005
5/29/2019	0.00745	<0.005	0.00549	<0.005
10/1/2019	0.00696	<0.005	<0.005	<0.005
3/31/2020	0.00716	<0.005	0.0205	<0.005
8/31/2020	0.00751			
9/1/2020		<0.005	0.00657	<0.005
5/18/2021	0.00746	0.000196 (J)	0.018	
11/1/2021	0.00706	0.00016 (J)	0.00478	
11/2/2021				0.00197
5/24/2022	0.00582			
5/25/2022		0.00028	0.00455	0.00184
Mean	0.007003	0.003204	0.008565	0.004226
Std. Dev.	0.0005679	0.002478	0.006681	0.001433
Upper Lim.	0.007575	0.005	0.0205	0.005
Lower Lim.	0.006423	0.00016	0.00363	0.00184

	BY-AP-MW-6	BY-AP-MW-7	BY-AP-MW-8	BY-AP-MW-9
11/27/2018			<0.005	
11/28/2018	<0.005	0.0178		<0.005
5/29/2019	<0.005	0.0197	<0.005	
5/30/2019				<0.005
9/30/2019		0.0186	<0.005	<0.005
10/1/2019	<0.005			
3/30/2020		0.0172	<0.005	
3/31/2020	<0.005			<0.005
9/2/2020	<0.005	0.0197	<0.005	<0.005
5/11/2021			0.000778	
5/17/2021	0.000678			
5/18/2021		0.0189		0.000725
10/26/2021			0.00079	
10/27/2021		0.0206		0.0007
11/2/2021	0.0006			
5/24/2022		0.023	0.00067	0.00069
5/25/2022	0.00098			
Mean	0.003407	0.01944	0.003405	0.003389
Std. Dev.	0.002201	0.001807	0.002202	0.002223
Upper Lim.	0.005	0.02135	0.005	0.005
Lower Lim.	0.0006	0.01752	0.00067	0.00069

	BY-AP-MW-1	BY-AP-MW-10	BY-AP-MW-11	BY-AP-MW-12
5/1/2018	1.6			
5/2/2018		0.405	0.505	1.11
11/28/2018	1.48	0.609	0.232 (U)	0.846
5/29/2019	2.25		0.726	2.06
5/30/2019		0.0949 (U)		
9/30/2019		0.965	0.489 (U)	
10/1/2019	2.84			0.984
3/30/2020	2.31			
3/31/2020		1.14	0.462 (U)	1.26
5/11/2021		1.12 (U)		
5/18/2021	2.99			1.11
5/19/2021			1.15	
10/27/2021		1.2 (U)		
11/1/2021	2.22			1.79
11/2/2021			0.504 (U)	
5/23/2022			0.452 (U)	1.4
5/24/2022	2.12	1.36 (U)		
Mean	2.226	0.8617	0.565	1.32
Std. Dev.	0.5248	0.4437	0.2714	0.4148
Upper Lim.	2.783	1.332	0.8362	1.76
Lower Lim.	1.67	0.3915	0.3081	0.8804

	BY-AP-MW-13	BY-AP-MW-14	BY-AP-MW-15	BY-AP-MW-16
5/1/2018			0.651	0.623
5/2/2018	0.752	0.522		
11/27/2018		0.576	0.764	0.744
11/28/2018	0.523			
5/29/2019	1.01	0.437 (U)	0.433	2.51
10/1/2019	1.07	1.11	0.988	0.443 (U)
3/31/2020	0.725	0.941		0.341 (U)
4/1/2020			0.527	
5/11/2021			0.684 (U)	
5/19/2021	1.15			0.321 (U)
5/25/2021		0.978 (U)		
10/26/2021	1.74		1.95	
10/27/2021		0.587 (U)		
11/1/2021				1.28
5/24/2022	0.915 (U)			
5/25/2022		1.25	1.3	0.927 (U)
Mean	0.9856	0.8001	0.9121	0.8986
Std. Dev.	0.3675	0.3058	0.5005	0.7265
Upper Lim.	1.375	1.124	1.443	1.569
Lower Lim.	0.5961	0.476	0.3816	0.285

	BY-AP-MW-2	BY-AP-MW-3	BY-AP-MW-4	BY-AP-MW-5
1/24/2018				1.74 (U)
5/1/2018	0.457	0.372 (U)	0.0917 (U)	
5/2/2018				0.58
11/27/2018	0.359 (U)	0.591	0.695	1.43
5/29/2019	1.18	2.31	0.947	2.16
10/1/2019	0.284 (U)	1.52	0.7	2.14
3/31/2020	0.699	0.478 (U)	0.323 (U)	0.754
5/18/2021	0.72 (U)	0.749 (U)	0.734 (U)	
11/1/2021	0.523 (U)	0.688 (U)	0.888 (U)	
11/2/2021				2.06
5/24/2022	0.732 (U)			
5/25/2022		1.72	0.821 (U)	1.71
Mean	0.6193	1.054	0.65	1.572
Std. Dev.	0.2827	0.7047	0.2938	0.6126
Upper Lim.	0.9189	1.8	0.9614	2.221
Lower Lim.	0.3196	0.3065	0.3385	0.9224

	BY-AP-MW-6	BY-AP-MW-7	BY-AP-MW-8	BY-AP-MW-9
5/2/2018	0.187 (U)	0.535	0.572	0.983
11/27/2018			0.687	
11/28/2018	0.478 (U)	0.62		0.747
5/29/2019	-0.276 (U)	0.244 (U)	0.627 (U)	
5/30/2019				1.08
9/30/2019		0.388 (U)	0.321 (U)	0.58
10/1/2019	0.742			
3/30/2020		0.744	0.6	
3/31/2020	0.291 (U)			0.82
5/11/2021			0.648 (U)	
5/17/2021	1.84			
5/18/2021		0.597 (U)		0.98 (U)
10/26/2021			1.61	
10/27/2021		1.46 (U)		1.07 (U)
11/2/2021	0.773 (U)			
5/24/2022		1.05 (U)	0.733 (U)	2.11
5/25/2022	1.06 (U)			
Mean	0.6369	0.7048	0.7248	1.046
Std. Dev.	0.6366	0.3876	0.3784	0.4629
Upper Lim.	1.312	1.116	1.054	1.478
Lower Lim.	-0.03787	0.294	0.4141	0.636

	BY-AP-MW-1	BY-AP-MW-10	BY-AP-MW-11	BY-AP-MW-12
11/28/2018	<0.125	<0.125	0.05 (J)	0.04 (J)
5/29/2019	0.0858 (J)		0.0759 (J)	0.0677 (J)
5/30/2019		0.0573 (J)		
9/30/2019		<0.125	0.0733 (J)	
10/1/2019	0.0744 (J)			0.0682 (J)
3/30/2020	0.0726 (J)			
3/31/2020		<0.125	0.078 (J)	0.0755 (J)
9/1/2020	0.194	0.0794 (J)	0.0841 (J)	0.0845 (J)
5/11/2021		0.105		
5/18/2021	0.0884 (J)			0.0614 (J)
5/19/2021			0.0994 (J)	
10/27/2021		<0.125		
11/1/2021	0.181			0.0928 (J)
11/2/2021			0.101	
5/23/2022			0.0709 (J)	0.0873 (J)
5/24/2022	0.0801 (J)	<0.125 (D)		
Mean	0.1049	0.06928	0.07908	0.07218
Std. Dev.	0.05176	0.01582	0.01637	0.01692
Upper Lim.	0.194	0.105	0.09643	0.09011
Lower Lim.	0.0625	0.0573	0.06172	0.05424

	BY-AP-MW-13	BY-AP-MW-14	BY-AP-MW-15	BY-AP-MW-16
11/27/2018		0.06 (J)	0.18	<0.125
11/28/2018	0.05 (J)			
5/29/2019	0.0679 (J)	0.0781 (J)	0.168	0.0683 (J)
10/1/2019	0.0703 (J)	0.0885 (J)	0.185	0.0774 (J)
3/31/2020	0.0665 (J)	0.0867 (J)		0.0602 (J)
4/1/2020			0.187	
9/1/2020	0.0757 (J)			
9/2/2020		0.0957 (J)	0.18	<0.125
5/11/2021			0.214	
5/19/2021	0.0748 (J)			0.0793 (J)
5/25/2021		0.0957 (J)		
10/26/2021	0.0641 (J)		0.171	
10/27/2021		0.0651 (J)		
11/1/2021				0.0887 (J)
5/24/2022	0.0769 (J)			
5/25/2022		0.0733 (J)	0.214	<0.125
Mean	0.06828	0.08039	0.1874	0.07018
Std. Dev.	0.008709	0.01352	0.01763	0.01041
Upper Lim.	0.07751	0.09472	0.2059	0.08512
Lower Lim.	0.05904	0.06606	0.1691	0.06444

	BY-AP-MW-5	BY-AP-MW-7	BY-AP-MW-8	BY-AP-MW-9
5/2/2018	0.05 (J)			
11/27/2018	<0.125		<0.125	
11/28/2018		0.07 (J)		0.04 (J)
5/29/2019	0.0923 (J)	0.0937 (J)	0.0958 (J)	
5/30/2019				0.0763 (J)
9/30/2019		0.0925 (J)	0.0559 (J)	0.0679 (J)
10/1/2019	0.0557 (J)			
3/30/2020		0.0933 (J)	0.0701 (J)	
3/31/2020	0.0735 (J)			0.0655 (J)
9/1/2020	0.0921 (J)			
9/2/2020		0.109	<0.125	0.0804 (J)
5/11/2021			0.094 (J)	
5/18/2021		0.11		0.0709 (J)
10/26/2021			<0.125	
10/27/2021		0.0823 (J)		0.0803 (J)
11/2/2021	0.0964 (J)			
5/24/2022		0.0724 (J)	0.0713 (J)	<0.125
5/25/2022	<0.125			
Mean	0.07313	0.0904	0.07183	0.06798
Std. Dev.	0.01826	0.01493	0.01504	0.01311
Upper Lim.	0.09618	0.1062	0.09399	0.08187
Lower Lim.	0.05716	0.07458	0.06127	0.05408

	BY-AP-MW-11	BY-AP-MW-12	BY-AP-MW-13	BY-AP-MW-14
11/27/2018				<0.0002
11/28/2018	<0.0002	<0.0002	<0.0002	
5/29/2019	<0.0002	<0.0002	<0.0002	<0.0002
9/30/2019	<0.0002			
10/1/2019		<0.0002	<0.0002	<0.0002
3/31/2020	<0.0002	<0.0002	<0.0002	<0.0002
9/1/2020	<0.0002	<0.0002	<0.0002	
9/2/2020				<0.0002
5/18/2021		0.000326		
5/19/2021	0.000102 (J)		<0.0002	
5/25/2021				7.64E-05 (J)
10/26/2021			<0.0002	
10/27/2021				9E-05 (J)
11/1/2021		0.00029		
11/2/2021	0.00013 (J)			
5/23/2022	9E-05 (J)	0.00018 (J)		
5/24/2022			0.00015 (J)	
5/25/2022				0.0001 (J)
Mean	0.0001652	0.0002245	0.0001937	0.0001583
Std. Dev.	4.92E-05	5.288E-05	1.768E-05	5.79E-05
Upper Lim.	0.0002	0.000326	0.0002	0.0002
Lower Lim.	9E-05	0.00018	0.00015	7.64E-05

	BY-AP-MW-16	BY-AP-MW-4	BY-AP-MW-6	BY-AP-MW-9
11/27/2018	<0.0002	<0.0002		
11/28/2018			<0.0002	<0.0002
5/29/2019	<0.0002	<0.0002	0.00185 (J)	
5/30/2019				0.00108 (J)
9/30/2019				<0.0002
10/1/2019	<0.0002	<0.0002	0.00545	
3/31/2020	<0.0002	<0.0002	0.00276 (J)	<0.0002
9/1/2020		<0.0002		
9/2/2020	<0.0002		0.00171 (J)	<0.0002
5/17/2021			0.00162	
5/18/2021		0.00013 (J)		<0.0002
5/19/2021	0.000191 (J)			
10/27/2021				<0.0002
11/1/2021	<0.0002	7E-05 (J)		
11/2/2021			0.00336	
5/24/2022				<0.0002
5/25/2022	<0.0002	0.00018 (J)	0.0112	
Mean	0.0001989	0.0001725	0.003519	0.00031
Std. Dev.	3.182E-06	4.803E-05	0.003464	0.0003111
Upper Lim.	0.0002	0.0002	0.006786	0.00108
Lower Lim.	0.000191	7E-05	0.0006176	0.0002

	BY-AP-MW-11	BY-AP-MW-15	BY-AP-MW-7
11/27/2018		0.0169 (J)	
11/28/2018	0.0262		<0.02
5/29/2019	0.0321	0.0254	<0.02
9/30/2019	0.0228		<0.02
10/1/2019		0.0248	
3/30/2020			0.0102 (J)
3/31/2020	0.022		
4/1/2020		0.0174 (J)	
9/1/2020	<0.02		
9/2/2020		<0.02	<0.02
5/11/2021		0.00788 (J)	
5/18/2021			0.0882
5/19/2021	0.00754 (J)		
10/26/2021		0.0117 (J)	
10/27/2021			<0.02
11/2/2021	<0.02		
5/23/2022	0.0269		
5/24/2022			<0.02
5/25/2022		0.0118 (J)	
Mean	0.02219	0.01698	0.0273
Std. Dev.	0.007182	0.006312	0.02485
Upper Lim.	0.02902	0.02368	0.0882
Lower Lim.	0.00914	0.01029	0.0102

	BY-AP-MW-1	BY-AP-MW-11	BY-AP-MW-12	BY-AP-MW-13
11/28/2018	<0.0002	<0.0002	<0.0002	<0.0002
5/29/2019	<0.0002	<0.0002	<0.0002	<0.0002
9/30/2019		<0.0002		
10/1/2019	<0.0002		<0.0002	<0.0002
3/30/2020	<0.0002			
3/31/2020		<0.0002	<0.0002	<0.0002
9/1/2020	<0.0002	<0.0002	<0.0002	<0.0002
5/18/2021	0.000106 (J)		0.000947	
5/19/2021		0.00652		0.000437
10/26/2021				0.00043
11/1/2021	8E-05 (J)		0.00099	
11/2/2021		0.00161		
5/23/2022		0.00141	0.00109	
5/24/2022	<0.0002			0.00356
Mean	0.0001732	0.001317	0.0005034	0.0006784
Std. Dev.	5.002E-05	0.002184	0.0004205	0.001169
Upper Lim.	0.0002	0.00652	0.00109	0.00356
Lower Lim.	8E-05	0.0002	0.0002	0.0002

	BY-AP-MW-14	BY-AP-MW-15	BY-AP-MW-16	BY-AP-MW-5
5/2/2018				<0.0002
11/27/2018	<0.0002	<0.0002	<0.0002	<0.0002
5/29/2019	<0.0002	<0.0002	<0.0002	<0.0002
10/1/2019	<0.0002	<0.0002	<0.0002	<0.0002
3/31/2020	<0.0002		<0.0002	<0.0002
4/1/2020		<0.0002		
9/1/2020				<0.0002
9/2/2020	<0.0002	0.00209 (J)	<0.0002	
5/11/2021		0.00171		
5/19/2021			0.000136 (J)	
5/25/2021	0.000701			
10/26/2021		0.00206		
10/27/2021	0.00053			
11/1/2021			<0.0002	
11/2/2021				0.00012 (J)
5/25/2022	0.00052	0.0018	<0.0002	0.00011 (J)
Mean	0.0003439	0.001057	0.000192	0.0001787
Std. Dev.	0.0002059	0.000925	2.263E-05	3.944E-05
Upper Lim.	0.000701	0.00209	0.0002	0.0002
Lower Lim.	0.0002	0.0002	0.000136	0.00011

	BY-AP-MW-6	BY-AP-MW-7	BY-AP-MW-8	BY-AP-MW-9
11/27/2018			<0.0002	
11/28/2018	<0.0002	<0.0002		<0.0002
5/29/2019	<0.0002	<0.0002	<0.0002	
5/30/2019				<0.0002
9/30/2019		<0.0002	<0.0002	<0.0002
10/1/2019	<0.0002			
3/30/2020		<0.0002	<0.0002	
3/31/2020	<0.0002			<0.0002
9/2/2020	<0.0002	<0.0002	<0.0002	<0.0002
5/11/2021			0.000321	
5/17/2021	0.000117 (J)			
5/18/2021		0.000214		0.00022
10/26/2021			0.00019 (J)	
10/27/2021		0.00018 (J)		0.00021
11/2/2021	0.00011 (J)			
5/24/2022		0.00018 (J)	0.00023	0.00024
5/25/2022	0.00033			
Mean	0.0001946	0.0001967	0.0002176	0.0002087
Std. Dev.	6.725E-05	1.141E-05	4.335E-05	1.458E-05
Upper Lim.	0.00033	0.000214	0.000321	0.00024
Lower Lim.	0.00011	0.00018	0.00019	0.0002

	BY-AP-MW-13
11/28/2018	<0.00102
5/29/2019	<0.00102
10/1/2019	<0.00102
3/31/2020	<0.00102
9/1/2020	<0.00102
5/19/2021	<0.00102
10/26/2021	<0.00102
5/24/2022	0.00056 (J)
Mean	0.0009625
Std. Dev.	0.0001626
Upper Lim.	0.00102
Lower Lim.	0.00056

Appendix F

April 2022 Plant Barry

Laboratory Treatability Study Work Plan

Prepared for Alabama Power Company

April 2022 Plant Barry

Laboratory Treatability Study Work Plan

Prepared for

Alabama Power Company 600 18th Street North Birmingham, Alabama 35203 **Prepared by**

Anchor QEA, LLC 6720 South Macadam Avenue, Suite 125 Portland, Oregon 97219

TABLE OF CONTENTS

1	Introduction				
2	2 Selection of Reagents				
3	Sampling and Initial Characterization				
	3.1	Groundwater	3		
	3.2 A	Aquifer Solids	3		
	3.3 F	Reagents	3		
4	Batch	Tests	4		
5	Column Studies		5		
6	Select	tive Sequential Extraction of Treated Soil	6		
7	Data A	Analysis and Reporting	7		
8	References8				

TABLES

Table 1 Groundwater Characterization Parameters and Laboratory Analytical Methods

i

Table 2 Constituents and Analytical Methods

 Table 3
 Sequential Extraction Procedure

FIGURE

Figure 1 Proposed Pilot Test Boring Locations

ABBREVIATIONS

μm micrometers

ADEM Alabama Department of Environmental Management

APC Alabama Power Company
CCR coal combustion residuals
COI constituent of interest
DO dissolved oxygen

EGL Anchor QEA Environmental Geochemistry Laboratory

MNA monitored natural attenuation
ORP oxidation-reduction potential

Plant Barry James M. Barry Electric Generating Plan

SC specific conductivity

SCS Southern Company Services

Site Plant Barry Ash Pond

SSE selective sequential extraction

USEPA U.S. Environmental Protection Agency

ZVI zero-valent iron

1 Introduction

This work plan describes laboratory treatability studies for arsenic and cobalt in groundwater at the James M. Barry Electric Generating Plant (Plant Barry) Ash Pond (Site), located in Mobile County, Alabama. Plant Barry is owned and operated by Alabama Power Company (APC). This work builds on work previously performed for the Site by Anchor QEA.

As of April 15, 2019, the Site ceased receipt of all coal combustion residuals (CCR) and non-CCR waste streams. APC has been monitoring groundwater at the Site in accordance with the U.S. Environmental Protection Agency (USEPA) CCR Rule and the Alabama Department of Environmental Management (ADEM) rule since 2016. Constituents of interest (COIs) for the Site include arsenic and cobalt.

In 2020 and 2021, corrective measures for groundwater were evaluated for the Site. In situ groundwater treatment via injection was selected as one viable option, particularly for areas with higher concentrations of COIs in groundwater (hot spots). Therefore, pilot tests at three locations were proposed in the *Groundwater Remedy Selection Report* (Anchor QEA 2021a). The necessary steps to implement an injection treatment pilot test include laboratory treatability studies, selection of the most effective treatment reagent(s), and preparation of an underground injection control application.

The treatability studies proposed herein will evaluate reagent selection, dosing, and injection sequencing for in situ groundwater treatment as described in the following subsections. Background information, including Site-specific findings from monitored natural attenuation (MNA) studies and reagents to be tested in the treatability studies, is summarized in Section 2. Initial characterization of groundwater and aquifer solids (i.e., soil) is discussed in Section 3 followed by an overview of the treatability study approach including batch testing (Section 4), column studies (Section 5), and selective sequential extraction (SSE; Section 6). Analysis of the treatability study data and reporting are discussed in Section 7 and the project schedule is presented in Section 8.

2 Selection of Reagents

Selection and formulation of reagent solutions that can be injected to sequester Site-specific COIs will be based on Site-specific soil and groundwater geochemistry, previous Site work, and experience from successful treatability studies performed by Anchor QEA for the same COIs at other sites. The MNA demonstration (Anchor QEA 2021a) documented key geochemical attenuation mechanisms occurring at the Site, including:

- Sorption on amorphous iron oxides (arsenic and cobalt)
- Cation exchange on clays (cobalt)
- Coprecipitation in crystalline iron oxides (arsenic and cobalt)
- Precipitation in barium arsenate (arsenic)

Iron oxides are strong sorbents for many metals and metalloids including arsenic and cobalt, and Eh-pH conditions in the subsurface at the Site are generally favorable for formation of iron oxides. Therefore, the treatability studies are focused on reagents (or mixtures) with the potential to increase the abundance and the stability of iron hydroxides and iron oxides in the subsurface. Barium chloride was added to the reagent list as geochemical modeling predicted that barium arsenate could precipitate from groundwater if sufficient barium were present in the system. Based on Site conditions and previous treatability studies for other CCR sites (e.g., EPRI 2021), the following reagents were selected for treatability testing:

- 1. Ferrous sulfate
- 2. Ferric chloride
- 3. CleanER (injectable zero-valent iron [ZVI])
- 4. Ferroblack (injectable iron sulfide)
- 5. Permanganate
- 6. Ferrous sulfate with permanganate
- 7. Ferric chloride with permanganate and manganese chloride
- 8. Barium chloride
- 9. Aeration (due to the relatively high iron content of Site groundwater)
- 10. Hydrotalcite

These 10 potential treatments (or mixtures thereof) will be screened and evaluated through batch testing as described in Section 4. The most promising reagents (or mixtures) will be selected for column studies (see Section 5).

3 Sampling and Initial Characterization

Aquifer solids (i.e., soil) and groundwater will be collected from the Site for treatability testing to be conducted at the Anchor QEA Environmental Geochemistry Laboratory (EGL). Site aquifer solids (soil) and groundwater will be collected in accordance with the *Aquifer Solids and Groundwater Sampling Scope of Work for Treatability Studies* (Anchor QEA 2021b) memorandum.

3.1 Groundwater

Groundwater samples will be collected by Alabama Power with support from Anchor QEA from wells BY-AP-MW-1, BY-AP-MW-2, BY-AP-MW-8, BY-AP-MW-10, BY-AP-MW-15V, and BY-AP-MW-24H. Five gallons of Site groundwater from each selected well will be required to complete the batch treatability tests (described in Section 4). An additional 10 gallons of Site groundwater from each selected well will be required to complete the column testing (described in Section 5) and will be collected after the batch testing is completed. As detailed in the sampling plan, the groundwater provided to the EGL will be collected, transported, and handled to minimize exposure to oxygen. Groundwater samples will be field-filtered with a 0.45-micron inline filter.

Groundwater samples will be analyzed for COIs (arsenic and cobalt), as well as other Appendix III/IV parameters, and additional MNA parameters by Alabama Power (Table 1). Supplemental analyses will be performed for COIs and select parameters including pH, oxidation-reduction potential [ORP], dissolved oxygen [DO], total and dissolved iron and manganese on as-received samples prior to commencing treatability testing. Groundwater characterization data will guide the treatability study design and the evaluation of results.

3.2 Aquifer Solids

Aquifer solids were collected from four pilot test borings (BY-AP-PT-1, -2, -3, and -5) as described in the *Aquifer Solids and Groundwater Sampling Scope of Work for Treatability Studies* (Anchor QEA 2021b) memorandum and as appear in Figure 1. Initial characterization of aquifer solids (soil) will include the analyses listed in Table 2.

3.3 Reagents

Prior to initiating the column studies (described in Section 5), a sample of each of the selected reagents will be analyzed for Appendix III/ IV parameters to characterize impurity levels of these constituents.

¹ Groundwater from BY-AP-MW-2 will be collected for column tests only.

4 Batch Tests

Screening batch tests will be performed to assess the effectiveness of injectable reagents (see list of reagents in Section 2) in reducing COI concentrations in Site groundwater and groundwater-soil slurries.

The approach for screening batch tests is as follows²:

- Step 1: Test jars will be set up with groundwater or groundwater/aguifer solid slurries.
- Step 2: Reagents or reagent mixtures will be added to the test jars at a pre-determined dose based on groundwater chemistry and prior experience. Test jars will also include controls with no reagents added. Test jars will be sealed and placed on a shaker table for 7 days.
- Step 3: Samples of the treated groundwater solutions will be collected and analyzed for dissolved arsenic and cobalt (per the analytical laboratory methods specified in Table 1). pH,
 ORP, and specific conductivity (SC) will be measured in the EGL.
- Step 4: The solids from each batch reactor will be recovered and archived for possible future analysis.

Arsenic and cobalt removal efficiency will be evaluated by comparing the initial concentrations in the groundwater samples and controls to the concentrations in the treated groundwater solutions.

Following the initial screening batch tests, additional focused batch testing may be conducted to optimize COI removal. For example, these optimization batch tests may involve adjusting the dose of a reagent or adjusting the pH to increase COI removal. Following completion of the batch testing, up to two reagents (or reagent mixtures) that achieve successful removal of arsenic and cobalt will be selected for column studies.

Laboratory Treatability Study Work Plan

² Batch tests will be conducted in accordance with modified versions of ASTM International Methods D2035-19 (Practice for Coagulation-Flocculation Jar Test of Water) and D4646-03 (Test Method for 24-h Batch-Type Measurement of Contaminant Sorption by Soils and Sediments).

5 Column Studies

Column studies will be conducted to simulate injection applications of the selected reagents (or reagent mixtures). The results of the column studies will be used to confirm arsenic and cobalt removal efficiency and determine uptake capacity of injection-treated aquifer soil to support pilot test design. Results from column studies will also be used to confirm that treatments will not inadvertently increase concentrations of other constituents above groundwater quality standards, for example, due to release from the aquifer matrix.

The approach for column studies is as follows (Westerhoff et al. 2005):

- Step 1: Aquifer solids will be treated with the selected reagent or reagent mixture by treating a pre-weighed homogenized mass of aquifer solids with a predetermined amount of the selected reagent(s; based on the batch test results) in solution. The soil-reagent mixture will be placed on a shaker table and allowed to react for three days.
- Step 2: The treated aquifer solids will be packed into 4.2-centimeter-diameter by 22-centimeter-length polycarbonate column assemblies. Site groundwater containing COIs will be introduced into column influents at a constant flow rate.
- Step 3: Columns will be operated for a total of 4 weeks or approximately 100 pore volumes.
- Step 4: Column influent and effluent solutions will be sampled periodically and pH, ORP, and SC will be measured. The cumulative flow volume will also be recorded at the time of sampling and used to calculate the total number of pore volumes treated.
- Step 5: Samples will be filtered (0.45 micrometers [µm]) and analyzed for dissolved arsenic and cobalt, and treatment reagent constituent concentrations. Select Appendix III and IV constituents (Table 1) may also be analyzed based on soil concentrations.
- Step 6: Following completion of this phase of the column test, the column influent will be switched to background groundwater to assess the stability of the treatment. The column will continue to run at a constant flow rate for approximately 10 pore volumes. Column influents and effluents will be sampled at approximately 5 and 10 pore volumes of flow. Samples will be analyzed for dissolved COIs, constituents of the treatment reagents used (e.g., iron, manganese, barium, chloride, sulfate), and select Appendix III/ IV constituents.

Arsenic and cobalt removal efficiency (and mass uptake from groundwater) will be evaluated by comparing the respective concentrations in the column influent to the concentrations in the effluent. COI removal capacity per unit reagent dose will be estimated from column breakthrough curves and mass balance calculations. The removal capacity will provide data to support design of pilot tests, including injection volumes and reagent mass. At the end of the column tests, column solids will be recovered for SSE to further document COI sequestration strength by the reagent-treated soil matrix and to assess the stability of the treatment.

6 Selective Sequential Extraction of Treated Soil

Following completion of the column tests, the column media will be recovered and tested using a five-step SSE procedure. The extraction procedure is designed to fractionate the COIs in a solid sample by subjecting the sample to a sequence of chemical treatments that target specific chemical forms. Concentrations and relative proportions of arsenic and cobalt present in the operationally defined fractions shown in Table 3 will be determined on a total sample dry weight basis. Sequential extraction will be performed in accordance with the EGL standard operating procedure.

SSE will provide information on the stability of COIs removed by precipitates formed in situ via reagent injection under conditions representative of Site application. These data will support a more thorough understanding of the permanence (stability) of COI removal by the treatment.

7 Data Analysis and Reporting

Anchor QEA will analyze the data from the batch tests, column tests, and SSE results and make recommendations regarding the reagents or reagent mixtures to be used for pilot testing at the Site. Results from the column tests will also be used to support pilot test design. The recommended reagent or mix will be tailored to the COIs present and geochemical conditions at each pilot location.

Anchor QEA will meet with the client to review the results of the batch tests and discuss the recommended reagent(s) prior to initiating the column studies. After the column studies and SSE are complete, Anchor QEA will present findings and recommendations to the client in advance of preparing the draft treatability study report. This report will document the treatability studies, present the data obtained through these studies, and discuss recommendations for pilot studies of the most promising treatment(s).

8 References

- Anchor QEA, 2021a. *Groundwater Remedy Selection Report*. Plant Barry. Prepared for Alabama Power Company. October 2021.
- Anchor QEA, 2021b. Memorandum to: Greg Dyer, Southern Company Services, Inc. Regarding: Aquifer Solids and Groundwater Sampling Scope of Work for Treatability Studies.

 December 23, 2021.
- Westerhoff, P., D. Highfield, M. Badruzzaman, and Y. Yoon, 2005. "Rapid Small-Scale Column Tests for Arsenate Removal in Iron Oxide Packed Bed Columns." *Journal of Environmental Engineering* 131(2):262–271.

Tables

Table 1 Groundwater Characterization Parameters and Laboratory Analytical Methods

Parameter	Analytical Method	Detection Limit			
Appendix III Parameters					
Boron	EPA 200.8/6020	10.0 μg/L			
Calcium	EPA 200.8/6020	600 μg/L			
Chloride	300.0/9056A	1.00 mg/L			
Fluoride	SM 4500 F_C	0.100 mg/L			
рН	None				
Sulfate	300.0/9056A	1.00 mg/L			
Total dissolved solids	SM 2540C	5.00 mg/L			
Арро	endix IV Parameters				
Antimony	EPA 200.8/6020	1.00 μg/L			
Arsenic	EPA 200.8/6020	1.00 μg/L			
Barium	EPA 200.8/6020	2.00 μg/L			
Beryllium	EPA 200.8/6020	0.200 μg/L			
Cadmium	EPA 200.8/6020	0.200 μg/L			
Chromium	EPA 200.8/6020	2.00 μg/L			
Cobalt	EPA 200.8/6020	1.00 μg/L			
Fluoride	SM 4500 F_C	0.100 mg/L			
Lead	EPA 200.8/6020	0.200 μg/L			
Lithium	EPA 200.8/6020	5.00 μg/L			
Mercury	EPA 1631	0.000100 mg/L			
Molybdenum	EPA 200.8/6020	1.00 μg/L			
Selenium	EPA 200.8/6020	1.00 μg/L			
Thallium	EPA 200.8/6020	0.200 μg/L			
MNA	-Specific Parameters				
Alkalinity (total as CaCO ₃)	SM 2320 B	20.0 mg/L			
Aluminum (total and dissolved)	EPA 200.8/6020	50.0 μg/L			
Bicarbonate alkalinity (calculated)	SM 4500CO2 D	20.0 mg/L			
Carbonate alkalinity (calculated)	SM 4500CO2 D	20.0 mg/L			
Iron (total and dissolved)	EPA 200.8/6020	50.0 μg/L			
Magnesium (dissolved)	EPA 200.8/6020	150.0 μg/L			
Manganese (total and dissolved)	EPA 200.8/6020	1.00 μg/L			
Nitrogen nitrate/nitrite	EPA 353.2	0.0200 mg/L			
Potassium (dissolved)	EPA 200.8/6020	100 μg/L			
Silica (dissolved)	SM 4500-Si02	0.500 mg/L			
Sodium (dissolved)	EPA 200.8/6020	100.0 μg/L			
Sulfide	SM 4500-S2	Subcontracted			
Total organic carbon	SM 5310 C	1.00 mg/L			

Notes

The following field parameters will be measured for each monitoring well sample: depth to water, total depth, pH, temperature, ORP, DO, turbidity, and SC.

μg/L: micrograms per liter ORP: oxidation reduction potential

DO: dissolved oxygen SC: specific conductance EPA: U.S. Environmental Protection Agency SM: Standard Method

mg/L: milligrams per liter

Table 2
Constituents and Analytical Methods

Constituent	Analytical Method	Detection Limit		
Arsenic	EPA Method 6020B	0.5 mg/kg		
Cobalt	EPA Method 6020B	0.5 mg/kg		
Lithium	EPA Method 6020B	2.5 mg/kg		
Iron	EPA Method 6020B	1 mg/kg		
Manganese	EPA Method 6020B	1 mg/kg		
Cation exchange capacity	EGL SOP/6020B			
Extractable iron, aluminum, and manganese oxides	EGL SOP/6020B	1 mg/kg		
Sulfide	SM4500-S2	1 mg/kg		
Total organic carbon	EPA Method 9060A	200 mg/kg		
Appendix IV Parameters				
Antimony	EPA 200.8/6020	0.5 mg/kg		
Barium	EPA 200.8/6020	0.5 mg/kg		
Beryllium	EPA 200.8/6020	0.5 mg/kg		
Cadmium	EPA 200.8/6020	0.5 mg/kg		
Chromium	EPA 200.8/6020	0.5 mg/kg		
Fluoride	SM 4500 F_C	1 mg/kg		
Lead	EPA 200.8/6020	0.5 mg/kg		
Mercury	EPA 1631	0.5 mg/kg		
Molybdenum	EPA 200.8/6020	0.5 mg/kg		
Selenium	EPA 200.8/6020	0.5 mg/kg		
Thallium	EPA 200.8/6020	0.5 mg/kg		

Notes:

Solids will be digested by EPA Method 3050B prior to analysis.

EPA: U.S. Environmental Protection Agency

mg/kg: milligrams per kilogram SOP: standard operating procedure

SM: Standard Method

Table 3
Sequential Extraction Procedure

Fraction	Name	Targeted COI Phase	Extraction Fluid
F1	Soluble	Dissolved and loosely bound	Magnesium chloride
F2	Exchangeable	Clay mineral exchange sites and weakly bound to oxides	Ammonium phosphate
F3	Reducible	Amorphous iron oxide bound	Hydroxylamine hydrochloride
F4	Strong Acid/Oxidizable	Crystalline oxides, sulfides and/or organic matter bound	Nitric acid
F5	Residual	Silicates and other insoluble phases	Aqua regia

Figure

Publish Date: 2021/12/09, 3:48 PM | User: jquinley Filepath: \\orcas\GIS\Jobs\SouthernCompany_1114__MultiplePlants\2021_12\TreatabilityStudies\AQ_Figure02_PlantBarry_ProposedLocs_PilotTestBorings.mxd

